
Chapter 9

Input/Output Programming

9.1 Introduction

I/O devices are connected to the computer through I/O circuits. Each of these
circuits contain I/O registers denoted as I/O ports. I/O ports function as transfer
gates between the CPU and I/O devices. Alternatively, several processors support
memory-mapped I/O where a memory location is assigned to be an input or output
port from and to a specific I/O device. Thus, I/O operations are treated as reading
or writing operations to the assigned memory locations. All processors in the IA
family access external devices through I/O ports. I/O instructions exchange data,
control signals, or device status information with ports through the al or the ax
register; therefore, the size of data items transfered is 8 bits or 16 bits. Most devices
transfer 8 bits at a time for which the al register is used. Slow devices use serial
communication that transfer data one bit at a time. Examples of slow devices include
the keyboard, modems, etc. Parallel communication devices transfer one data item
at a time; examples of parallel devices include disk drives, printer controllers, etc.
The cpu addresses ports numbered from 0 to 216 − 1 and a particular device may
use one or more pre-assigned ports. Examples of devices with pre-assigned ports are
shown in Table 9.1.

In this chapter I/O instructions are discussed in the context of the interface
requirements of common I/O devices such as the M6845 chip used for video con-
trol functions, the I8259 Programmable Interrupt Controller, and the I8253 Pro-
grammable Interval Timer (PIT).

165



166 CHAPTER 9. INPUT/OUTPUT PROGRAMMING

Table 9.1: Common pre-assigned I/O Ports
Device Port numbers

Video Adapter (CGA) 3D0h – 3DFh
Video Adapter (EGA) 3C0h – 3CFh
I8259 PIC 20h – 21h
Keyboard Controller 60h – 63h
I8253 PIT 40h – 43h
Serial Port (COM1) 3F8h – 3FFh
Serial Port (COM2) 2F8h – 2FFh
Parallel Printer port 1 378h – 37Fh
Hard disk 320h – 32Fh

9.2 I/O Instructions

Intel provides two I/O instructions to access ports: in and out. The syntax for the
use of the in instruction is as follows:

in al/ax, dx/k ; al/ax← port

For every input transfer the information is placed through the port into the
al register for an 8-bit transfer or into ax for a 16-bit transfer. The port number is
specified directly in the source field as an 8-bit constant or previously moved into
the dx register. Besides holding port numbers up to 216 − 1 the dx register can
be used to process, decrement, increment consecutive ports. The syntax of the out
instruction is as follows:

out dx/k, al/ax ; port← al/ax

For every output transfer the information is first moved into al or ax and sent
to the port specified as an 8-bit value in the destination field or, alternatively, to
the port number pre-loaded into the dx register.

9.3 Video Display Adapters

Video adapter boards provide the interface between the motherboard and the video
display monitor. The information displayed on the monitor is information that has
been written to video ram (VRAM) by the cpu. The video adapter controller (CRT



9.3. VIDEO DISPLAY ADAPTERS 167

controller) reads the information from vram and converts it to the appropriate color
and brightness signals to be displayed on the screen. These signals are sent to the
screen in synchronized horizontal and vertical movements that scan the entire screen
at fixed frequencies. Video boards can be programmed in graphics and text mode.
In graphics mode the unit of display is a pixel while in text mode an entire alphanu-
meric character is displayed (character box) requiring each, a given number of pixels
that changes from adapter to adapter. The IBM PC introduced in 1981 supported
an MDA (monochrome display adapter) and a CGA (color display adapter). The
MDA was designed for text display only and the CGA provided both text and color
graphics on the screen. The CGA displays a maximum of 80 characters per line and
25 lines and each character requires an 8× 8 box. It used the Motorola 6845 CRT
controller. Seven different video modes (00h – 06h) supported by the CGA allow
a display resolution from 320 × 200 to 640 × 200 pixels. Video memory starts at
B8000 and takes 16K bytes. Since a screen requires 4K bytes then 4 pages of text
can be displayed at a given time.

The EGA (enhanced graphics adapter) introduced in 1985 emulates the MDA
and CGA but with improved resolution up to 640× 350 and with additional video
modes (0Dh, OEh, 0Fh, 10h). The M6485 was replaced by a set of LSI chips as the
CRT controller.

