
Chapter 1

Single-processor Computer
Systems

1.1 Introduction

This chapter discusses a brief introduction to the organization of a single-processor
architecture, fundamental concepts in computer systems, and summarizes the main
features of the Intel Architecture family from the 8/16-bit 8086/88 to the Intel’s 64-
bit architecture based on the Itanium processor. The notion of the software model
as a set of resources available to programmers is discussed. The software model of
the Intel 8086/88 processor and the Pentium 4 is reviewed. Some features of modern
architectures exemplified by the Pentium 4 machine are highlighted and contrasted
with the Intel 8086/88 machine.

1.2 Computer Organization

A single-processor computing system as shown in Fig. 1.1 contains three main com-
ponents: the cpu (central processing unit), main memory, and I/O devices. The
main function of the cpu is to interpret and execute programs currently resident
in memory and fetched by the cpu instruction by instruction. The cpu is normally
contained in a single chip on a 0.25” square of silicon. Internally the cpu is orga-
nized into three main components: at least one arithmetic logic unit (alu), a set of
registers (register file), and a control unit. These components are interconnected

1

2 CHAPTER 1. SINGLE-PROCESSOR COMPUTER SYSTEMS

through an internal bus and their coordinated activity provides the cpu with its
entire functionality. The alu performs an array of arithmetic and logic operations.
At least one operation is performed at a time as part of the instruction currently in
execution. Registers store operands or data fetched from memory or produced by
the alu. All data transfer and computing activity within the cpu is controlled by
the control unit; the control unit coordinates fetching instructions, selection of alu
operations, selection of source and destination registers, selection of the appropriate
alu operation, and if necessary, the storing of results in memory.

CPU

Control
Unit

Registers Main

I/O
Devices

ALU

Memory

Figure 1.1: A single-processor computer system

Consider for example the execution of the operation x = x+ y where a typical
assembly instruction such as add ax, bx engages the internal bus, the alu, and the
registers ax and bx as illustrated in Fig. 1.2. Note that the values x and y have
been previously loaded from memory into ax and bx. After the execution of the add
instruction ax holds the result which in turn can be used by the next instruction to
store it in memory or to be used by the cpu for subsequent operations.

Internal operations can be described using register transfer notation (RTN)
to provide information in regard to which alu operations are selected and what
registers are involved. The selection of operations and operands is carried out by
control signals issued by the control unit. These control signals are synchronize to
coordinate the transfer of data through a selected datapath as operations are being
performed. Detailed computer design makes use of RTN-based specification for the
efficient design of the control unit. For example the operation x = x + y could be
translated into one or more register transfer operations that include:

1. The transfer of data from the source registers to the internal bus under one
clock cycle. The control signals associated with these transfers are labeled in

1.2. COMPUTER ORGANIZATION 3

*

x+y

x+y

Internal bus

Internal bus

x+y

y

x y

AX
BX

Temporary
Registers

select
AX

select
BX

select

select
AX

operation

* *

*

Figure 1.2: Execution of x = x + y.

Fig. 1.2 as ”select AX” and ”select BX” to select registers AX and BX as the
sources of data,

2. A second transfer from the internal registers to the alu to the internal bus.
A control signal label ”select operation” can be used to trigger data into the
ALU and to select the operation to be performed.

3. A third transfer from the internal bus to the final destination registers. This
transfer is performed by a control signal labeled ”select AX”.

An RTN-based sequence can also be used to describe the internal resources
needed for the hardware implementation of assembly language instructions without
regard to the coordination and timing signals involved in the actual hardware im-
plementation. Thus, the equation x = x + y, is implemented by the execution of
add ax, bx, which can be described as:

ax ← ax + bx

to indicate which registers provide data, which alu operation is performed, and which
register will hold the result.

4 CHAPTER 1. SINGLE-PROCESSOR COMPUTER SYSTEMS

Throughout this book we will use RTN simply to describe non-detailed register
operations with the intention of familiarizing the reader with a process that very
often involves:

1. A mathematical description of an operation,

2. The software implementation of such a mathematical description using assem-
bly language, and

3. The internal operations at the register level that are involved in the hardware
implementation of any assembly language instruction.

We will not be concerned with the synchronization of the timed internal activities
performed by the control unit.

