
Chapter 7

Macros and Preprocessing
Directives

7.1 Introduction

The use of macros is intended to facilitate the design and writing of assembly code.
Besides the use of sub-procedures, writing macros is another alternative to the or-
ganization of source code. However, while a call to a sub-procedure allows the
execution of the corresponding code in memory, macros will expand the source code
during development. The name of the macro which occupies one line of code is
replaced by the source code during assembly. Macros are similar to include files. A
sequence of text lines is defined and named only once but referred to several times,
and each time, the reference is substituted by the same source code. The only ad-
vantage of using macros over procedures is the fact that no call and ret instruction
is executed. However, the speed gained has to be paid with the cost of the extra
memory space required for each expansion. Therefore, while macros provide speed,
procedures provide compactness.

7.2 Macro Definition

A macro definition makes use of the directives %macro and %endmacro in the fol-
lowing format:

%macro name_of_macro [p]

133

134 CHAPTER 7. MACROS AND PREPROCESSING DIRECTIVES

...

code

...

%endmacro

A number p of parameters will be expanded with the values given as arguments
when the macro is invoked. Parameters may be referenced anywhere within the
macro and identified with an integer i preceded by the symbol “%i”, where 1 ≤ i ≤ p.
Thus, the first parameter is identified as %1, the second parameter as %2 and so on
until the last parameter numbered p is identified as %p. A macro invocation uses
the name of the macro followed by the list of arguments as follows:

name_of_macro [arguments]

Parameters are replaced from the argument list from left to right. If the
number of arguments is less than the number of parameters, the instructions that
refer to them will not be encoded and an assembly error is generated. On the other
hand if the number of arguments is greater than the number of parameters, then
the extra arguments beyond p are ignored.

Example: This macro will be called to display a character using int 21.

%macro putch 1

mov dl, %1

mov ah, 02h

int 21h

%endmacro

One use of the above macro is to produce a beep sound with the following line:

putch ’7’

Example: Write a macro to display a $-terminated string.

%macro display 0

push ax

mov ah, 9

int 21h

pop ax

%endmacro

7.2. MACRO DEFINITION 135

Note the use of the push and pop instructions to save and restore the contents of
ax using the stack. As is the case for sub-procedures, saving and restoring registers
safeguards the integrity of the overall program; it also provides coding flexibility
as most of the cpu resources are available for writing macros. The use of display
requires a pointer to the string and must be pre-loaded into dx before the call is
made. If msg is such a pointer, then the following sequence will display it:

mov dx, msg

display

Alternatively, the string pointer can be easily incorporated into the macro declara-
tion as shown in the following example.

example: Modify display to pass the string pointer as a parameter:

%macro display 1

push ax

push dx

mov ah, 9

mov dx, %1

int 21h

pop dx

pop ax

%endmacro

Macros can be called within macros as shown in the example that follows.

example: The following sequence will display a string in a position determined by
another macro:

%macro display_at 3

locate %1, %2

display %3

%endmacro

and the following sequence shows the implementation of the macro locate:

%macro locate 2

push ax

push bx

push dx

136 CHAPTER 7. MACROS AND PREPROCESSING DIRECTIVES

mov bx, 0 ;page 0

mov ah, 2 ;code function

mov dh, %1 ;row

mov dl, %2 ;column

int 10h

pop dx

pop bx

pop ax

%endmacro

and a typical invocation of display at would be as follows:

display_at row, column, string

The macros defined so far are case sensitive standard macros, referred to as
multi-line macros. Case insensitive multi-line macros can be defined using the al-
ternative directive %imacro.

Compounded values that include a comma, can be passed in the list of ar-
guments by enclosing the entire parameter in braces. For example the following
macro:

%macro silly 2

%2: db %1

%endmacro

can be used and expanded as follows:

silly a, letter_a ; letter_a: db a

silly ab, string_ab ; string_ab: db ab

silly {13,10}, crlf ; crlf: db 13,10

7.3 Emulation of C calls

Large projects may require that assembly procedures that have been written to be
callable from C to be also callable from another assembly procedure. In this case it
is convenient to simply write a macro that emulates the way in which C calls use
the stack to save and restore parameters each time the call is made. A macro to
emulate C calls will therefore require the following steps:

7.3. EMULATION OF C CALLS 137

• Push parameters into the stack in reverse order in which they appear in a
typical C call,