The VGA (video graphics array) introduced in 1987 is a single chip that in-
tegrated the same set of functions performed by LSI chips on the EGA. The term
VGA is used to refer to the entire adapter. The VGA generates analog RGB output
(color signals) with a resolution of up to 720× 400 for text modes and 640× 480 for
graphics modes. The VGA emulates all the display modes of the MDA, CGA, and
EGA adaptors plus it provides the additional modes: 11h, 12h, and 13h. A color
look-up table allows 256 different colors to be displayed on the screen at one time.
Up to 1 megabyte extra of memory can be used for graphics applications, i.e., to
store pixels and attributes. Since the VGA is used to emulate the CGA text, the
starting address for video is B8000h this is achieved by selecting the video mode
03h; for the MDA the video buffer starts at B0000h with the selection of the video
mode 07h.

XGA was developed by IBM as a standard for high-performance desktops and
workstations. XGA boards support displaying resolutions up to 1024 × 768. The
super VGA adapters (SVGA) support resolutions in the range from 640 × 400 to
1280× 1024. There was no standardization of the additional graphics modes on the
new SVGA boards, and a separate driver software was needed for every graphics to
use these enhanced modes. The lack of a widely accepted standard was addressed by
the Video Electronics Standards Association (VESA), a consortium of video adapter
and monitor manufacturers created to standardise video protocols, and a family of
video standards was developed to support backward compatibility with VGA and



168 CHAPTER 9. INPUT/OUTPUT PROGRAMMING

greater resolution modes. VESA’s SXGA standard supports 1280×1024 resolutions
in monitors with a standard ratio of 5:4; however the traditional 4:3 aspect ratio
found in the majority of computer monitors is provided by VGA, SVGA, XGA and
UXGA.

Pixels are smaller at higher resolutions which combined with the ability to
scale objects, and the option to use different font sizes, make it possible to adjust
resolutions with larger screens; for example, it is possible to use 17in monitors at
screen resolutions of up to 1600×1200 pixels and even 21in monitors with 1800×1440
pixels with UXGA adapters.

9.3.1 Important BIOS data

Text and graphics modes can be easily programmed using BIOS functions via INT
10h software interrupts. For example, to change the video mode with INT 10h, the
code function 00h is selected and loaded in ah; the video mode chosen is moved into
al. This flexibility is illustrated with the following code that selects the CGA text
mode and displays a character throughout the entire 25× 80 screen.

..start:

mov ah, 00h ;CGA text mode

mov al, 03h ;of 80x25

int 10h

mov ah, 09h ;display

mov bh, 00h ;on page 0

mov al, ’X’ ;a character

mov cx, 2000h ;on the entire screen

mov bl, 47h ;with this attribute

int 10h

mov ax, 4c00h ;return to dos

int 21h

A set of BIOS locations are also updated each time BIOS display functions
are called. It is possible to program video adapters directly but this also requires
knowledge of which BIOS locations must be updated. A direct programming of
some I/O devices are discussed in the next subsections that require access to the
BIOS data described in Table 9.2 (this information is transcribed from Wilton’s
Programmer’s Guide to PC Video Systems [4]).



9.3. VIDEO DISPLAY ADAPTERS 169

Table 9.2: Important BIOS data
Address Name Type Description

0000:0449h CRT MODE Byte Current video mode
0000:044Eh CRT START Word Offset of current page (in bytes)
0000:0050h CURSOR POS Word Array of eight words containing

the cursor position (row and column)
for each of eight possible video pages
High order byte: row
Low order byte: column

0000:0460h CURSOR MODE Word starting and ending lines of cursor
High order byte: starting line (top)
Low order byte: ending line (bottom)

0000:0462h ACTIVE PAGE Byte Currently displayed video page number
0000:0463h ADDR 6845 Word I/O port of the CRTC’s address register

monochrome CRTC:03b4h
CGA:03d4h

9.3.2 Programming the M6845 CRTC

The M6845 has 19 8-bit internal data registers. The following 6 registers can be
used to illustrate direct programming applications:

