
Chapter 8

Interrupts

8.1 Introduction

An executing program can be interrupted by an external device, or through the
direct call of interrupt subroutines. No instruction is interrupted during execution;
however, before the fetching of the next instruction occurs, the interrupt flag is
checked and if pending interrupts exists control is automatically transfered to a
location in memory where an interrupt service routine (interrupt handler) is stored.
This chapter explores the mechanisms used by which interrupt subroutines take
control of the cpu in both real and protected mode.

Processing requests via interrupts have the desired effect of speeding up service
and minimize cpu idle time. Suppose a processor reads a character in 10−5 seconds.
If the processor waits for example 10 seconds for a user to type a character then
(10−10−5)

10
= .99999 implies that 99.99% of the time the cpu is idle. To minimize idle

time, the cpu is interrupted only when the character is ready, i.e., the keyboard must
generate an interrupt signal right after the user presses any key. Several interrupt
signals can be queued and serviced following a preassigned scheduling criteria; this
capability offers the clear advantage of servicing several devices while attempting to
maintain the cpu busy most of the time.

Interrupts are external if initiated by hardware devices external to the cpu and
internal interrupts are initiated by a program (software interrupts), or by exceptions
such as division by zero, overflow, single step execution, or breakpoints. Interrupts
may be maskable, i.e., they can be temporarily disabled, or nonmaskable for which
a dedicated hardwired signal exists and cannot be disabled.

149

150 CHAPTER 8. INTERRUPTS

8.1.1 Real Mode Interrupts

Devices requesting services send an interrupt request signal to the processor; the
processor acknowledges requests and obtains information regarding which device
requires cpu time; based on this information the corresponding interrupt subroutine
is activated. Since an interrupt request may be received any time, the processor
checks for pending requests before the next instruction is fetched and executed. If a
pending interrupt is detected and interrupt acknowledge is sent to the interrupting
device which responds with an 8-bit number that identifies the interrupting device.
The cpu uses the interrupt number to access the interrupt vector table (IVT and
fetch the address of the first instruction of the interrupt handler. The following
steps summarize the actions (interrupt service) that an Intel 8086/88 processor
executes in response to an interrupt request and before it releases control to the
corresponding interrupt handler:

1. Saves the contents of the flag register in the stack (pushf):

[sp]← F lag register

2. Disable interrupts (cli):
IF ← 0

3. Saves return address (cs:ip):

[sp]← cs
[sp + 2]← ip

4. Locates interrupt vector in the interrupt vector table and updates the cs:ip
pair with the address of the interrupt handler:

cs← IV T16[4× n]
ip← IV T16[4× n + 2]

where n is an integer identifying the interrupt number provided by an external
hardware device or through a software call int n.

Steps 1-3 are indivisible, i.e., no interrupt will be served if it occurs during this
short period of time. Once the address of the interrupt handler is loaded into the
cs:ip the first instruction of the interrupt subroutine is fetched for execution. When
the handler returns via an iret the previous contents of the cs:ip pair are restored
and the interrupted program continues execution. The following steps summarize
the code organization of an interrupt handler:

8.1. INTRODUCTION 151

1. Enables interrupts (sti):
IF ← 1

2. Saves contents of working registers into the stack

3. Executes code to service interrupt

4. Restores working registers

5. Executes an iret:

• restores return address; old cs:ip:

ip← [sp]
cs← [sp− 2]

• restores flags register (popf):

F lag register ← [sp]

Enabling interrupts in the first step is necessary because it allows interrupts re-
quests with higher priority to interrupt the current service routine. Stack operations
that save the contents of registers (push) have to be paired with stack operations
that restore registers (pop). For example, the service routine saves into the stack
the contents of the register flag, and cs:ip and by executing and iret the interrupt
handler restores both the register flag and the contents of cs:ip with pop operations
executed in the appropriate order.

8.1.2 Interrupt Vector Table (IVT)

The interrupt vector table refers to a memory section from 00000h to 003FFh in
real-mode. See Table 1.3 in Chapter 1. The table consists of 256 entries; each entry
stores an interrupt vector, which is a pointer to the location of the interrupt handler.
As part of the cpu interrupt service an nth entry of the IVT that corresponds to
the interrupt number, is accessed and its contents are placed in the cs:ip registers
before the interrupt handler takes control of the cpu. Since each entry consists of
four bytes, the integer n is multiplied by 4 to form the correct index where the
interrupt vector is located. For example int 21h will result in an index 21h×4 = 84,
therefore it will access the corresponding entry in the IVT at location 0000:0084h,
and fetch the offset part of the pointer at 0084h and 0085h, and the segment part at
0086h and 0087h; the pair segment:offset fetched from the IVT points to the start
of the interrupt service routine. Access to the IVT is illustrated in Fig. 8.1 for the
interrupt execution of int 10h software interrupt.