• Execute a call to the procedure,

• Restore the stack pointer

Example: The following example illustrates the passing of parameters to a 16-bit
procedure named video with the following prototype:

video{string_name, row, col, attr, length, page}

Video displays a string in a selected page at the coordinates given by row and col.
The emulation macro requires 6 parameters and will allow any 16-bit nasm program
to call video through a call to the macro video:

%macro video 6

mov ax, %6

push ax

mov ax, %5

push ax

mov ax, %4

push ax

mov ax, %3

push ax

mov ax, %2

push ax

mov ax, seg %1 ;push segment part

push ax

mov ax, %1 ;push offset part

push ax

call far _video

add sp, 14

%endmacro

Note that parameter %1 corresponds to the message string with a segment:offset
pointer. The segment part is pushed onto the stack using the pseudo-operator seg.
A second push instruction is needed to save the offset part into the next word size
location in the stack. Once all parameter values are saved a far call is made to
video which in turn automatically saves cs:ip into the next two word locations in
the stack. Recall that this is a pointer to the next instruction (add sp, 14) and when

138 CHAPTER 7. MACROS AND PREPROCESSING DIRECTIVES

video executes a return this pointer is restored into cs:ip. Now the last instruction
simply adjusts sp to its original value before the macro is called. The video macro
can be called from any assembly program as follows:

video string_name, row, col, attr, length, page

7.4 Local Labels

Since all labels must resolve to an address then labels must be unique, i.e., the same
label can not be used to reference different addresses. However, this is precisely
the problem that results from the expansion of a macro as it will possibly generate
multiple instances of the same label. A program with repeated labels will not be
assembled. In nasm all labels defined within a macro are considered local and
handled accordingly by the assembler. A label is made local by preceding it with
the sequence: “%%” and inserting a colon after the name. When the assembler
recognizes a local label it generates a unique identifier using the same name preceded
by the the prefix “..@” and a four-digit number. This number is then incremented
each time the same local label is encountered to enforce a unique identifier for each
instance.

Example: The following macro displays a character every iteration of the loop. The
counter is a parameter.

%macro repeat 2

mov cx, %2 ;loop counter

%%a: mov ah, 2

mov dl, %1 ;character

int 21h

loop %%a

%endmacro

7.5 Single-line Macros

Single-line macros are defined using the %define preprocessor directive. The defini-
tions work in a similar way to C as shown in the following examples:

%define cr 10

%define lf 13

%define ctrl 0x1F &

7.6. CONDITIONAL ASSEMBLY 139

%define param(a,b) ((a)+(a)*(b))

%define row bp+10

The following lines of code and declarations illustrate the invocation of the defines
above:

msg db ‘‘hello world’’, cr, lf, ’$’

mov byte [param(2,ebx)], ctrl D

mov ax, [row]

which will expand to the following code:

msg db ‘‘hello world’’, 10, 13, ’$’

mov byte [(2)+(2)*(ebx)], 0x1F & D

mov ax, [bp+10]

Single line macros can be removed with the %undef command. For example,
the following sequence:

%define row bp+10

%undef row

mov eax, row

will expand to the instruction mov eax, row, since after %undef the macro row is no
longer defined. Macros can also be undefined on the command line using the “-u”
option on the nasm command line.

Macros defined with %define are case sensitive. By using the directive%idefine
all case variants are supported.

7.6 Conditional Assembly

Conditional assembly directives allow sections of a source file to be assembled only
if the stated condition is met. The general syntax of this feature looks like this:

%if<condition1>

code expanded only if <condition1> is met

%elif<condition2>

code expanded only if <condition2>

140 CHAPTER 7. MACROS AND PREPROCESSING DIRECTIVES

%else

code expanded if neither <condition1> nor <condition2>

is met

%endif

The clause %else is optional, as is the %elif clause. More than one % elif clause can
be used. The following set of directives support general assembly programming:

%if expr: The conditional-assembly construct %if expr will cause the subse-
quent code to be assembled if and only if the value of the numeric expression
expr is non-zero. The clause %if extends the normal nasm expression syntax,
to include a set of relational operators such as =, <, >,≤,≥ and <> that will
test for equality, less-than, greater-than, less-or-equal, greater-or-equal, and
not-equal, respectively. The C-like forms == and != are supported as alter-
native forms of = and <>. Low-priority logical operators such as &&, ^^ and
‖ are supported, to test for logical and, logical xor, and logical or conditions.
These conditions are similar to the C logical operators (although C has no
logical xor), in that they always return either 0 or 1, and treat any non-zero
input as 1 (so that ^^, for example, returns 1 if exactly one of its inputs is
zero, and 0 otherwise). The relational operators also return 1 for true and 0
for false.

