
Chapter 5

High-Level Language Interface

5.1 Introduction

Main programs, subroutines, and sub-procedures interact by exchanging parameter
values and results. Parameter values can be passed using registers, shared memory,
or the stack structure. A large part of this chapter deals with the standard C calling
conventions that can be used to interface assembly subprograms with C programs.
Calling programs not only pass values but often pass the addresses of data (i.e.
pointers) to allow subprograms to access data in memory. Applications involving
C programs are compiled with djgpp which is a 32-bit compiler designed for virtual
DOS environments. The use of Dos Protected Mode Interface (DPMI) libraries
is introduced to provide a protected mode environment for applications developed
using real-mode software.

5.2 Procedure calls and returns

The IA32 family provides two instructions that rely on the stack to make calls to
sub-procedures quick and easy. The call instruction pushes the address of the next
instruction onto the stack and makes an unconditional jump to a sub-procedure
address. The ret instruction pops off an address into the eip register and the cpu
continues the execution of the calling program. When using these instructions, it is
very important to manage the stack correctly so that the right address is popped
off by the ret instruction.

97

98 CHAPTER 5. HIGH-LEVEL LANGUAGE INTERFACE

5.2.1 The call instruction

Prior to branching to the first instruction of the called procedure, the call pushes
the eip register onto the stack. The address just pushed points to the instruction
the calling procedure should resume execution following a return from the called
procedure. The last instruction in the called procedure is a ret instruction that pops
the the return address from the stack back into the eip register. Execution of the
calling procedure then resumes. The processor does not keep track of the location of
the return instruction. It is up to the programmer to insure that the stack pointer
is pointing to the return address on the stack, prior to issuing a ret instruction.

When the call instruction transfers control to a procedure within the current
code segment, it is referred to as a near call. The call instruction can also transfer
control to procedures in a different code segment; these calls are referred to as far
calls. The following formats are supported by nasm:

call reg/mem ;[ss : (e)sp]← (e)ip;
;(e)ip← reg/mem16,32

call imm ;[ss : (e)sp]← (e)ip;
;(e)ip← (e)ip + imm16,32

call far mem ;[ss : (e)sp]← cs : (e)ip;
;cs : (e)ip← seg : offset16,32

call imm:imm ;[ss : (e)sp]← (e)ip;
;cs : (e)ip← imm16 : imm16,32

Near calls: The first form call reg/mem is a near call instruction. The target
address is loaded into (e)ip out of memory or a register encoded in the instruction.
The form call imm is also a near call where an immediate offset is loaded into (e)ip
as shown. The imm value is a relative offset specified in the instruction and as
such is added to the current contents of (e)ip. This is a 3-byte long call for 16-bit
applications and a 5-long byte for 32-bit applications; one byte contains the opcode
and the displacement occupies the remaining bytes. Recall that this is also the
format for near unconditional jumps. The displacement is a relative offset specified
in the fetched instruction such that the target address is calculated with respect to
the current contents of (e)ip:

target address = (e)ip + displacement

A 16-bit two’s complement displacement allows a jump in the range of ±32 Kbytes.
Displacements with 32 bits have a jump range of ±2 Gbytes; in this case after
saving eip into the stack, control to the procedure is transferred by adding to the
current contents of eip the 32-bit displacement specified in the instruction. From
the programmer perspective, the processor does the following: (see Fig. 5.1):

5.2. PROCEDURE CALLS AND RETURNS 99

1. Pushes the current value of the eip register onto the stack.

2. Loads the offset of the called procedure into the (e)ip register.

3. Begins execution of the called procedure.

Far calls: The call far mem form executes a far call by loading the destination
address from a memory location. This format specifies a far indirect call with a
pointer determined based on the 3-byte information provided in the instruction. In
real-mode the effective address consists of four bytes that are loaded into cs:ip; in
protected mode six bytes are loaded in to cs:eip.