Cursor start: 0Ah
Cursor end: ABh
High byte page offset (in words): 0Ch
Low byte page offset (in words): 0Dh
High byte cursor location: 0Eh
Low byte cursor location: OFh

An update of internal data registers as well as an update of the BIOS data
is necessary if direct programming applications such as a change of page, cursor
location, and cursor size are implemented. For example, consider a function to
change the active page with the following prototype:

change_page(int page)

This function will need to update the following BIOS data at 0000 : 0462h
ACTIVE PAGE) with the number of the new active page, and update the contents
of 0000 : 044Eh (CRT START) with the offset in bytes of the new page. The
internal registers that must be updated are 0Ch and 0dh with the offset of the new



170 CHAPTER 9. INPUT/OUTPUT PROGRAMMING

page in words. The following are general steps for an assembly implementation of
change page:

1. Set up access to stack frame where the new page will be stored,

2. Get new page number from the stack frame,

3. Update ACTIVE PAGE,

4. Calculate offset in words: 2048× page,

5. Update internal registers with the new page offset.

(a) Transfer low-byte:

mov dx, word es:[ADDR_6845] ;port address

mov al, 0dh ;select internal register

out dx, al

inc dx ;data port

mov al, low_byte ;transfer data

out dx, al

(b) Transfer high-byte:

dec dx ;port address

mov al, 0ch ;select internal register

out dx, al

inc dx ;data port

mov al, high_byte ;transfer data

out dx, al

6. Update CRT START (in bytes)

Note that the statements mov al, low byte and mov al, high byte refer to a
an 8-bit transfer of a constant value, or from a 16-bit register or memory location.

A second illustration involves programming the cursor position. This proce-
dure will have to update the BIOS entry CURSOR POS and the internal registers
0eh and 0fh with the offset of the cursor position in video memory. The prototype
of the function is given as follows:

CUR_POS(int r, int c, int p)

where r and c, define the coordinates (row and column) of the cursor position, and p
is the number of the display page. The following steps describe the implementation
of CUR POS:



9.3. VIDEO DISPLAY ADAPTERS 171

1. Set up the stack frame access,

2. Get the row, column, and page from the stack,

3. Compute the cursor offset in words: 80r + c + 2048p,

4. Transfer low byte to 0eh,

5. Transfer high byte to 0fh,

6. Update CURSOR POS at 0000 : 0450h. Update the entry 2p, which corre-
sponds to page p.

A third application involves determining the cursor size. The prototype of this
function is as follows:

CUR_SIZE (int start, int end)

The implementation of CUR SIZE is summarized in the following steps:

1. Set up the stack frame access,

2. Get ”start” from the stack,

3. Move it to register 0ah in the M6845:

mov ax, word es:[ADDR_6845]

mov dx, ax

mov al, 0Ah

out dx, al

inc dx

mov al, start

out dx, al

4. Get ”end” from the stack,

5. Move it to register 0bh in the M6845,

6. Update CURSOR MODE.



172 CHAPTER 9. INPUT/OUTPUT PROGRAMMING

9.4 The I8259 Programmable Interrupt Controller

As shown in Fig. 9.1 a single I8259 is considered an I/O device connected to the CPU
through the bus system. The cpu is provided with two pins reserved to directly detect
hardware generated interrupts. The first pin labeled nmi detects non-maskable
interrupts. The rising edge of the incoming signal on the nmi pin causes the cpu to
access the IVT and fetch the pointer for the type 2 interrupt handler shown in Table
8.1. The second pin is the intr which is connected to the int output of the I8259
PIC. A single I8259 chip receives interrupt requests from up to 8 different sources.
These sources correspond to the interrupt types 8 to 15 in the IVT described in
Table 8.1. Some of the functions that the I8259 performs include the queueing
and prioritizing of interrupt requests, disabling (mask out) and enabling selected
requests, send an interrupt signal to the cpu, and acknowledge the cpu response
by sending the interrupt vector number. The cput uses this number to service the
interrupt to access the IVT and fetch the address of the corresponding interrupt
service routine.

...

