
Chapter 6

Data Manipulation Instructions

6.1 Introduction

Data manipulation instructions transform data via an arithmetic, a shifting, or a
boolean operation. This chapter deals with arithmetic instructions, shifting and
rotation instructions, and boolean instructions for bit-level manipulation.

6.2 Arithmetic Instructions

6.2.1 Increment and Decrement

These are single-operand instructions. The operation consists on incrementing,
decrementing the operand by 1. The carry flag (CF) is not affected, however the
remaining appropriate flags are set according to the result. The typical format of
these instructions calls for a single explicit operand which specifies either a register
or a memory reference.

inc r/m ; r/m← r/m + 1
dec r/m ; r/m← r/m− 1

The r operand specifies any of either an 8-bit, a 16-bit, or a 32-bit register.
The m operand specifies a byte, or a word, or a double word size operand. Such
operand can be accessed directly or indirectly. For example, the instruction inc

115

116 CHAPTER 6. DATA MANIPULATION INSTRUCTIONS

word [bx] will increment the word-size contents at the location specified in bx. In a
direct addressing mode the address is specified in the instruction; for example dec
byte [count] will decrement the byte at the address associated with the label count.

6.2.2 Negate

The negate instruction returns the two’s complement of the original contents of its
single explicit operand that specifies a register or a memory reference. The format
and the operation performed are the following:

neg r/m ; r/m← r/m + 1

The r operand specifies the name of an 8-bit, a 16-bit, or a 32-bit operand.
Again if the name is surrounded by square brackets it specifies an indirect fetch
of the operand from memory. Direct memory references use the name of variable
surrounded by square brackets. Recall that nasm does not remember the types of
variables, so a type qualifier byte, word, or dword is used in front of the memory
reference to specify the size of the operand to fetch. For example the execution of
neg dword [sum] will result in the two’s complement of the value stored at sum.

6.2.3 Addition and Subtraction

The add and sub instructions perform integer addition and subtraction, respectively.
The contents of the two explicit operands specified in the instruction are added or
subtracted and the result replaces the original contents of the destination operand.
The format and operation of these instructions are the following:

add r/m, r/m/k ; r/m← r/m + r/m/k
sub r/m/, r/m/k ; r/m← r/m− r/m/k

Again the registers (r) or memory locations (m) specified contain 8-bit, 16-bit
or 32-bit operands. For memory reference operands the appropriate qualifier will
ensure that both operands are the same size. While only one operand can be fetched
from memory, the other can be a constant (k) or a register. If the two operands
require a memory reference then an extra instruction is needed to load one into
a register first. The zero (ZF) and the sign (SF) flags are set according to the
results of the operation. For example the execution of the following sequence of
instructions:

6.2. ARITHMETIC INSTRUCTIONS 117

mov ax,1
sub ax, 2

will result in a value FFFFh that represents a -1 stored in ax; therefore, the sign
flag SF = 1. The overflow (OF) flag is checked in the context of signed operations.
The result of an addition or a subtract operation may lead to an overflow, if the
result is to big or too small (underflow to be represented with the available number
of bits.

Example: The addition of 42 + 87 = 129. If 8 bits are available to hold the result
then the fact that 129 > 27 − 1 = 127 indicates an overflow. The use of a binary
representation is useful to illustrate the detection of overflow:

0 0 1 0 1 0 1 0
+ 0 1 0 1 0 1 1 1

1 0 0 0 0 0 0 1 = −(127)

Consider also the addition of negative numbers: (−42 − 87 = −129). Note again
that −129 < −27 = −128 which indicates the occurrence of an overflow. In binary
format:

1 1 0 1 0 1 1 0
+ 1 0 1 0 1 0 0 1

0 1 1 1 1 1 1 1 = +(127)

Observe that when adding two numbers with the same sign, overflow occurs if the
sign of the result is different. While this is useful in paper and pencil a practical
detection of overflow avoids the generation of the result altogether.