The format call imm:imm is a direct far call as it loads the effective address
from the instruction itself as noted in the comment line. This call instruction requires
5 bytes with the first byte containing the opcode and the remaining four bytes
containing a far pointer to the procedure. For 16-bit applications bytes 2 and 3
are loaded into ip and bytes 4 and 5 are loaded into cs. For 32-bit applications
a 32-bit offset is loaded into eip and two additional bytes are needed to load the
segment selector into cs. As shown in Fig. 5.1, from the programmer perspective,
the processor performs the following actions:

1. Pushes the current value in cs and (e)ip registers onto the stack.

2. Loads the segment value (or selector in protected mode) needed to find the
address of the called procedure into the cs register.

3. Loads the offset of the called procedure into the eip register.

4. Begins execution of the called procedure.

5.2.2 The ret instruction

The ret instruction also allows near and far returns to match the near and far call
instructions. In addition, the ret instruction allows a program to increment the
stack pointer on a return to release parameters from the stack. The number of
bytes released from the stack is determined by an optional argument n to the ret
instruction. The following formats are supported by nasm:

ret ;(e)ip← [ss : (e)sp]16,32

ret n ;(e)ip← [ss : (e)sp]16,32; (e)sp + n
retf ;cs : (e)ip← [ss : (e)sp]16,32

retf n ;cs : (e)ip← [ss : (e)sp]16,32; (e)sp + n

100 CHAPTER 5. HIGH-LEVEL LANGUAGE INTERFACE

Near returns: When ret executes a near return, it pops only ip or eip from the
stack and transfers control to the new address. The form ret n increments the stack
pointer by an n number of bytes after popping the return address. The cpu actions
in the execution of a ret instruction are summarized as follows:

1. Pops the top-of-stack value (the return instruction pointer) into the (e)ip reg-
ister.

2. If the ret instruction has an optional n operand then increments the stack
pointer by the number of bytes specified by n to release parameters from the
stack.

3. Resumes execution of the calling procedure.

Far returns: When retf executes a far return, it pops ip/eip followed by cs. The
second form retf n will increment the stack pointer a number of bytes given by the
argument n. When executing a far return, the processor does the following:

1. It pops the top-of-stack value (the return instruction pointer) into the (e)ip
register, and pops the segment selector for the code segment being returned
to into the cs register.

2. If the ret instruction has an optional n argument then increments the stack
pointer by the number of bytes specified with the n operand to release the
stack space taken by the call parameters.

3. The cpu resumes execution of the calling procedure.

5.3 Passing Parameters

Unlike HLL call statements, call instructions in assembly do not provide a list of
arguments in the instruction itself to pass along to the sub-procedure being called.
There are mainly three ways by which a caller procedure can pass parameters to a
callee procedure:

1. Use of registers. Parameter values or addresses are stored into registers
before the call is made.

2. Use of global variables. The caller must declare as global all variables used
to pass values or addresses.

5.3. PASSING PARAMETERS 101

Figure 5.1: Stack operations on Near and Far Calls.

3. Use of the stack. The caller procedure executes one push instruction for
each parameter passed as illustrated in Fig. 5.1.

A common strategy to access parameters in the stack is to capture the con-
tents of the esp register into ebp register and then access any location in the stack
relative to the contents of ebp. However, since the caller program is also using the
ebp register, its contents must also be saved into the stack before overwriting it.
Therefore, the first set of instructions to be performed by the callee program are the
following:

subprocedure:
push ebp
mov ebp, esp
. . .

102 CHAPTER 5. HIGH-LEVEL LANGUAGE INTERFACE

5.3.1 Examples

In this section four examples are discussed to illustrate the use of call and ret in-
structions. The first example illustrates the use of registers to pass a pointer to a
simple DOS-based display function. The second example calls a sub-procedure to
access video memory to display a null-terminated string; the pointers to the string
are passed via registers. The third example calls the string display sub-procedure
but the expected pointers are retrieved from the stack. The fourth example uses the
console to display strings but relies on C-calls.