...CPU 8259
PIC

Memory

INTR INT
Interrupt request
lines

NMI

Figure 9.1: The I8259 interface with the cpu

A simplified block diagram of the I8259 is shown in Fig. 9.2. The Inter-
rupt Request Register (IRR) stores the current status of the interrupt requests lines
(IR0 . . . IR7). The IRR is connected to the priority resolver, which selects the in-
terrupt line with the highest priority. The In-service Register (ISR) indicates which
interrupts are being serviced. These three registers interact with the control logic
section which in turn activates the INT signal sent directly to the CPU. The INTA
signal is used by the CPU to acknowledge the interrupt signal. Interrupts can be
masked by transferring the corresponding mask constant to the interrupt mask reg-
ister.

The operation of the I8259 can be summarized as follows:



9.4. THE I8259 PROGRAMMABLE INTERRUPT CONTROLLER 173

Lines
IRR

Control Logic

Interrupt Mask Register

ISR

IR 7

IR0

Internal data bus

Priority

INTAINT

Interrupt
RequestResolver

Read/

Cascade

buffer

write
logic

buffer/
comp.

BusD07D

A0

CAS
CAS

0
1
2

CAS

RD
WR

SP/EN

Data

Figure 9.2: I8259 Block Diagram

1. A device connected to the I8259 requests an interrupt by activating the ap-
propriate interrupt request line. The IRR register is updated accordingly.

2. The priority resolver examines the IRR register, selects the highest priority
line and activates the INT output line.

3. The processor acknowledges the interrupt signal by activating the INTA line.

4. the ISR register sets the bit for the highest priority interrupt and clears the
corresponding bit in the IRR register to indicate that request is in service.

5. the ISR register outpus an 8-bit vector number on the data bus. This is the n
number the processor uses to access the IVT for the pointer to the interrupt
handler.

Several PIC chips can be cascaded to support interrupt requests from more
than just eigth different sources. As shown in Fig. 9.2 the I8259 is provided with
three cascade lines, CAS0, CAS1, and CAS2 that are used to expand a single chip
into a system with multiple chips in a master-slave configuration. A maximum
configuration connects one master with up to eight slaves to handle up to 64 priority
levels. Note that the INT output of each slave is connected to an interrupt request



174 CHAPTER 9. INPUT/OUTPUT PROGRAMMING

line in the master PIC. Fig. 9.3 illustrates this with two slaves cascaded to lines
IR3 and IR6. When an slave PIC signals an interrupt request to the master slave,
it transfers this request through the corresponding INT line. The interrupt request
is sent to the processor which responds with the first INTA pulse. The master
receives this signal and outputs the address of the requesting PIC slave (3 or 6 in
the example) via the three cascade lines to enable the slave PIC that matches such
address. The selected slave PIC outputs the interrupt type number onto the data
bus line synchronized with a second INTA signal from the cpu.

SP/EN

VccGNDGND

CAS0
CAS1
CAS2

CAS0
CAS1
CAS2

8259
SLAVE

8259
MASTER

8259
SLAVE

INT INT

1 3 4 0 1 4 5 76 0 2 3 4 5 6 70 2 5 6 7 2 3 1

CAS0
CAS1
CAS2

SP/EN SP/EN

Figure 9.3: Cascaded 8259 chips

9.4.1 Programming the I8259

The PIC can be programmed to operate in one of six modes. The default mode is
the fully nested model. In this mode the IPC prioritizes the interrupt request lines
from IR0 with the highest priority to IR7 with the lowest priority. As shown in
Table 9.1, the I8259 is mapped to I/O ports 20h and 21h . For example, the port
address 21h is used to access the IRR register (IRQ lines). The instruction in al,
21h will transfer a byte from the I8259 to the al register, and the instruction out
21h, al will enable or disable interrupt requests according to the contents of al.

Initialization of PIC’s requires a series of initialization control words (icw)
before the IPC is ready to accept interrupt requests. A sequence of two to four icw’s
(icw1, icw2, icw3, icw4) are sent depending whether the configuration is single or
cascaded. Fig. 9.4 defines the general format for the four initialization words.

DD7 D 6 D 5 4 D 3 D 2 D 1 00A D

Figure 9.4: Format of initialization control words



9.4. THE I8259 PROGRAMMABLE INTERRUPT CONTROLLER 175

Note that A0 is directly wired from the address bus as input to the PIC chip.
Thus, when A0 = 0 then the icw is sent through port 20h, else, it is send through
port 021h.