Some relevant entries in the IVT are listed in Table 8.1.

152 CHAPTER 8. INTERRUPTS

handler

mov al, 03h
int 10h
inc cx
...
...

Calling

mov ah, 05h

00
A0
7B

cld
push es
push ds
push bx
...
...
iret

Interrupt

sti

IVT

...

...

...

...

06

...

...

...

0600:A07B

A07C

0000:0040
0041
0042
0043

program

Figure 8.1: The interrupt execution cycle for int 10h

8.2 Software Interrupts

Hardware resources can be accessed and controlled through the use of dos and bios
interrupts. These are software-directed interrupts that require specific registers to
be preloaded with the required parameters. One of these parameters is the code
function, an 8-bit integer preloaded in ah and used by the interrupt handler to
identify the function is expected to perform. Common int instructions include the
following:

int 10h: services video functions,

int 16h: provides keyboard services,

int 17h: provides printer services,

int 1Ah: gets/sets number of ticks from the timer

int 21h: dos services (I/O, file handler, memory management,etc.),

int 33h: mouse operations.

Because of their wide spread use, this section addresses mainly video (int 10h)
and dos (int 21h) software interrupt calls.

8.2.1 BIOS Calls

Software bios is located in the memory map above the dos area as shown in Table 1.3.
This area stores procedures that manage most input/output devices including the

8.2. SOFTWARE INTERRUPTS 153

Table 8.1: Selected interrupt vector assignments

Type Offset Operation Type Offset Operation

0 0000 – 0003 Divide Overflow 10 0040 – 0043 Video services
1 0004 – 0007 Single step 13 004C – 004F Disk I/O
2 0008 – 000B NMI) 14 0050 – 0053 Serial port
3 000C – 000F Breakpoint 16 0058 – 005B Kboard services
4 0010 – 0013 Overflow 17 005C – 005F Printer services
5 0014 – 0017 Print screen 19 0064 – 0067 Bootstrap loader
8 0020 – 0023 Timer 1A 0080 – 0083 Time of day
9 0024 – 0027 Keyboard 21 0084 – 0087 DOS services
A 0028 – 002B Reserved 23 008C – 008F CTRL-BRK
B 002C – 002F COM1 24 0090 – 0093 Critical error
C 0030 – 0033 COM2 33 00CC – 00CF Mouse interrupts
D 0034 – 0037 Hard disk 60–6B User programs
E 0038 – 003B Floppy disk 6C–7F Reserved
F 003C – 003F Printer F1–FF User programs

keyboard, disk drives, video, and serial and parallel ports. This is the area that is
accessed through an interrupt number when an int n instruction is executed, where
n varies from 0 to 1F entries in the IVT. Video display functions are controlled
through int 10h calls. A brief list of the more useful functions include the following:

Code function 0: Set video mode

Code function 2: Set cursor position

Code function 3: Read current cursor position

Code function 5: Change active page

Code function 6: Scroll active page up

Code function 9: Write attribute/character at the current cursor position

set video mode. This interrupt sets the video mode of the display. The register ah is
preloaded with the code function 00h. An 8-bit number associated with the desired
video mode is loaded in al. For example the following set of instructions:

mov ah, 0

mov al, 3

int 10h

154 CHAPTER 8. INTERRUPTS

will set the screen to display 25 lines with 80 characters per line. After the interrupt
is issued, the video mode is updated, the screen is cleared, and the cursor is placed
in the upper left corner of the video screen.

Set cursor position. This interrupt places the cursor at any desired position on
the text screen. Register ah must be loaded with 02h, the function code. The
coordinates, row and column, for the cursor position must be preloaded in dh and
dl, respectively. The page selected for display is preloaded in register bh. For
example to place the cursor at row 10 and column 25 in page 0 the following set of
instructions are executed:

mov ah, 2

mov dh, 10

mov dl, 25

mov bh, 0

int 10h

Read current cursor position. This interrupt will return the row and column position
of the current text cursor. Register ah must be preloaded with the function code
03h, and the register bl must contain the page number. The output, row and column
are returned in dh and dl, respectively.

Change active page. This interrupt changes the active page. After the execution
of this interrupt the page displayed changes to the one specified in the call. The
function code is 05h that must be preloaded into ah. The desired new page is
preloaded into register al.