Example 1: Display $-terminated strings using a sub-procedure. The only parameter
needed is the offset of the message to display; since the offset is needed in register
dx it is stored there before the call is made:

; Assemble using the 16-bit nasm assembler:

; nasm16 -f obj test_calls.asm -o test_calls.obj

; this will produce: test_calls.obj

; to link do: alink test_calls

; it will produce: test_calls.exe

USE16

SEGMENT mystack stack

resb 100h

stacktop:

SEGMENT data

msg1 db "hello world", 13, 10, ’$’

msg2 db " ", 13,10, ’$’

msg3 db "this is the next line", 13, 10, ’$’

SEGMENT code

..start:

mov ax, data ;initialize ds to point to

mov ds, ax ;the data segment

mov ax, mystack

mov ss, ax ;initialize ss:sp to access the

mov sp, stacktop ;stack segment

mov dx, msg1

call display

mov dx, msg2

call display

5.3. PASSING PARAMETERS 103

mov dx, msg3

call display

mov ax, 04C00H ; select a DOS function code

int 21H ; to return to DOS

display:

mov ah, 09h ; select a DOS function code

int 21h ; call DOS service

ret ; to display the string

Example 2: Display null-terminated strings in page 0 in video memory. The param-
eters required are a pointer to the message (ds:si) and a pointer to video memory
(es:di). The corresponding registers are initialized and used to pass these pointers.

; this code uses the segmented memory mode

; to assemble do: nasm16 -f obj vmcall.asm -o vmcall.obj

; this will produce: vmcall.obj

; to link do: alink vmcall

; It will produce: vmcall.exe

USE16 ;equivalent to [BITS 16]

video_seg equ 0B800h ;video memory

attribute equ 47h ;color attribute

SEGMENT mystack stack

resb 100h

stacktop:

SEGMENT data

msg1 DB ’Hello, World ! ’,00h

msg2 DB ’ ’,00h

msg3 DB ’This is the next line ’,00h

SEGMENT code PUBLIC

..start:

mov ax, data

mov ds, ax

mov ax, mystack

mov ss, ax

mov sp, stacktop

104 CHAPTER 5. HIGH-LEVEL LANGUAGE INTERFACE

;display messages

mov si, msg1

mov di, 10*160 + 2*25 ;offset of first message

call vmshow

mov si, msg2

mov di, 11*160 + 2*25 ;offset of 2nd message

call vmshow

mov si, msg3

mov di, 12*160 + 2*25 ;offset of 3rd. message

call vmshow

;wait for a character

mov ah, 8

int 21h

;return to dos

mov ax, 4c00h

int 21h

vmshow:

mov ax, video_seg

mov es, ax

mov ah, attribute

mov cx, 80

next_char:

lodsb ;get the input string byte

cmp al,00h ;check for a null character

je null_ch ;if null, then quit

stosw ;store ax to video memory

loop next_char ;loop back to do it again

null_ch:

ret

Example 3: This example is the same as example 2 but illustrates parameter passing
using the stack:

USE16 ;equivalent to [BITS 16]

video_seg equ 0B800h ;video memory

attribute equ 47h ;color attribute

SEGMENT mystack stack

resb 100h

5.3. PASSING PARAMETERS 105

stacktop:

SEGMENT data

msg1 DB ’Hello, World ! ’,00h

msg2 DB ’ ’,00h

msg3 DB ’This is the next line ’,00h

SEGMENT code PUBLIC

..start:

mov ax, data

mov ds, ax

mov ax, mystack

mov ss, ax

mov sp, stacktop

;display messages

push word msg1 ;store offset of string

push word 10*160+2*25 ;store offset of video memory

call vmshow ;display

push word msg2

push word 11*160+2*25

call vmshow

push word msg3

push word 12*160+2*25

call vmshow

;wait for a character

mov ah, 8

int 21h

;return to dos

mov ax, 4c00h

int 21h

vmshow:

push bp

mov bp, sp

mov di, [bp+4] ;load offset of video memory ;

mov si, [bp+6] ;load offset of string

mov ax, video_seg

mov es, ax ;initialize video segment

mov ah, attribute

mov cx, 80

next_char:

lodsb ;get the input string byte

106 CHAPTER 5. HIGH-LEVEL LANGUAGE INTERFACE

cmp al,00h ;check for a null character

je null_ch ;if null, then quit

stosw ;store ax to video memory

loop next_char ;loop back to do it again

null_ch:

pop bp

ret

Example 4: This example illustrates the use of C-functions in a 32-bit protected
mode environment to display messages (null-terminated strings) using the system
call printf. The only parameter passed using the stack is the offset of the message to
display. The mechanism to interface with C programs is covered in the next section.