ICW1: If the address bit A0 = 0 and D4 = 1 then the control word is interpreted
as icw1, which in addition will contain information such as:

• D0 = 1 icw4 is needed.

• D1 = 1 Single PIC, else several PIC’s are cascaded.

• D2 = 1 Call address interval of 4, else address interval of 8.

• D3 = 1 Level-triggered mode, else INT signal is edge-triggered.

• D5 = D6 = D7 = 0

Consider the following code sequence intended to select a single mode and to program
the PIC to operate the IR inputs in an edge-triggered mode:

...
mov al, 00010010b ; no icw4 is needed
out 20h, al ; send icw1 to the single PIC

ICW2: An icw2 is issued with A0 = 1. The next five digits (D7 −D3) specify the
five most significant digits of the interrupt type number to be output by the PIC
during the bus cycle. The low-order three bits are reserved to code the number of
the active interrupt request (IR) line and thus complete the interrupt type number.
A single-mode operation requires the sequence icw1 and icw2 for initialization. The
following icw2 initializes the master PIC to configure the interrupt type number
generated such that the interrupt request lines IR0 − −IR7 correspond to type
numbers 08−−0Fh in the interrupt vector table as shown in Table 8.1:

...
mov al, 00001000b ; base address to access the ivt
out 21h, al ; send icw2

ICW3: When a cascaded configuration is used,icw3 is issued as a third control write
when D1 = 0 in icw1. An icw3 will be sent to the master PIC where the bit Di = 1
if the IRi is connected to the INT output of a slave PIC. For example the master
IPC in Fig. 9.3 requires an icw3 = 101001000 which indicates that inputs IR3 and



176 CHAPTER 9. INPUT/OUTPUT PROGRAMMING

IR6 = 1 are directly connected to the INT output of two slave PIC’s. An icw3 must
also be issued to each slave, which specifies the number of the slave in the three
low-order bits. For example, in Fig. 9.3 the programmer should have been sent an
icw3 to slaves 3 and 6 with the information 100000011 and 100000110, respectively.
Recall that the master will place the code of the slave requesting an interrupt, on
the three cascade lines; all slaves check this code against their own number and the
slave with a match will output the interrupt type number during the bus cycle.

ICW4: The need for icw4 is specified by D0 = 1 in icw1. In both modes, single or
cascaded, an icw4 will be sent if an automatic end-of interrupt is required, a buffered
mode must be specified, and an operating mode other than the fully nested default
mode is needed.

After the appropriate sequence of control words have been written the system
is ready to accept external interrupts. Subsequent reads and writes are interpreted
as operation control words (ocw) and are used in three different formats: ocw1, ocw2
and ocw3.

OCW1: The ocw1 sets and clears the mask bits in the Interrupt Mask Register
(IMR). The format for the ocw1 is similar to the one shown in Fig. 9.4 for icw’s.
The output port used is 21h, therefore, A0 = 1. Note that if Di = 1 then the ith
bit in the IMR register is set to mask the interrupt request line IRi and inhibit it
from requesting an interrupt.

...
mov al, 00000001b ; mask interrupts from the timer (IR0)
out 21h, al ; send ocw1 to access IMR

OCW2: This operation control word is written to port 20h. Since icw1 is also
written to port 20h, in ocw2 D4 is 0 to make it different. Combinations of bits
D7, D6, and D5 are used to specify an EOI and reset the corresponding interrupt bit
in the ISR register identified by bits D2, D1, and D0. For example, the following lines
of code specify the form of the interrupt service routine when the PIC is operating
in a fully nested mode:

...
mov al, 00100000b ; non-specific EOI
mov 20h, al ; write an ocw2 command
iret

The non-specific option resets the bit that corresponds to the currently executing
routine and the combination (D2, D1, D0) = 000 is not relevant.