The instructions add and sub will also set the carry flag if an overflow occurs.
Unlike the overflow flag, the carry flag is checked only for unsigned operations.
Consider for example the following lines of code:

mov ax, 00FFh
add al, 1

The add operation will set the carry flag CF = 1; the result in ax is zero because
the unsigned 8-bit addition is performed only on the al register which contains the
maximum 8-bit value before the add instruction is executed. However, the following
code:

mov ax, 00FFh
add ax, 1

118 CHAPTER 6. DATA MANIPULATION INSTRUCTIONS

will carry out a 16-bit addition with a result in ax of 0100h with no overflow and
the carry flag remains equal to zero.

6.2.4 Multiplication and Division

Multiplication and division instructions take a single operand to specify a multiplier
or a divisor. Prior to the multiplication/division instruction, an additional implicit
operand must be preloaded into the appropriate registers. The instruction set pro-
vides two different formats, signed and unsigned for multiplication and division:

Unsigned operations:

mul reg/mem ; product← r/m× al/ax/eax
div reg/mem ; remainder : quotient← al/ax/eax÷ r/m

Signed operations:

imul reg/mem ; product← reg/mem× al/ax/eax
idiv reg/mem ; remainder : quotient← al/ax/eax ÷ reg/mem

A n-bit multiplication involves operands with n bits and will generate a prod-
uct that requires 2n bits. An n-bit division requires a 2n dividend and the resulting
quotient is an n-bit value. The execution of a division instruction generates a re-
mainder and a quotient as indicated in the comment field. Table 6.1 illustrates which
registers are used to preload implicit operands and which registers are assigned to
hold results for both multiplication and division instructions.

Table 6.1: Multiplication and Division
Multiplication Multiplicand Multiplier Product

Byte al r/m ax
Word ax r/m dx(high):ax(low)
Dword eax r/m edx(high):eax(low)

Division Dividend Divisor Quotient Remainder

Byte ax r/m al ah
Word dx:ax r/m ax dx
Dword edx:ax r/m eax edx

Sign Extension. As shown in table 6.1, a multiplier and a multiplicand must be
the same size, 8, 16, or 32 bits, then the product requires 16, 32, or 64 bits. Observe

6.2. ARITHMETIC INSTRUCTIONS 119

that in the case of division, the dividend is 16, 32, or 64 bits wide and the quotient
and remainder require 8, 16, or 32 bits. If the flow of computation renders and
n-bit dividend, then for sign division operations it must be sign-extended to 2n bits.
In the following sign-extensions instructions the notation sx indicates the sign bit
repeated x times for the only purpose of describing the operation using a register
transfer notation:

cbw ; ax← s8 : al
;converts the signed byte in al to a word in ax

cwd ; dx : ax← s16 : ax
; converts the signed word in ax to a double word in dx:ax

cwde ; eax← s16 : ax
;converts the signed word in ax into eax

cdq ; edx : eax← s32 : eax
;converts the signed double word in eax into edx:eax

Example 1: The following code implements an 8-bit signed multiplication with a
signed 16-bit product:

mov al, -4 ;al = 1111 1100
mov bl, 8
imul bl ;ax = 1111 1111 1110 0000 = -32

Example 2: The following code illustrates the implementation of a 16-bit multipli-
cation with a 32-bit product:

mov ax, 2000h ;ax = 0010 0000 0000 0000
mov bx, 0025h
mul bx ;dx:ax = 0000 0000 0000 0100:1010 0000 0000 0000

; = 0004h:A000h

Example 3: Illustration of a 32-bit multiplication requiring a 64-bit product:

mov eax, 12345678h
mov ebx, 100000h
mul ebx ;edx:eax = 0001 2345h:6780 0000h

Example 4: Illustration of an 8-bit signed division. Suppose al = −48 then a
sign-extension is required before the division is performed:

cbw ;ax = FFD0h
mov bl, 8
idiv bl ;ax = 0000 0000 1111 1010

;al = quotient = -6; ah = remainder = 0

120 CHAPTER 6. DATA MANIPULATION INSTRUCTIONS

Divide Overflow. If the result of a division is too large for the number of bits
required by the operation, then a divide overflow occurs. The smaller the divisor
is the larger the quotient and the more likely to trigger an overflow. Note that
a division by zero triggers an interrupt that hands control over to a an exception
procedure that displays a “divide overflow” message. When an overflow occurs a
typical solution is to break an n-bit division into two n

2
operations. The next two

examples illustrate this procedure.