%ifdef: Beginning a conditional-assembly block with the line %ifdef macro
will assemble the subsequent code if, and only if, a single-line macro called
macro is defined. If not, then the %elif and %else blocks (if any) will be
processed instead. For example, when debugging a program, you might want
to write code such as:

; perform some function

%ifdef DEBUG

writefile 2,"Function performed successfully",13,10

%endif

; go and do something else

Then you could use the command-line option -dDEBUG to create a version of
the program which produced debugging messages, and remove the option to
generate the final release version of the program.

%ifmacro: This construct tests for multi-line macro existence. The %ifmacro
directive operates in the same way as the %ifdef. For example, in working with
a large project it is convenient to have control over the macros in a library
by creating a macro with one name if it doesn’t already exist, and another

7.6. CONDITIONAL ASSEMBLY 141

name if one with that name does exist. The %ifmacro is considered true if
defining a macro with the given name and number of arguments would cause
a definitions conflict. For example:

%ifmacro MyMacro

%error "MyMacro" causes a conflict with an

existing macro.

%else

%macro MyMacro

; insert code to define the macro

%endmacro

%endif

This will create the macro “MyMacro” if no macro already exists which would
conflict with it, and emits a warning if there would be a definition conflict.
The %ifnmacro construct tests for the macro non-existence. Additional tests
can be performed in %elif blocks by using %elifmacro and %elifnmacro.

The following set of directives are provided to support programming using
macros:

%ifidn, %ifidni: The construct

%ifidn text1,text2

will cause the subsequent code to be assembled if and only if text1 and text2,
after expanding single-line macros, are identical pieces of text. Differences in
white space are not counted. %ifidni is similar to %ifidn, but is case-insensitive.
For example, the following macro pushes a register or number on the stack,
and allows you to treat ip as a real register:

%macro pushparam 1

%ifidni %1,ip

call %%label

%%label:

%else

push %1

%endif

%endmacro

142 CHAPTER 7. MACROS AND PREPROCESSING DIRECTIVES

Like most other %if constructs, %ifidn has a counterpart %elifidn, and negative
forms %ifnidn and %elifnidn. Similarly, %ifidni has counterparts %elifidni,
%ifnidni and %elifnidni.

%ifid, %ifnum, %ifstr: Some macros will want to perform different tasks
depending on whether they are passed a number, a string, or an identifier.
For example, a string output macro might want to be able to cope with being
passed either a string constant or a pointer to an existing string. The condi-
tional assembly construct %ifid, taking one parameter (which may be blank),
assembles the subsequent code if and only if the first token in the parameter
exists and is an identifier. %ifnum works similarly, but tests for the token
being a numeric constant; %ifstr tests for it being a string.

7.6.1 Including Other Files

Using a very similar syntax to the C preprocessor, nasm’s preprocessor lets you
include other source files into your code. This is done by the use of the

%include "macros.mac"

will include the contents of the file macros.mac into the source file containing the
%include directive. Include files are searched for in the current directory (the direc-
tory you re in when you run nasm, as opposed to the location of the nasm executable
or the location of the source file), plus any directories specified on the nasm com-
mand line using the -i option. The standard C idiom for preventing a file being
included more than once is just as applicable in nasm: if the file macros.mac has
the form:

%ifndef MACROS_MAC

%define MACROS_MAC

; now define some macros

%endif

then including the file more than once will not cause errors, because the second
time the file is included nothing will happen because the macro MACROS MAC
will already be defined. You can force a file to be included even if there is no
%include directive that explicitly includes it, by using the -p option on the nasm
command line.

7.7. STRUCTURE DATA TYPES 143

7.7 Structure Data Types

The macros struc and endstruc are used to define a structure data type. The name of
the data type is the only parameter in struc. In addition to the structure declaration
the struc macro defines the name of the structure as a symbol with the value zero,
and it attaches a suffix size to specify through an equ statement the size of the
structure. The fields of the structure are defined with the size of data allocated
within the structure. The structure definition is closed with the endstruc declaration.