Scroll active page up. This interrupt is called within a procedure to scroll the current
active video page up. The function code is preloaded in ah. The following set of
registers must also be preloaded with the information specified:

al = Number of rows to scroll up

bh = Attribute used

ch = Row number at top of region

cl = Column number at top-left of region

dh = Row number at bottom of region

dl = Column number at bottom-right of region

The attribute byte preloaded into bh controls what foreground and background
colors will be used in the scroll region when scrolling is completed. Also if al is

8.2. SOFTWARE INTERRUPTS 155

preloaded with 0, it specifies all the rows in the entire region. The following code
clears the entire video screen:

mov ah, 6

mov al, 0

mov bh, 7

mov ch, 0

mov cl, 0

mov dh, 24

mov dl, 79

int 10h

Write attribute/character at the current cursor position. This interrupt can be
used to display not only a character but the attribute byte with background and
foreground color display information. As usual the register ah must contain the
function code 09h. In addition to the function code the following input values are
required in the indicated registers:

al = ascii code of character

bh = display page

bl = character’s attribute

cx = Number of characters to write

The following code segment displays the character A with a foreground in a
magenta background:

mov ah, 09h

mov al, ‘‘A’’

mov bh, 0

mov bl, 47h

mov cx, 1

int 10h

8.2.2 DOS Functions

A group of about 90 different functions are provided through the call int 21h. Some
programming examples are briefly discussed in this section. Other dos functionality

156 CHAPTER 8. INTERRUPTS

besides int 21h is provided with the interrupt numbers 20h, 22h — 26h, and 27h. The
call int 20h is used by a program to return control to dos, however the most common
way to return to dos is by using the code function 4Ch with an int 21h call. The
calls int 22h — int 26h provide services such as the handling of Crlr-break, critical
errors, and direct disk access. The call int 27h allows programs to terminate and
stay resident. In general dos service routines provide access to hardware and system
resources that include video, keyboard, file and directory services. The following
examples illustrate the use of some of the int 21h functionality:

Get a character from keyboard (with echo). To use this function the code 01h is
preloaded in ah and the echoed character is placed in al by the call. A typical use
of this call is illustrated by the following code segment:

mov ah, 01h

int 21h

mov byte [char], al

Display a character. This function displays a character preloaded in dl. The code
function is 02h and it is preloaded in ah. The use is illustrated as follows.

mov ah, 02h

mov dl, ‘‘A’’

int 21h

Display a $-terminated string. The code function 09h is in this call requires the offset
of the string to display to be preloaded in dx. The string must be $-terminated.
Example:

mov ah, 09h

mov dx, msg

int 21h

8.2.3 Use of DPMI

Software interrupt handlers were implemented primarily for real-mode 16-bit appli-
cations. However, in protected mode interrupts are handled in a different way. To
begin with the interrupt vector table (IVT) is referred to as the Interrupt Descriptor
Table (IDT) and can be anywhere in memory as a protected section of memory. The
IDT performs the same function as the IVT but it provides additional information
about the interrupt handlers.

8.2. SOFTWARE INTERRUPTS 157

DPMI defines a specific subset of dos and bios calls that can be made by
protected mode programs. For software interrupts that do not involve segment
registers, DPMI activates its own service routines that call the corresponding real-
mode interrupt handler, and return to protected mode program. Consequently,
interrupt functions are performed automatically as long as no absolute segment-
based addressing is involved. Consider the call int 21 with a function code 09 used
in example 3 in Chapter 3. This example is a small program running in a flat 32-
bit protected mode but with no specific segment addressed. On the other hand, if
segment registers are involved, a special DPMI function must be called to switch
to a valid selector for a protected mode memory access and back to its real-mode
segment-based content. This interface is provided by an int 31h call that assembly
programs can use to allocate memory, modify descriptors, call real mode software,
etc. An example to switch the real-mode segment B800h to a segment descriptor
format is shown in section 7.7. Another DPMI function such as 0300h (simulate
real-mode interrupt) allows the program to set all registers that are used by the
real-mode handler. Upon return, all values set by the real-mode interrupt handler
are read back by the protected mode program. While in protected mode, segment
registers must hold a valid selector value, otherwise, setting a segment register to a
real-mode segment value will trigger a general protection fault.