; This program illustrates the use of system calls.

; Assemble using the 32-bit nasm assembler

; nasm32 -f coff wprintf.asm

; this will produce: wprintf.o

; to link under djgpp do: gcc -o wprintf wprintf.o

SEGMENT .text

global _main

extern _printf

_main:

push dword msg1 ;store pointer to message

call _printf ;display it

add esp,4 ;restore stack pointer

push dword msg2

call _printf

add esp,4

push dword msg3

call _printf

add esp,4

ret

SEGMENT .data

msg1: db "Hello, World ! ", 10, 0

msg2 db " ", 10, 0

msg3 db "This is the next line ", 10, 0

5.4. INTERFACING C AND ASSEMBLY LANGUAGE 107

As shown in example 4 some system calls such as printf and scanf allow a
varying number of arguments. As the function is called from assembly parameter
values are pushed into the stack in the inverse order in which they would be listed.
After the parameters are used by the function, the top of the stack is restored by
adding to the esp register the space in bytes required by the arguments passed.

5.4 Interfacing C and Assembly Language

As shown in the previous section an alternative to passing parameter values is the
use of the stack. This is what C programs do. The use of global variables to pass
parameter values involve the allocation of memory to be used during execution. In
contrast, the use of the stack allows the use of memory only while the procedure
called is active. Another advantage of using the stack is the flexibility of storing the
status of the calling program. As a result of such flexibility procedures are made
reentrant, i.e., they can be called any time at any place even recursively.

The section of the stack assigned to each call is referred to as the stack frame.
It is a fixed block of memory within the stack used for parameters, return address,
local variables and register storage. Any time a procedure is called, its stack frame
is pushed into the stack; when finished, the stack frame is popped off the stack.
Since a stack frame is assigned to each call and not to the procedure itself, recursive
(nested) calls are possible.

5.4.1 Interfacing with 16-bit programs

In the following description, the words caller and callee are used to denote the
programs doing the calling (a C-program) and the program which gets called (an
assembly program), respectively. Also, C compilers require that all global variables
and procedures have a leading underscore appended to the global symbol. The elf
compiling specification does not require this renaming of global symbols. The caller
pushes the function parameters onto the stack, one after another, in reverse order
(right to left, so that the first argument specified to the function is pushed last).
Since this mechanism is used by C calls, it is referred to as the C-convention to
parameter passing and it is illustrated in Fig. 5.2a.

After placing parameters into the stack, the caller program executes a call
instruction to pass control to the callee program. The callee receives control, and
saves the contents of (e)sp into (e)bp to locate parameters in the stack frame relative
to the contents of (e)bp. Hence, the callee, must push the previous value of (e)bp as
shown in Fig. 5.2b. The following template illustrates the entry code and the exit

108 CHAPTER 5. HIGH-LEVEL LANGUAGE INTERFACE

Return address

an

ai

al

...

...

bp+2n+2:

bp+2i+2:

bp+4:

(a)

Parameters

Old bp

Callee’s
Stack space

bp:

sp:

(b)

Return address

Figure 5.2: (a) C Parameter convention, (b) Callee’s stack frame

code of a 16-bit sub-procedure myfunc:

global myfunc

myfunc:

push bp

mov bp, sp

...

code for myfunc

...

mov sp, bp ;restore the value of sp

pop bp

ret

After pushing bp into the stack and copying the value of sp into bp, myfunc can then
access parameters relative to bp. The word at bp + 0 holds the previous value of bp
as it was pushed last; the next word, at bp + 2, holds the offset part of the return
address, pushed implicitly by the call instruction. For a near call the parameters
start at [bp+4] as in Fig. 5.2a where the value of the ith parameter is at bp+2i+2.
For a far call the return address requires the segment part stored at bp + 4, and
parameters begin at bp + 6; therefore, in general the ith parameter is located at
bp + 2i + 4.