Consider for example the following structure declaration defined with records
of students:

struc st_record

name resb 20

id resb 1

credits resw 1

status resb 1

endstruc

Any field resolves to a constant displacement with respect to the address as-
signed to the struture name. For example if asmclass is the label associated with
the structure type st record then to access the contents of the field credit involves
a relative addressing with respect to asmclass as in mov ax, [asmclass + credit].
Alternatively, structures can be declared with a “period” format as follows:

struc st_record

.name resb 20

.id resb 1

.credits resw 1

.status resb 1

endstruc

With this format offsets to the structure fields can be defined as in asmclass.credit

Once a structure is defined, instances of that structure type can be initialized
within the data segment using the istruc and iend mechanism. For example to
declare a structure of type st record the following instantiation can be used:

segment .data

asmclass:

istruc st_record

144 CHAPTER 7. MACROS AND PREPROCESSING DIRECTIVES

at name, db ’Jesse Brumbaugh’, 0

at id, db ’1234567890’, 0

at credit, dw 100

at status, db ’senior’, 0

iend

The macro at makes use of the times prefix to advance the assembly position
to the correct offset of the specified structure field. Therefore, the structure fields
must be declared in the same order as they were specified in the structure definition.

Example: the following code illustrates the use of structures, the use of macros to
display message in a 32-bit flat mode environment, and the use of dpmi services to
invoke access to real-mode segments from assembly programs.

; Assemble using the 32-bit nasm assembler: nasm32 -f coff v32_ex.asm

; to link under djgpp: gcc -o v32_ex v32_ex_mac.o video32.o

%include ’dvideo_a.h’ ;provides equates for color attributes

%macro video 6

mov eax, %6

push eax

mov eax, %5

push eax

mov eax, %4

push eax

mov eax, %3

push eax

mov eax, %2

push eax

mov eax, %1

push eax

call _video

add esp,24

%endmacro

struc ftest

msg: resb 30

7.7. STRUCTURE DATA TYPES 145

endstruc

segment .text

global _main

extern _video

_main:

mov ax, 0002h ;dpmi call to

mov bx, 0b800h

int 31h ;convert B800h to a descriptor format

mov word [_text_buffer], ax

video mytest+msg,10,15,LIGHT+WHITE+BLUE_BKG,80,0

ret

segment .data

mytest:

istruc ftest

at msg, db "Hello, World !", 0

iend

segment .bss

global _text_buffer

_text_buffer resw 1

Refer to example 6 in chapter 5 that uses a C-function to request a dpmi service
for the conversion of the video segment to a descriptor format. In this example the
same service is requested using int 31h. This example also illustrates the use of a
macro to call a display function video implemented in 32 bits. Note the differences
with the macro used to call a 16-bit implementation of the same function. Since
the message is embedded within an assembly structure, the correct offset must be
provided to the video macro in terms of an instantiation of the ftest structure.

7.7.1 Array of Structures

Another alternative to initialize structure type data other than the use of istruc
involves directly accessing structure instances as needed. A large array of structures
can be initialized to the same values in each field, or specified fields can be initialized

146 CHAPTER 7. MACROS AND PREPROCESSING DIRECTIVES

to the desired data. Consider the structure used in the previous example to initialize
and display three structure instances for three different messages:

; assemble using the 32-bit nasm assembler: nasm32 -f coff strtest.asm

; to link under djgpp do: gcc -o x strtest.o

struc strtest

.msgs resb 30

endstruc

SEGMENT .text

global _main

extern _printf

_main:

;initialization

mov edi, strtest.msgs

mov dword [edi+0*strtest_size], msg1

mov dword [edi+1*strtest_size], msg2

mov dword [edi+2*srttest_size], msg3

;display

mov edi, strtest.msgs

push dword [edi+0*strtest_size]

call _printf

add esp,4

push dword [edi+1*strtest_size]

call _printf

add esp,4

push dword [edi+2*strtest_size]

call _printf

add esp,4

ret

SEGMENT .data

msg1 db "Hello, World ! ", 10, 0

msg2 db "Hello, Galaxy ! ", 10, 0

msg3 db "Hello, Universe ! ", 10, 0

7.8. EXERCISES 147

Observe that the first instance of the structure strtest is initialized with msg1 at
an address given by strtest.msgs+0×strtest size. The second instance is initialized
with msg2 at strtest.msgs + 1× strtest size, and finally msg3 initialezes the third
instance at strtest.msgs + 2× strtest size. Therefore, if k instances istrname of a
structure type, say strname are needed, the offset at any field is given by:

istrname = strname.nj + i× strname size

where i = 1, 2, . . . k, and nj denotes any of m fields n1, n2, . . . nm in the structure
declaration. The first term provides the offset of the field nj within the structure.
The second term calculates the offset of the particular instance being accessed. Both
the initialization and the display part of the structure strtest in the previous example
illustrates a straigthforward access to its single field msgs in each instance.

7.8 Exercises