In case access to data within the real-mode space is required, DPMI function
0100h, (allocate DOS memory block), allocates space in the low 1 Megabyte of RAM
(the 20-bit address space visible to real-mode programs), and returns both a selector
that can be used to access real-mode memory from protected mode and a segment
value that can be used to access this memory from real mode. Using the selector and
segment value, a protected mode program can copy data it wants to make available
to the real-mode interrupt into this memory and provides the real-mode segment to
the interrupt handler for reading it. Naturally, the same process can work in reverse:
the real-mode interrupt writing into the memory and the protected mode program
reading out of it after the interrupt returns. The following steps summarize how the
DPMI function 0100h accomplishes real-mode memory allocation:

1. Switch to real-mode,

2. Perform a DOS interrupt call to allocate memory below 1 Megabyte,

3. Calculate the physical address of the memory allocated

4. Allocate an LDT descriptor, and set its base address to the calculated physical
address and the length to the size of the allocated memory.

5. Return the index of this LDT entry in DX.

158 CHAPTER 8. INTERRUPTS

Before exiting, the DPMI function 0101h, (free DOS memory block), should
be used to free the memory allocated by DPMI function 0100h.

8.3 Interrupt Vector Replacement

User’s interrupt subroutines can replace the interrupt handlers provided by the sys-
tem by simply replacing the contents of the selected entry in the IVT. Alternatively,
the functionality of current handlers can be improved by executing, upon an inter-
ruption, the user code followed by the existing handler. Pointers to user’s interrupt
subroutines can also be inserted into available entries in the IVT.

The temporary replacement of existing handlers is carried out by the following
general steps:

1. Fetch old interrupt vector,

2. Save it,

3. Insert new vector, and

4. Restore the old vector after execution

There stes can be implemented by using int 21h functions, or by coding a direct
access to the IVT.

8.3.1 Use of int 21h functions

Code functions 35h and 25h are used with a int 21h interrupt to retrieve an old
vector and to insert a new vector into the IVT, respectively. The following details
follow the replacement steps listed above:

1. To get the old pointer the code function 35h is pre-loaded into the ah register;
the interrupt type n is also pre-loaded into the al register. The interrupt call
(int 21h) returns the old vector in the pair es:bx.

2. The old vector now in es:bx is saved into the stack or into a memory location
determined by the user.

3. Before an interrupt call is made to insert the new vector, the user pre-loads
ah with the function code 25h, the register al with the interrupt type n, and
the pair ds:dx with the pointer to the user’s interrupt handler.

8.3. INTERRUPT VECTOR REPLACEMENT 159

4. After the handler executes, the old interrupt vector is restored by implementing
an insertion into the IVT as in step 3.

A possible code sequence using int 21h functions is shown as follows:

segment bss
oldvector resw 2

segment code
...
mov ah, 35h ; fetch old vector
mov al, n
int 21h
mov word [oldvector], bx ;save it
mov word [oldvector+2], es
mov ax, seg ihandler ;insert new vector
mov ds, ax
mov ds, ihandler
mov ah, 25h
mov al, n
int 21h
...
mov ax, word [oldvector +2] ;restore old handler
mov ds, ax
mov dx, word [oldvector]
mov ah, 25h
mov al, n
int 21h
...
...

ihandler: sti ; interrupt handler code
...
push registers used
process interrupt
pop registers used
iret

160 CHAPTER 8. INTERRUPTS

8.3.2 Direct access to the IVT

Consider the handler for int 0 which is generated internally each time an application
runs into an instance of a division by zero. One possible reason to replace the vector
for int 0 is to avoid the return to the operating system each time a division overflow
occurs. If the user is interested in returning to the interrupted program instead,
then a user version to replace int 0 can be implemented to support an interaction
sequence that controls the outcome of a division overflow. A possible implementation
is outlined as follows:

segment data
msg1 db ”enter dividend:”
msg2 db ”enter divisor”
msg3 db ”result:”
msg4 db ”divide overflow, 13h, 10h, try again”
dividend resw 1
divisor resw 1
quotient resw 1
remainder resw 1

segment code
...
mov di, 0 ; fetch old vector
mov es, di
push word [es:di] ; and save it into the stack
push word [es:di+ 2]

mov ax, zero div ; insert new pointer
mov word [es:di], ax
mov ax, seg zero div
mov word[es:di + 2], ax

goagain: mov bx, 0 ; used to flag an interrupt
display msg1
display msg2
perform division
cmp bx,0 ; check if interrupt occurred
jne goagain
display result

