Chapter 10

Multitasking

10.1 Introduction

10.2 Context switching

A task is a unit of work on which a processor perform actions such as dispatch,
execute, suspend, etc. A multitasking environment provides task management that
arbitrates cpu time allocations to several tasks in such a way that they can run
"concurrently”. Each task receives a time slice of computation then it is interrupted
and another task takes over the cpu for its own time slice of computation, and so
on. Consider the diagram shown in Fig. 10.1 where the time slice alloted to each
task T;,1 <1 < 4 is d units of time until every task completes execution.

Since the cpu computes a single task thread at a time, tasks are referred to
as threads. While one thread runs the other threads are suspended. The kernel
scheduler uses the task priority assigned by the user to determine which thread will
run next. If all threads are given the same priority the kernel executes all tasks in
a job in a round-robin fashion as illustrated in Fig. 10.1.

Each task has its own stack or section of the overall stack, and a special section
of memory referred to as its context. The context keeps a copy of the contents of
all the cpu registers and the threads stack when it is suspended. For illustration
consider two threads A and B with contexts as shown in Fig. 10.2. The mechanism
to switch contexts between threads A and B is shown in Fig. 10.3.

The context switching block shown in Fig. 10.3 will switch to the task with

183

184 CHAPTER 10. MULTITASKING

Time(t) LT 13T

t=t

| interrupt at time t=1t+ d

| interrupt at time t =1t + 2d

interrupt at time t =t; + 3d

interrupt at time t =1t + 4d

interrupt at time t =4t + 5¢

| interrupt at time t = 1t + gq

| interrupt at time t = it+ 7d

interrupt at time t = it+ 8d

Figure 10.1: Time slicing four tasks

the highest priority at the time of the interrupt.

10.3 Preemptive and non-preemptive multitask-
ing

Tasks that can be interrupted are referred to as preemptive. Hardware interrupts
trigger context switching; external events such as a tic from the 18253, or from any
other device, let the handler (ISR) take over and switch context to another thread.
Consider again two threads A and B to illustrate context management in Fig. 10.4.

Non-preemptive tasks are not interruptible. If a context switch must occur, a
thread must explicitly call a kernel routine to switch to another thread. The context
switch call is referred to as yield, and this form of context switching is referred to
as cooperative multitasking.

10.4 Critical sections

A sequence of instructions intended to access shared resources form what is known
as a critical section in reference to the section in memory where the binary code
resides. Critical sections must be protected against preemption by any other code
accessing the same resources. A critical section once it is protected executes to

10.4. CRITICAL SECTIONS 185

Context of trhead A Context of trhead B
Stack A Stack B
[eip] [_eip_|
..... eax

Figure 10.2: Context of threads A and B

Thread A Thread B
|
Executingi ' Suspendec
Y
—_— Save context A Restore context B | ——=¢
f—| —=] |
|
Suspendeg Executing
|
|
Y Restore context A M Save context B ‘%‘
Executingl . Suspende
|
y

Figure 10.3: Context switch mechanism

completion. Mechanisms designed to protect critical section execution include spin
locks and mutual exclusion objects (mutez).

Spin locks. A binary flag is set before entering a critical section and cleared on exit.
While the flag is set all other access to the same resource is blocked. Fig. 10.5 shows
a possible implementation of a spin lock.

Note that if the flag is set other thread is using the resource and the current
access request is blocked. A possible check of a flag uses the zchg instruction to
ensure an atomic access to 1) access its current state, and 2) set it if it was cleared.

186 CHAPTER 10. MULTITASKING

Thread A Thread B
Executing Suspended

,,,,,,,,,,,,,,,,,,,,, \
Hardware @
Interrupt

Process
Interrupt Request

Context switch

eeeeeeeeeeeeeeeeeeeee

Suspendeq Executing

\

Figure 10.4: Context switch by hardware interrupts

L1: moval, 1
xchg byte [flag], al
or al, 0
jnz L1

critical section

mov byte [_flag], 0

If _flag is set, the resource is already taken and zchg does not change its state; the
checking continues for one more iteration because the result of the or instruction is
non-zero. If _flag is cleared, the execution of the xchg instruction sets _flag to one
but the zero result of the or instruction changes the flow out of the loop into the
critical section of the code. An instruction such as mov byte [flag/, 0 will clear the
flag at the end of the critical section and release the resource.

MUTual EXclusion objects (Mutex). Using a mutex requires calling a kernel function
on either side of the critical section. The first call blocks the thread until the mutex
is available. If the mutex is available then the thread continues. At the end of the
critical section the mutex is released via a second kernel call.

At most a single thread owns a mutex at anyone time. Unlike the mutex,

10.5. 1A-32 SUPPORT FOR TASK MANAGEMENT 187

(s

set?

Set flag

\
Critical section

Y

Clear fIa%;

Figure 10.5: Spin lock implementation

a Semaphore can be used to manage access to multiple resources. A semaphore is
initialized to a count N that corresponds to the number of resources available within
a shared set. The counter is decremented or incremented as resources are allocated
or realeased. When N = 0 threads are blocked until resources are released. A
binary semaphore is one where N = 1 and behaves the same as a mutex. A counting
semaphore is one where N > 1.

10.5 TIA-32 support for task management

A task can be dispatched for execution in one of the following ways:

e An explicit call instruction,
e The execution of a jump instruction to the task,

e An implicit call to an interrupt-handler task,

An implicit call to an exception-handler task, and

Using an iret instruction (as shown in Fig. 10.4.

The context of the dispatched task is then loaded into the processor to initi-
ate or continue execution. To support context switching in TA-32 processors, the
following data structures are involved:

188 CHAPTER 10. MULTITASKING

Task-State Segments (TSS),

Task-gate descriptors,

TSS descriptors,

Task registers

An NT flag in the eflags register.

Task-State Segments (TSS). As a context switching occurs, the context of the cur-
rently executing task is saved in its own Task-State Segment (T'SS) and execution
is suspended. The context needed to restore a task to its execution state is stored
in its TSS. The TSS contents are organized as shown in Fig. 10.6. The processor
updates some dynamic fileds when a task is suspended during a context switch. The
dynamic fields that reflect the current state of a suspended task are the following:

General-purpose registers fields

Segment selector fields,

The eflag register field,

The it eip register field,

Previous task link field,

Local Descriptor Table select field, and

e A CR3 control register field used to point to a page directory.

10.5. 1A-32 SUPPORT FOR TASK MANAGEMENT 189

31 15 0
0 Map Base Address T] 100
LOT Segment Selector 95
GS a2
FS 88
DS 84
55 80
cs 76
ES 72
EDI 63
ES| 64
EBP &0
ESP 56
EBX 52
EDX 48
ECX 44
EAX 40
EFLAGS %
EIP 2
CR3 {FDER) 28
| 552 24
ESP2 20
| 551 16
ESP1 12

| 550 8

ESPO 4

| Previous Task Link 0

[] Reserved bits. Satto 0.

Figure 10.6: Task State Segment