Example 1: This example illustrates the implementation of a 16-bit division where
the quotient clearly requires 32 bits.

segment data

dividend dd 08010020h

divisor dw 10h

segment bss

quotient resd 1

remainder resw 1

segment code

...

...

mov ax, word [dividend+2] ;high part

cwd ;extend sign

mov cx, word [divisor]

idiv cx ;ax=q (high), dx=r (high)

mov bx,ax ;save q

mov ax, word [dividend] ;low part, now dx:ax = dividend

;dx contains the remainder part

idiv cx ;ax=q (low), dx=r (low)

mov word [quotient], ax ;save quotient (bx:ax)

mov word [quotient+2], bx

mov remainder, dx ; save remainder

...

Example 2: While overflow is a potential problem for any n-bit division, the 16-bit
implementation in the previous example is contrasted with the following 32-bit code:

segment .data

dividend dd 08010020h

divisor dd 10h

6.2. ARITHMETIC INSTRUCTIONS 121

segment .bss

quotient resd 1

remainder resd 1

segment .code

...

mov eax, dword [dividend]

cdq

mov ecx, dword [divisor]

idiv ecx

mov [quotient], eax

mov [remainder], edx

...

6.2.5 Multiple addition and subtraction

To consider the carry flag set by the previous addition/subtraction instruction,
the IA instruction set provides two instructions that basically expand the addi-
tion/subtraction operation to one more byte, word or double word. These instruc-
tions are adc and sbb for addition and subtraction with carry. The format and
operation of these instructions are as follows:

adc r/m, r/m/k ; r/m← r/m + r/m/k + C
sbb r/m, r/m/k ; r/m← r/m− r/m/k − C

An illustration of how the carry affects multiple addition is shown in the 32-bit
addition in Fig. 6.1.

Carry

6002 E6F2

700A 97F6

1007 B104

1
0001 0000 0000 0111

0110 0000 0000 0010 1110 0110 1111 0010

1011 0001 0000 0100

1 1001 0111 1111 01100 0111 0000 0000 1010

1

Carry out of MSB

Carry

Hexadecimal Upper−half addition Lower−half addition

Figure 6.1: 32-bit addition operation

Likewise, the 32-bit subtraction operation in Fig. 6.2 illustrates the effect of a
borrow bit:

122 CHAPTER 6. DATA MANIPULATION INSTRUCTIONS

Carry=0 then borrow = 1

1007 B104 0001 0000 0000 0111

1110 0110 1111 0010

1011 0001 0000 0100

Hexadecimal Upper−half subtraction Lower−half subtraction

− 6002 E6F2 − 0110 0000 0000 0010

1007 B104

0 CA12

1007
− 1

1007

1 1006

+FFFF

+ 9FFE

1011 0001 0000 0100
+190E + 0001 1001 0000 1110

0 1100 1010 0001 0010

0001 0000 0000 0111
− 1

0001 0000 0000 0111
+ 1111 1111 1111 1111

1 0001 0000 0000 0110
+ 1001 1111 1111 1110

 1011 0000 0000 0101 1100 1010 0001 0010 B005 CA12

Carry=0 then borrow = 1

Figure 6.2: 32-bit subtraction operation

Example: Implement x = ax + c assuming a and c are signed word-size variables.

segment data

x dd 1250

a dw 2

c dw 1000

segment code

...

mov ax, data

mov ds, ax

mov ax, word [x]

imul word [a] ;dx:ax = [a]*[x]

clc ;reset carry flag

add ax, word [c] ;ax = ax + [c]

adc dx, 0 ;dx:ax = [a]*[x] + [c] + carry

mov word [x], ax ;store result: low part

mov word [x+2], dx ;high part

...