The memory unit stores instructions and data. A section of memory referred
to as Random Access Memory (RAM) is dedicated to the temporary storage of data
and code for programs currently in execution. Another section of memory referred to
as Read Only Memory (ROM) stores utility programs such as the bootstrap routine,
I/O services routines, etc. Normally the capacity of memory is given in terms of the
number of bytes it can store in locations that are directly addressable. A byte,
typically regarded as the storage unit consists of 8 bits; therefore, most memory
reference operations transfer data in terms of bytes. Applications may require data
in 16-bit sizes and 2-byte data units are fetched from or stored in memory; 16-bit
data is referred to as a word. Thus, applications that use 32 bits fetch 4 bytes or a
double word from memory. A quadword refers to 8 bytes and 16 bytes of data are
called a paragraph. This is the terminology used to address and fetch data from
memory in the Intel Architecture (IA) family of processors. In general, if the size
of the bus or register used to access memory is n bits, then the number of bytes
directly addressable corresponds to an address space with 2n bytes. For a byte-
oriented memory organization each byte in the address space corresponds to the
minimum addressable item. For a memory system where the minimum number of
bits fetched per data unit is k, then the capacity of the memory in terms of the total
number of bits is 2n × k. Therefore, as shown in Fig. 1.3, an ith entry consists of k
bits representing a unit of data stored in memory at the ith address.

Typical units used to measure the capacity of memory are included in table
1.1.

Current desktop machines do network memory and I/O devices via a system
of buses. A bus is a set of parallel wires dedicated to transfering data, control, and
address bits of information. Each wire in the bus is intended to support the transfer
of one single bit of information at a time. Complete systems are integrated using
three dedicated buses as shown in the block diagram in Fig. 1.4. Data traveling

1.3. BASIC CONCEPTS 5

n

k!2 1 0. . .

. . .

. . .

. . .

k!10
1
2

Memory Unit
(k bits wide)Address

2

2 !2
2 !1

n

Figure 1.3: Memory organization

between the cpu, memory and I/O devices use the data bus. Control signals sent
from the cpu to mainly I/O devices use the control bus. The address bus is used to
transferring address bits needed to access specific locations in memory or to access
special I/O devices.

1.3 Basic Concepts

The development of applications requires mechanisms of interaction between the
user and computing resources. Computer languages are needed to provide such
interaction. The most common computer languages are referred to as high level
languages (HLL). Examples of such languages include Fortran, Pascal, C, C++, etc.
HLL programs require a compilation process to generate the machine code needed for
its execution. Languages that require an interpreter are known as script languages.
Examples of script languages include perl, tcl/tk, java script, etc. HLL are said to
be application-oriented languages because the emphasis during development is on
the application in terms of ease of programming and portability.

Another class of languages is known as assembly languages (AL). Applications
developed using an AL resort to an instruction set which is a list of predefined
symbols to be used to specify operations and operands. An instruction set contains

6 CHAPTER 1. SINGLE-PROCESSOR COMPUTER SYSTEMS

Table 1.1: Prefixes used to measure memory capacity

1 Kilobyte 1 thousand Bytes 210 ≈ 103 bytes
1 Megabyte 1 thousand Kilobytes 220 ≈ 106 bytes
1 Gigabyte 1 thousand Megabytes 230 ≈ 109 bytes
1 Terabyte 1 thousand Gigabytes 240 ≈ 1012 bytes
1 Petabyte 1 thousand Terabytes 250 ≈ 1015 bytes
1 Exabyte 1 thousand Petabytes 260 ≈ 1018 bytes

Programm.

Timer

Programm.

Controller
Interrupt Coprocessor

Interface
Keyboard

Unit
Storage
Memory

(CPU)
Processing Unit

Central

Interval
CRT

Controller

data bus

address bus

control bus

Figure 1.4: Block Diagram of a Single-processor System

the following types of instructions: control, data transfer, arithmetic, logic, and
I/O instructions. An AL program is a sequence of instructions which are executed
one by one by the cpu. Each instruction is fetched, decoded and executed, until
a final instruction is fetched that directs the cpu to execute a halt operation. The
process of fetching, decoding and executing each instruction is referred to as the
instruction cycle. Assembly languages are said to be architecture-oriented because
the programmer needs to be aware of the internal organization of the machine run-
ning the application. The programmer must be aware of the number and names of
programmable registers, memory capacity and organization, alu functions, the in-
struction set and whether or not some operations are hardware-supported. Because
ALs are associated with a particular architecture it can be argued that applications
can be optimized in terms of the total number of cycles required and the internal
resources utilized. The process of generating machine code is referred to as assem-

1.3. BASIC CONCEPTS 7

bly. An assembler is needed as a tool that takes assembly language instructions and
generates the machine code for its execution.