A callee program can use the stack by pushing local variables and decrease
sp further; thus, saved local variables and registers are accessible at negative offsets
from bp. To return a value to the caller, a common practice is to place the value in
al, ax or dx:ax depending on the size of the value.

5.4. INTERFACING C AND ASSEMBLY LANGUAGE 109

Once the callee program has finished processing, it restores sp from bp; this
step is necessary if local variables have been pushed into the stack. The callee then
pops into bp its previous value, and returns via ret or retf depending on the memory
model used. When the caller regains control, the function parameters are still on
the stack, so it typically adds an immediate constant to sp to remove them (instead
of executing a number of slow pop instructions).

Example 5: To illustrate the C-passing passing parameter convention, consider the
stack frame of a 16-bit video display function callable from a C program.

video(string ptr, row, column, attribute, length, page)

The function video transfers a null-terminated string into video memory for
display at the coordinates given by the row and column parameters. The string will
be displayed with the selected color attribute. Furthermore, the row, column and
page will be used to calculate the corresponding offset in the video buffer in text
mode. The set of parameters must be available on the stack in the order shown in
Fig. 5.3.

Note that a far call is assumed as both the segment and the offset part of a
physical address where the string buffer is located are passed. Likewise the reference
to the next instruction is passed using both the segment and offset part.

5.4.2 Interfacing with 32-bit programs

Saving and loading parameters from the stack for 32-bit applications, is basically
the same mechanism described for 16-bit applications. The ith entry within the
parameter stack space changes to ebp + 4i + 4 to take into account that values now
take 4 bytes. A callee procedure must preserve the values of ebx, esp, ebp, esi and
edi as well as the contents of the segment registers cs, ds, es and ss; the values in
these registers should be the same before and after the call is executed because under
protected sub-procedures should not alter the contents of segment registers. Values
are returned in eax if they are 32-bit or smaller in size. Values are returned in edx:eax
if they require a 64-bit representation. Strings, structures, and other items above
32 bits in size are returned by reference, i.e, a pointer is returned in eax. As shown
in example 4, C-library functions can be called directly from assembly procedures.
C-libraries, however, may alter the state of the caller assembly program; therefore,
to preserve the values in registers in use they must be saved into the stack before
the library function is called. Fig. 5.4 shows the stack frame associated to a call
under a 32-bit flat model programming environment. Notice that there is no need
to pass the segment component of pointers.

110 CHAPTER 5. HIGH-LEVEL LANGUAGE INTERFACE

VIDEO

page

length

attribute

.

.

.

.

.

.

bp+18

bp+16

bp+14

bp+12

bp+10

bp+8

bp+6

bp+4

bp+2

bp+0

bp−2

pushed by C

registers

local variables

string pointer

return address

column

row

segment

offset

segment

offset

old bp

sp

pushed by

Figure 5.3: Stack frame for the call to VIDEO in real mode

Example 6: The sub-procedure vmshow previously coded, is re-designed to be callable
from a C-program in a protected mode environment. Both the C-code and the as-
sembly code are listed:

/* to compile and link: gcc -o dvtest dvtest.c vmshow.o */

#include <stdio.h>

#include <conio.h>

#include <dpmi.h> /* we need this for the DPMI wrapper functions */

#include <string.h>

extern void vmshow(char *, int);

/* This will hold the selector we need to access the text mode

video memory buffer. */

5.4. INTERFACING C AND ASSEMBLY LANGUAGE 111

old ebp

eip

string ptr.

row

column

attribute

page

length

ebp+0

ebp+4

ebp+8

ebp+12

ebp+16

ebp+20

ebp+24

ebp+28

Figure 5.4: Stack frame for the call to VIDEO in protected mode

int vm_buffer = -1;

int main(void){

int row;

int col;

/* Set up our frame buffer descriptor, and store the selector to use */

vm_buffer = __dpmi_segment_to_descriptor(0xb800);

if(vm_buffer < 0) return 1;

clrscr();

row = 10; col = 25;

vmshow("Hello world", 160*row+2*col);

row = 11;

vmshow(" ", 160*row+2*col);

row = 12;

vmshow("This a third line", 160*row+2*col);

getchar(); /*type any character to terminate the program*/

clrscr();