6.3. SHIFT INSTRUCTIONS 123

6.3 Shift instructions

Shift and rotate instructions allow the programmer to manipulate data at the bit
level. A shift operation moves the position of bits of data in memory or in some
register. Shifts can be either toward the left (i.e. toward the most significant bits)
or toward the right (the least significant bits).

6.3.1 Logical shifts

A logical shift is the simplest type of shift. For each bit shifted there is an incoming
bit equal to zero as shown in Fig. 6.3. The shl and shr instructions perform logical
left and right shifts respectively. The number of bit positions to shift can either
be a constant or can be stored in the cl register. The last bit shifted out of the
data is stored in the carry flag. The formats and operation description of these shift
instructions are as follows:

shl r/m, k ; CF ← r/m(msb− k + 1)
; r/m(msb, . . . , k)← r/m(msb− k, . . . , 0)
; r/m(k − 1, . . . , 0)← 0

shl r/m, cl ; the shifting factor k is pre-loaded into cl
shr r/m, k ; CF ← r/m(k − 1)

; r/m(msb− k, . . . , 0)← r/m(msb, . . . , k)
; r/m(msb, . . . , msb− k + 1)← 0

shr r/m, cl ; the shifting factor k is in cl

The source operand k refers to an 8-bit shifting factor, and can be optionally
pre-loaded into cl. For the 8086/8088 processors k = 1. Note that this option can
be used if k is known during programming, else cl is pre-loaded with a k generated
during the flow of computation. As before, the comment line describes the operation
at the register level. The notation r/m(∗) refers to the bit contents of a register or a
memory reference; the arguments within parenthesis indicate the bit positions that
are accessed during the tranfer. Since k bits are shifted, the bit position msb−k+1
is the bit that eventually ends up in the carry flag for a shl for the shl instruction,
and for the shr instruction the final bit in CF is the bit k− 1. Likewise, k zero’s are
inserted on the right side of the register if a shl instructions is executed, and on the
left if a shr instruction is executed.

Shift instructions provide fast multiplication and division. As in the decimal
system where multiplication and division by a power of ten consists of shifting
decimal digits, the same is true for powers of two in the binary representation. For
example, to double the value represented by the binary number 01001 (9 in decimal),

124 CHAPTER 6. DATA MANIPULATION INSTRUCTIONS

Carry Flag
0

a) Shift left

Carry Flag

b) Shift right

0

Figure 6.3: Logical shifts

shift once to the left to get 10010 (18 in decimal). In general k shifts to the left are
equivalent to multiplying data by 2k. The quotient of a division by a power of two is
the result of a right shift. To divide by just 2, use a single right shift; given a shifting
factor of k, a dividend is shifted k bit positions to the right resulting in a division
by 2k. A typical use of logical shifts is to multiply or divide unsigned values. Shift
instructions are very basic and are much faster than the corresponding mul and div
instructions. An alternate short notation for shifting operations is exemplified as
follows:

shl eax, k ; eax← 2keax
shr eax, k ; eax← 2−keax

Examples

1. Consider the use of left shift operations such that the operation 2 × 25 is
performed:

mov al, 2 ;al = 0000 0010
mov cl, 5 ;shifting factor
shl al, cl ;al = 0100 0000 = 26 = 64

Note that an 8-bit precision is assumed; however, to anticipate a 2n-bit prod-
uct, an 8-bit multiplication requires a 16-bit result for which ax is used in
place of al.