Yet another class of languages include the machine languages (ML). ML were
used with the introduction of simple computing machines (before the proliferation
of modern computing machines) to manually enter instructions and data needed for
the execution of basic arithmetic operations. Both HLL and AL generate machine
code. The machine code is known as binary code because it uses two symbols (1 and
0) to represent information that can be stored in memory . Each assembly instruc-
tion is associated with a predetermined code packed into a binary representation
formatted into one or more bytes for execution. Formatted instructions are divided
into several fields which are decoded by the control unit for internal coordination
and synchronization. One of these fields specifies the operation code opcode used by
the control unit to select the appropriate ALU operation to execute. Other fields
in the instruction format include code to select operands. Operand codes address
internal register and/or memory locations where operands are located.

1.3.1 Development tools

HLL programs require a compiler. A compiler is a utility program that takes as
input the HLL source code and generates an intermediate code referred to as object
code. A set of related object programs generated through the compilation process
are linked to generate the binary code of complex programs. In contrast script
languages require an interpreter that executes HLL statements directly . Other
languages such as Java use compilation to produce bytecode which in turn is used by
an interpreter, a Java Virtual Machine (JVM), to execute it. As the name implies,
JVM is a software-based architecture that can be enabled on any hardware platform
making the bytecode of a program easily portable.

The assembly process of programs written in an assembly language is similar
to the compilation process except that the tool uses is called an assembler. The
assembler normally uses two passes to generate an object code. Object programs
are linked to form a final binary version of complex programs that may involve
modules in HLL and assembly source code. Assembly languages are unique to
specific architectures; however, having the source code for a particular architecture,
it is possible to generate the source code for a different architecture. Such a process
requires the use of a cross-assembler which takes as input the assembly source code
for one processor and generates the assembly source code for a different processor.

The use of some of the tools involved in the development of applications is
illustrated in Fig. 1.5. The blocks refer to files and the arcs refer to the tools that
produced them. From the generation of source code with the use of an editor,

8 CHAPTER 1. SINGLE-PROCESSOR COMPUTER SYSTEMS

followed by the use of compilers and/or assemblers to generate object files which are
then fed to the linker along with access to library files to produce executable code .
Once an executable file is available, a loader brings the binary code to main memory
for execution . If the output is not as expected then a debugger should be available
to detect possible bugs and correct them by editing the source code repeating the
entire process again.

yes

Correct?

(Debuger)

no

(Compiler)

File
Object

File
Executable

Output

(Loader)

(Linker)

(Text editor)

(Assembler)
Code

Source

Library

Figure 1.5: Tools used in the development of applications

1.3.2 Instruction Cycle

The instruction cycle refers to the number of steps the computer follows to execute
a single instruction. The CPU first fetches an instruction from memory. This
instruction is then decoded, i.e., each field of the instruction is examined to determine
the type of operation the CPU will perform, the location, and retrieval of operands.
After decoding the instruction, the CPU proceeds to execute it. The CPU repeats
these three general steps for each instruction until either a halt instruction is executed
or the last instruction has been fetched. Fetch, decode, and execute operations are
synchronized with the clock pulses generated at a fixed frequency given in terms of
cycles per second. Clock speeds of Intel’s Pentium 4 computers are in the order of 3.0
GHz, or, 3 billion cycles per second. Each instruction takes a given number of clock
cycles to execute depending on its complexity and use of resources, i.e., registers,
ALU, bus, and memory. The actual speed at which instructions depends on two
factors, the technology used, and the architecture design. In terms of technology,
the increase in the clock frequency is one way to speed up instruction execution.
Improvements in the architecture are another way to increase efficiency and speed.

1.3. BASIC CONCEPTS 9

One such architectural design improvement is pipelining the instruction cycle. A
pipeline architecture overlaps the execution of one instruction with the fetching of
the next. The use of intermediate memory buffers referred to as cache memory is
another important architectural design improvement. Caching instructions and data
with temporal and spacial locality have the effect of increasing memory bandwidth
resulting in data and instructions being fetched faster.