/* The descriptor must be released because it takes up resources */

__dpmi_free_ldt_descriptor(vm_buffer);

112 CHAPTER 5. HIGH-LEVEL LANGUAGE INTERFACE

return 0;

}

void clrscr(void){

int row;

int col;

for(row=0; row<25; row++)

for(col=0; col<80; col++) vmshow(" ", 160*row+2*col);

}

; vmshow.asm

; to assemble do: nasm32 -f coff vmshow.asm -o vmshow.o

attribute equ 47h ;color attribute

global _vmshow

extern _vm_buffer

SEGMENT .text

_vmshow:

push ebp

mov ebp, esp

push edi

push esi

push eax

push es

push ecx

mov esi, [ebp+8] ;offset message

mov es, [_vm_buffer]

mov edi, [ebp+12]

mov ah, attribute

mov ecx, 80

next_char:

lodsb ;get the input string byte

cmp al,00h ;check for a null character

je null_ch ;if null, then quit

stosw ;store ax to video memory

loop next_char ;loop back to do it again

null_ch:

pop ecx

pop es

pop eax

5.5. EXERCISES 113

pop esi

pop edi

pop ebp

ret

As in example 3 vmshow will display a message at the coordinates row, col at
page 0. A stack frame is setup to access at [ebp + 8] the offset where the message
is stored, and at [ebp + 12] a constant for the offset within page 0. Note that in
protected mode there is no need to initialize the ds register needed to access the
message in real mode. However, this is not the case for the video text buffer which
is located at B800h in real-mode memory space and can not be accessed directly in
protected mode. To ensure access to video memory, dpmi services are invoked.

The Dos Protected Mode Interface (DPMI) is a set of library calls that allow
dos programs to access the extended memory of IA machines while maintaining
system protection. Any operating system that currently supports virtual dos sessions
should be capable of supporting DPMI without affecting system security. Note that
DPMI services are only available to protected mode programs.

Usually memory-mapped devices or absolute addresses below the 1Megabyte
mark can not be accessed directly. This is because the combination segment:offset
does not apply in protected mode. A special selector is required to gain access to
a device or an absolute address. To create such a selector in example 5, the djgpp
library function dpmi segment to descriptor with the 0xB800 argument is used.
An int type variable vm buffer is declared and used to store the selector needed
by vmshow to initialize es with an offset already popped from the stack frame at
[ebp + 12]. The remaining code is similar to the sub-procedure shown in example
3. An additional change is that the stack frame is used to store and restore the
registers used by the sub-procedure and thus maintain the integrity of the calling
program.

5.5 Exercises

1. With a one-line statement explain the following terms:

(a) stack frame

(b) call imm:imm

(c) retf n

(d) dpmi

2. Define the term ”stack frame” and briefly explain when and how is it formed.

114 CHAPTER 5. HIGH-LEVEL LANGUAGE INTERFACE

3. Combine words and register-level transfer notation to explain how the cpu
processes the instructions:

(a) A near call.

(b) A far call, and

(c) ret.

4. Suppose a program contains the following code lines:

call subproc1
mov ax, cx

If the instruction mov ax, cx is stored at 0A23:103A, the current contents of
SP = 0200h, and subproc1 is a near procedure that begins at 0A23:10C0h,
then:

(a) Determine the contents of CS:IP, and SP just after subproc1 is executed

(b) Determine the word stored into the top of the stack.

5. Consider the following prototype of a function to be called from a C program
and a 32-bit flat model environment:

void check(string1 ptr, int num, string2 ptr)

Show in a memory diagram of the stack frame how each parameter is allocated
when the check function gets control. Indicate where the ”old ebp” is placed
as well as all the displacements needed to locate parameters relative to the
contents of ”ebp”.

6. Repeat the previous exercise assuming a ıfar call to the check procedure in a
real-mode environment.

7. A particular application requires to display some text in video memory. The
display coordinates selected are row = 10, and column = 20. Using page seven
in video memory the program must calculate the exact initial physical location
in video memory to begin display.

(a) Provide the segment part and the offset part of the desired address in
video memory.

(b) Calculate the actual physical address,