2. Consider the operation 64
25 using right shift operations:

mov ax, 64 ;ax = 0000 0000 0100 0000
mov cl, 5 ;shifting factor
shr ax, cl ;ax = 0000 0000 0000 0010

IA 32-bit processors (386 and up) support double precision shifts using the
shld and shrd instructions. The format and register-level and bit operations are
described as follows:

6.3. SHIFT INSTRUCTIONS 125

shld r/m, r, k ; CF ← r/m(msb− k + 1)
; r/m(msb, . . . , k)← r/m(msb− k, . . . , 0)
; r/m(k − 1, . . . , 0)← r(msb, . . . , msb− k + 1)

shld r/m, r, cl ; cl is pre-loaded with k
shrd r/m, r, k ; CF ← r/m(k − 1)

; r/m(msb− k, . . . , 0)← r/m(msb, . . . , msb− k + 1)
; r/m(msb, . . . , msb− k + 1)← r(k − 1, . . . , 0)

shrd r/m, r, cl ; cl is pre- loaded with k

As shown in Fig. 6.4 and in the register-level bit operations description, shld
places its second operand to the right of its first, then shifts the entire bit string
thus generated to the left by k bits specified in the third operand. It then updates
only the first operand according to the result of the shifts. The second operand
is always a register (r) and remains unchanged. Shrd performs the corresponding
right shift by placing the second operand to the left of the first, shifts the whole bit
string right, and updates only the first operand. For every shift the bit shifted out
is moved into the carry flag.

Examples

1. The instruction
shfrd ax, bx, 10

logically shifts the contents of ax right by 10 bit positions. The right most
10 bits of bx are right shifted into the leftmost bits of ax. The contents of bx
remain unmodified. In terms of bit operations the following events take place:

(a) CF ← ax(9)

(b) ax(5, . . . , 0)← ax(15, . . . , 6)

(c) ax(15, . . . , 6)← bx(9, . . . , 0)

2. Suppose eax holds the value 01234567h, and ebx holds the value 89ABCDEFh,
then the execution of

shld eax, ebx, 8

will update eax to a value 23456789h, and make CF = 1. If the instruction

shrd eax, ebx, 8

is executed instead, then the new contents of eax will be EF012345h, and
make CF = 0. The contents of ebx are not changed in neither case.

126 CHAPTER 6. DATA MANIPULATION INSTRUCTIONS

b) Shift right

Carry Flag
First operand
(reg/mem)

Second operand
(reg)

a) Shift left

Second operand
(reg)

First operand
(reg/mem)

Figure 6.4: Double shift operations

6.3.2 Arithmetic shifts

These shifts are designed for signed values to be quickly multiplied or divided by
powers of 2. They insure that the sign bit is treated correctly.

sal r/m, k ; similar to shl
sal r/m, cl ; similar to shl
sar r/m, k ; CF ← r/m(k − 1)

; r/m(msb− k, . . . , 0)← r/m(msb, . . . , k)
; r/m(msb, . . . , msb− k + 1)← r/m(msb)

sar r/m, cl ; cl is pre-loaded with k

The sal (shift arithmetic left) is functionally identical to shl. Furthermore, it
is assembled into exactly the same binary code as shl. As long as the sign bit is not
changed by the shift, the result will be correct. For each shift the most significant
bit is shifted into the carry flag. On the other hand the sar (shift arithmetic right)
instruction does not change the most significant bit (the sign bit) but for each shift
a copy is transferred to the next bit on the right. Thus, the k rightmost bits are
replaced by the most significant bit. All other bits are shifted to the right. The
least significant bit is shifted into the carry flag as shown in Fig. 6.5.

Example: The following sequence of operations illustrate an arithmetic right shift
with a shifting factor k = 3:

mov ax, 0A004h ; ax = 1010 0000 0000 0100
mov cl, 3
sar ax, cl ; ax = 1111 0100 0000 0000, and C = 1

6.3. SHIFT INSTRUCTIONS 127

sign bit

......

Carry flag

Figure 6.5: Arithmetic right shift

The bit-level operations can be described in the following steps:

1. CF = ax(2) = 1,

2. ax(12,...,0) ← ax(15,...,3),

3. ax(15,..,13) ← ax(15) = 1.