9.4. THE I8259 PROGRAMMABLE INTERRUPT CONTROLLER 177

OCW3: The use of this word is to program the PIC for a special interrupt mask
by which lower priority interrupts are accepted. Consider the following sequence of
command words send to the PIC:

...
mov al, 00000001b ; mask interrupts from the timer
out 21h, al ; send ocw1 to access IMR
mov al, 01101000b ; special mask mode format
mov 20h, al ; write ocw3

The effect of this sequence is that all interrupts from IR1 to IR7 will be
accepted if bits 9D6, D50 = 11. The combination (D6, D5) = 01 resets the special
mask mode. Note that A0 = 0 but (D4, D3) = 01 distinguishes icw3 from icw1 and
ocw2.

9.4.2 Keyboard Interface

As shown in table 8.1 an interrupt type 9 will access the interrupt handler for
keyboard interrupts. The keyboard unit contains an Intel 8048 micro-controller
that scans the keyboard for keyboard activity. The I8048 maintains a 16-keystroke
buffer, and transmit each keystroke serially to the system unit at 10,000 baud over
the KBD DATA line together with the baud rate clock on the KBD CLK line. The
8 data bits are transmitted LSB first; bits 0-6 are the scan code which uniquely
identifies the key by its position on the keyboard, bit 7 (MSB) is 0 for key press
and 1 for key release. Holding a key down for more than half a second invokes the
typematic action: key press scan codes are sent repeatedly at the rate of 10 per
second without intervening key release scan codes, until the key is released.

An interrupt from the keyboard generates a series of actions triggering an int
9 interrupt. The following steps summarize these actions:

Steps:

1. The I8259 sends an INTR signal to the cpu,

2. The cpu acknowledges that signal and in response the I8259 sends the interrupt
type number,

3. If external interrupts are not disabled, then the cpu services this interrupt by
executing the following interrupt service sequence:

• Saves the register flag: pushf,



178 CHAPTER 9. INPUT/OUTPUT PROGRAMMING

• Inhibits any other possible external interrupt by clearing the interrupt
bit in the register flag: cli,

• Saves the pointer to the next instruction in the interrupted program,

• locates the int 9 entry in the interrupt vector table, and updates the pair
cs:ip with this entry.

4. As a result of the last step of the interrupt service sequence, a bios routine for
int 9 takes control and executes the following steps:

• enables interrupts: sti,

• It reads the scan code from port 60h,

• sends a clear-and-re-enable handshake signal to the keyboard unit over
the KBD DATA line,

• processes the scan code,

• sends an EOI (end-of-interrupt) signal to the I8259 through port 20
(OCW2),

• executes an iret:

– restores return address (old contents of cs:ip),

– restores flags register: (popf).

9.5 The I8253 Programmable Interval Timer

One purpose of the I8253 is to generate an interrupt tic approximately every 54.9254
msecs. The signal generated is wired to the IR0 line of the I8259 which corresponds
to interrupt type 8 in the interrupt vector table. This is illustrated in Fig. 9.5.
The interrupt handler maintains the time-of-day clock and performs other internal
timing functions.

As shown in Fig. 9.6, the I8253 contains three independent counters. Each
counter is connected to a 1.19 Mhz clock input, a gate input for enabling/triggering
the count, and a counter output (OUT) that provides a periodic output that can
be programmed to generate it in a specific shape. An 8-bit internal data bus is
connected to the system bus through which the cpu performs read and write oper-
ations into the I8253 internal registers. Each counter has an specific purpose and
must be programmed separately. A control register which is common to all counters,
controls the operation and the writing/reading of the counter registers. There are
six possible operation modes that determine the shape of the output signal:



9.5. THE I8253 PROGRAMMABLE INTERVAL TIMER 179

...

...

Memory

INT

INT

clock = 1193180 Hz.
I8259 I8253

IR7

IR0

Figure 9.5: The I8253 interface with the I8259

Mode 0: interrupt on terminal count
Mode 1: hardware retriggerable one-shot
Mode 2: rate generator
Mode 3: square wave generator
Mode 4: software triggered strobe
Mode 5: hardware triggered strobe

A control word sent to the control register via its port number, selects the
counter, the signal shape, a read or write operation, and initializes the selected
counter. The control register is loaded by writing a control byte to its assigned I/O
port 43h. In addition to the port assigned to the control register, a port number
is assigned to each counter. Counters registers 0, 1, and 2 can be accessed through
I/O ports 40h, 41h, and 42h, respectively. To program a tic period, a count number
that divides the input clock is loaded into the counter register. Since the counter
register is 16 bits, the number must be a 16-bit value from 1 to FFFFh and must
be transfered in two separate bytes through the data bus. The selected counter is
decremented and whenever a zero count is reached an output signal is generated.
Depending on the mode selected, the gate input may act as an enable input, or as
a trigger to start the down-count; similarly, the counter may automatically reload
the count and repeat, or require a reload/re-trigger (one-shot operation).