mov di, 0 ; restore old vector

8.4. INTERRRUPTS: IA32 PROCESSORS 161

mov es, di
pop [es:di+2]
pop [es:di]
ret
...
...
;new handler code

zero div: sti
...
display msg4
mov bx, 1
; flag interrupt
...
iret

8.4 Interrrupts: IA32 processors

Real Mode

For real-mode applications in the I32 family of processors the Interrupt De-
scriptor Table (IDT) substitutes the IVT structure. The IDT still consists of 256
4-byte entries as in the IVT but the physical address where the IDT is located starts
at 00000000h and for 256 entries it ends at 000003FFh. Access to the IDT table is
facilitated using the Interrupt Descriptor Table Register (IDTR) which as described
in Fig. 8.2. is a 48-bit register consisting of a base address field and a length field.
Initially the base address of the IDT is pre-loaded with the 32-bit starting address
at the zero location and the length is pre-loaded with the 16-bit value 03FF . The
actions taken by the processor in response to an interrupt event are summarized in
the following steps:

1. When either an interrupt (software or hardware) or a software exception oc-
curs, the cpu pushes the current contents of eflags register onto the stack,
and clears the interrupt flag and disables the recognition of external inter-
rupts. It clears also the TF flag in the eflags register to disable single-step
mode interrupts.

2. Pushes the current contents of cs and eip

162 CHAPTER 8. INTERRUPTS

3. The interrupt type n is multiplied by 4 and added to the base address in the
IDTR to select the correct entry in the IDT. The contents of this entry are
transferred to cs and eip

4. Resumes execution using the contents of cs : eip which now point to the first
instruction of the interrupt/exception handler.

Note that user can change the base address and the length using the instruction
lidt; however, real mode applications assume the default base address and length of
the IDT.

Protected mode

In protected mode the cpu also uses the interrupt type to index the IDT as
shown in Fig. 8.2. The IDT in this case consists of up to 256 eight-byte entries.
Each entry contains an interrupt gate descriptor with information that includes the
segment selector and the offset needed to locate the interrupt handler. The IDTR
provides the base address of the IDT and the interrupt type multiplied by eight
provides the location of the interrupt vector.

The cpu service to an interrupt/exception request is summarized in the follow-
ing steps:

1. Push the eflags register:

esp← esp− 4
[esp]← eflags

As in the case of the real-mode access, the top of the stack is first updated to
point to a new location in the stack where the eflags register is then stored.

2. Disable interrupts by clearing the interrupt flag in the eflags register (cli) From
this point on, the cpu will not permit another interrupt.

3. Push the return address:

esp← esp− 4
[esp]← cs
esp← esp− 4
[esp]← eip

These transfer operations describe the transfer of the segment and the offset
parts of the pointer to the next instruction in the interrupted program.

8.4. INTERRRUPTS: IA32 PROCESSORS 163

4. As described before, the first 16 bits of the IDTR contain the IDT length (or
limit) and the second 32 bits contain the IDT base address. Combining the
IDT base address (A) from the IDTR and the interrupt type n as shown in
Fig. 8.2, an index p = A + 8n where 0 ≤ n ≤ k, is calculated to access the
interrupt gate for int n.

Interrupt Descriptor Table

IDT LimitIDT Base Address

01547

IDTR Register

8

Interrupt type n

Gate for int. 0

.

Gate for int. 1

.

.

.

.

.

+

(IDT)

8n

8

0

16

x

8(k−1)

Gate for int. n

Gate for int. k−1

A

p=A+8n

Figure 8.2: Access to the Interrupt Descriptor Table

16 15 14 13 12
D

31

31 0

0

Offset(31:16)

0

40 0 1 1 0 0 0 0

Segment Selector Offset(15:0)

P
L

P

8 7

Figure 8.3: Interrupt gate description

5. The interrupt gate is a 64-bit entry in the IDT with a format as shown in Fig.
8.3. Among other information bits, it contains the segment selector and an
offset that are loaded into cs : eip:

cs : eip← idt64[p]

164 CHAPTER 8. INTERRUPTS

Segment Selector

IDT
Destination

Code Segment

Interrupt or
Trap Gate

+ Procedure
Interrupt

Segment
Descriptor

Vector
Interrupt

Base Address

Figure 8.4: Interrupt Procedure Call

The segment selector is transferred to cs and the offset is transferred to eip.

6. The actual segment of the interrupt handler is now accessed from the Global
Descriptor Table (GDT) using the 13-bit segment selector in the cs register:

cs← gdt64[cs]

The actual generation of the physical address where the interrupt handler
is located is shown in Fig. 8.4, which follows the protected mode address
generation mechanism described in Chapter 3.

8.5 Exercises