6.3.3 Rotate Instructions

The rotate shift instructions treat data as if it is a circular structure. The bit
that is shifted out on one end is shifted in on the other side. The two simplest
rotate instructions are rol and ror for left and right rotations, respectively. Each bit
shifted around is also copied into the carry flag as shown in Fig. 6.6. The format
and register-level operations are described as follows:

rol r/m, k ; CF ← r/m(msb− k + 1)
; r/m(k − 1, . . . , 0)← r/m(msb, . . . , msb− k + 1)
; r/m(msb, . . . , k)← r/m(msb− k, . . . , 0)

rol r/m, cl ; cl is pre-loaded with k
ror r/m, k ; CF ← r/m(k − 1)

; r/m(msb, . . . , msb− k + 1)← r/m(k − 1, . . . , 0)
; r/m(msb− k, 0)← r/m(msb, · · · , k)

ror r/m, cl ; cl is pre-loaded with k

Example: The following code segment shows the effects of applying ror twice:

mov al, 01h ;al = 0000 0001
ror al, 1 ;al = 1000 0000, CF = 1
ror al, 1 ;al = 0100 0000, CF = 0

128 CHAPTER 6. DATA MANIPULATION INSTRUCTIONS

Carry Flag Carry Flag

a) Rotate left b) Rotate right

Figure 6.6: Rotate shifts

There are two additional rotate instructions, rcl and rcr that rotate data bits
and the carry flag to the left, and to the right, respectively. For example, if the
contents of the ax register are rotated with these instructions, the 17-bits made up
of ax and the carry flag are rotated. Rotation with carry is illustrated in Fig. 6.7

Carry Flag Carry Flag

a) Rotate left b) Rotate right

Figure 6.7: Rotation with carry

6.4 Boolean Instructions

There are three basic boolean instructions that every instruction set must include:
and, or and not. More complex instructions such xor, nor, and nand can be imple-
mented using the basic instructions and the instruction set may or may not provide
them. However, the xor operation is so commonly used that it is found in all instruc-
tion sets of of modern machines. Boolean operations are very useful for manipulating
selected individual bits of data.

6.4.1 The AND instruction

The result of a logical and operation on two bits is 1 only if both bits are 1, else
the result is 0. The and instruction performs a bitwise logical and between its two
operands and stores the result in the destination operand. The format along with
its register-level operation is described next:

and r/m, r/m/k ; r/m← r/m ∧ r/m/k

6.4. BOOLEAN INSTRUCTIONS 129

The destination operand can be a register or a memory reference. The source
operand can be a register, a memory reference, or an immediate value (k). In
the forms with an 8-bit constant operand and a longer first operand, the constant
operand is considered to be signed, and is sign-extended to the length of the first
operand. A typical use of this instruction is to use a bit masking to clear or reset
selected bits.

Example: Use a bit mask = 0000 1111 to clear the four most significant bits in
register al:

mov al, 0011 1011b
and al, 0000 1111b ;al = 0000 1011

6.4.2 The OR instruction

The inclusive logical or operation on 2 bits is 0 only if both bits are 0, else the result
is 1. The or instruction executes the logical or operation on its two operands. The
format and operation description follow:

or r/m, r/m/k ; r/m← r/m ∨ r/m/k

The results of the or operation are placed in the destination operand. In the
forms with an 8 bit immediate second operand and a longer first operand, the second
operand is considered to be signed, and is sign extended to the length of the first
operand. Typical uses of the or instruction include setting selected bits, and oring
and operand with itself to set flags.