Counter Register 0: The input GATE0 maintains CLK0 enabled to activate a clock
input at the rate of 1.193 Mhz. The output OUT0 is directly connected to IRQ0

and activated at a minimum rate of 18.2 Hz when the counter is loaded with the
maximum value of 65536. Any tic period T can be programmed by loading the
counter with the appropriate constant. If count denotes such a constant then:

Count = clock × T



180 CHAPTER 9. INPUT/OUTPUT PROGRAMMING

I8253

CLK1

CLK2

CLK0

GATE0

GATE1

GATE2

OUT0

OUT1

OUT2

1.19 Mhz

+5V

-5V

Speaker
Enable

Figure 9.6: Chip connections of the I8253

Example 1: to generate an interrupt every 54.9254 ms, i.e.. with T = 54.9254ms,
need Count = 1193180× 0.0549254 = 65536 = 216

Loading a zero into the counter causes an interrupt tic with this period.

The BIOS call int 1Ah can be used to read/set the tic count as follows:

• to read the count:

– input: ah = 00h

– output: cx:dx (timer count)

• to set count – input: ah = 01h, cx:dx = count

To measure execution times via int 1Ah the following scheme can be used:

• Before execution starts read and save the timer count (K1)

• Before exit read and save the timer count (K2)

• calculate the number of tic counts during execution = K2 −K1

• Execution time = (K2 −K2)× 54.9254



9.5. THE I8253 PROGRAMMABLE INTERVAL TIMER 181

Example 2: If T = 1ms, then count = 1193180× 0.001 = 1193

Example 3: To obtain the tic interrupt frequency f given that the count = 5966,
then T = count

clock
= 5966

1193180
= .005 secs. and f = 1

T
= 1

0.005
= 200 tics/sec.

The following code segment illustrates the programming of the counter register
0. A constant 36 loaded into the control register selects this counter with mode 3
(square wave generation):

mov dx, 43h ; control register port

mov ax, 036h ; operation mode to generate a square signal

out dx, al

mov dx, 040h ; counter 0 port

mov ax, PIT_count

out dx, al ; transfer low byte

xchg ah, al

out dx, al ; transfer high byte

Besides keeping the time-of-day clock, additional functionality of the IRQ0

(type 08h) handler includes 1) turning off the motor of the floppy drive if needed,
and 2) allowing the execution of user-defined applications; BIOS checks the interrupt
vector table via INT 1Ch to fetch a pointer to a user-defined application.

Counter Register 1: As shown in Fig. 9.6 CLK1 is also wired directly to the 1.193
Mhz clock. The output OUT1 generates a periodic signal that is used to refresh
DRAM memory through the 8237 DMA chip. The frequency of OUT1 is 66,278 Hz;
therefore the clock signal must be divided by 18 to generate a tic every 15 µsecs.
The programming of counter 1 will require the following lines of code:

mov al, 54h ; control word

out 43h, al ; loaded in to the control register

mov al, 18 ; load constant

mov 41h, al ; into counter 1

The word loaded into the control register selects mode 2 that will keep the pulse
high for 18 clock pulses.

Counter Register 2: The output OUT2 of counter 2 is used to generate a beep sound
but it can be programmed to generate sounds at different frequencies. As shown in
Fig. 9.6 the GATE2 input is enabled via the speaker enable signal. The beep has a
frequency of 896 Hz and it is generated by loading a value of 1331 into the counter
register. The following code segment selects mode 2:



182 CHAPTER 9. INPUT/OUTPUT PROGRAMMING

mov al, 0B6h ; control word

out 43h, al

mov al, 33h ; loading constant

out 42h, al ; requires two bytes

mov al, 05h ; high byte

out 42h, al

9.6 Exercises