Example: With the use of a bit mask set the most significant bits in register al:

mov al, 0011 1011b
or al, 1111 0000b ;al = 1111 1011

6.4.3 The NOT instruction

The not instruction is a unary operation that returns the one’s complements of the
value in its single operand. No flag bit is affected.

not r/m ; r/m← r/m

130 CHAPTER 6. DATA MANIPULATION INSTRUCTIONS

6.4.4 The XOR instruction

The xor instruction performs a bitwise xor operation between its two operands. Each
bit of the result is 1 if and only if exactly one of the corresponding bits of the two
inputs was 1. The result is stored in the destination operand. The format of the
xor and the description of its register-level operation are the following:

xor r/m, r/m/k ; r/m← r/m⊗ r/m/k

In the forms with an 8-bit immediate second operand and a longer first operand,
the second operand is considered to be signed, and is sign extended to the length
of the first operand. A typical use of the xor instruction is to togle one or more
selected bits.

Example: Togle the first two least significant bits on the contents of the register al:

mov al, 0011 1010b
xor al, 0000 0011b ;al = 0011 1001

6.4.5 The TEST Instruction

The test instruction performs an and operation, but does not store the result. It only
sets the flags register based on what the result would be. The test instruction is to
logical operations what the cmp instruction is to arithmetic operations. The results
do not alter the contents of the destination operand. The format and operation are
described as follows:

test r/m, r/m/k ; result = r/m ∧ r/m/k

Example: Set flags to inspect the nature of the value stored in al:

mov al, 0010, 0101b
test al, 0000 10001b ;result = 0000 0001, ZF = 0

The results of the test indicate that the contents of al correspond to a positive value.

6.5 Exercises

1. Suppose we have the following two instructions dealing with signed operations.
Indicate the final results in ax and the state of the appropriate flags.

6.5. EXERCISES 131

. . .
mov ax, FF00h
add ax, 1000h
. . .

2. Consider the assembly code shown below. Indicate in the spaces provided the
results in ax and the carry flag.

. . .
mov ax, F00Fh
sar ax, 4 ;ax = CF =

. . .
mov ax, F00Fh
shr ax, 4 ;ax = CF =

3. Recall that an n-bit division requires a 2n-bit dividend. Suppose X and Y
are two 32-bit signed values stored in memory and the following operation is
required Z = X/Y .

(a) Write the appropriate set of instructions to implement this division.

(b) Indicate (in the comment line) where the results are returned, and extend
your code to store these results at Z.

4. Following up from the previous problem, write a sequence of instructions to
do the following: 1) if the remainder is an odd number jump to label ”odd”,
2) else continue with the next instruction.

5. Show the contents of the registers indicated and the carry flag as the code
executes.

segment data
X dw 0FB00h
B dw 0F100h

segment code
. . .
mov dx, word [X]
mov ax, word [X]
clc
add ax, word [B] ; dx:ax = CF =

adc dx, 0 ; dx:ax = CF =
. . .

132 CHAPTER 6. DATA MANIPULATION INSTRUCTIONS

6. Assume eax contains A23489ABh, determine the result after executing cdq.

7. The current contents of eax have to be modified based on the condition that it
contains an even integer value. Write a sequence of instructions that tests that
condition and if true increments the value in eax or decrements it otherwise.

8. Suppose ax and bx contain 1234h, and 5678h, respectively. Determine the
contents of each register after executing each of the following instructions:

(a) shld ax, bx, 4

(b) shrd bx, ax, 4

9. Describe the difference between the not and the neg instructions.

10. A palindrome is a binary pattern that reads the same forward and backward.
For example: 11100111 is a palindrome, and 11100101 is not. Write a sub-
procedure that determines if eax contains a palindrome.

11. Write the appropriate or instruction to set bits 1,3,5,7,9, and 11 in register ax.

12. Show how the instruction rol can be used to rotate ax and bx, with ax con-
taining the upper 16 bits.

13. Describe the difference between the and and test instructions.

14. Write a sequence of instructions needed to count the number of 0’s in eax.

15. Write a sub-procedure to swap nibles in ax.

16. Suppose we have some data currently stored in ax:

(a) Use an appropriate boolean instruction to clear the least significant bit,

(b) Repeat a) to togle the least significant bit.