1.3.3 Instruction formats

Some instructions are more complex than others and may involve additional refer-
ences to memory to fetch operands. Other instructions contain immediate operands
while others contain codes of registers holding operands or memory addresses where
operands are stored. Invariably, every cpu is provided with a program counter (pc)
register that contains the address, i.e., a pointer to the next instruction . Upon
fetching a new instruction, the pc is incremented to point to the next instruction
in the program. The increment corresponds to the size (in number of bytes) of the
instruction just fetched. Fig. 1.6 shows the general instruction format used by Intel
processors. The format shows up to four fields but the actual number of fields used
depends on the particular instruction format. Instructions that require operands
stored in memory need to be fetched during execution. These are called memory
reference instructions and may require up to four fields where the addressing mode
field specifies either a register or an address field in the instruction that contains the
effective address.

Appendix A details the instruction formats and encoding used for the Intel
instruction set. Consider for example a small 16-bit program for the I8086/88 pro-
cessor where the program counter is a register identified as the instruction pointer
(ip) ; the following sequence of instructions illustrates the process involved in the
execution of assembly programs:

mov ax, 0020h ;a constant is placed in register ax
mov bx, 1000h ;another constant is placed in register bx
mul bx ; the contents of ax and bx are multiplied and

;the results are stored in dx:ax

This short assembly program simply multiplies two 16-bit constants: 32 × 4096 =
25 × 4096. The result is a 32-bit value that is stored in two concatenated 16-bit
registers dx:ax that will hold a value that consists of 4096 shifted 5 times to the left.
The computational process begins by loading (moving) the constant 0020h(= 32)
into the internal register ax. Likewise a second constant 1000h(= 4096) is loaded
into register bx. The third instruction commands the alu to multiply the contents of

10 CHAPTER 1. SINGLE-PROCESSOR COMPUTER SYSTEMS

DataOpcode Mode specifier Address
Displacement

Immediate

Opcode: The opcode may require one or two bytes
Smaller encoding fields may be defined within the opcode
field. These fields define such information as register
encoding, conditional test performed, or sign extension
of immediate byte.

Mode specifier: The mode specifier consists of two bytes:
mod r/m: Almost all instructions that refer to a register
and/or memory operand have a register and/or address
mode byte that consists of the mod field,
the reg field, and the r/m field.
sib: This byte stands for scale, index, base and it is
used to fully specify the manner in which an effective
address is computed.

Address displacement: If the selected addressing mode specifies
a displacement, the displacement value is placed
immediately following the mod r/m byte or sib byte.
The displacement can be 8, 16, or 32 bits long.

Immediate data: If the instruction specifies an immediate operand,
the immediate value follows any displacement bytes.
An immediate operand, if specified, is always the last
field of the instruction and can take 8, 16 or 32 bits.

Figure 1.6: Instruction format

both registers. The assembly process generates a binary version of the program, i.e.,
a pattern of 1’s and 0’s formatted into instructions that when loaded into memory
will be fetched, decoded and executed sequentially. Fig. 1.7 shows the binary code
for each of the assembly instructions.

The mov instruction require three bytes; a field of four bits identifies the
operation code (opcode) and a second field of four bits identifies the destination
operand with a format w, reg, where w = 1 indicates that all 16 bits are used,
and reg is the code assigned to the register used. If reg = 000 then ax is used; if
reg = 011 then bx is used; an immediate 16-bit field (data field) holds the constant
to be copied to the destination register. This is the immediate-to-register short
format of the mov instruction. The mul instruction requires two bytes. The first
byte corresponds to the opcode which identifies a 16-bit multiplication; a two-bit
second field specifies that the multiplier is found in a register (register addressing
mode) which is identified by the last 3-bit field. This small program can be loaded

1.3. BASIC CONCEPTS 11

1 0 1 1
opcode reg data

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

1 0 1 1
opcode

1 0 0 0
reg

0 0 0 0 0 0 0 00 0 1 0 0 0 0 0

data

1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1
opcode reg

16-bit mult. bx

b) MOV bx, 1000

a) MOV ax, 0020

c) MUL bx

Reg.

mod

low byte high byteaxmov

low byte high bytebxmov

Figure 1.7: Binary code and instruction formats

into memory using the debug tool under dos as follows:

1. Open a dos window and type the command debug. A “-” symbol is displayed
indicating that debug is ready to accept user commands. To enter the program
type the command a to assemble each program line. Terminate each line with
a return (cr).

C:\>debug
-a
0AF9:0100 mov ax,0020
0AF9:0103 mov bx,1000
0AF9:0106 mul bx
0AF9:0108

2. To generate the binary code of the program, type the command u which stands
for unassemble:

12 CHAPTER 1. SINGLE-PROCESSOR COMPUTER SYSTEMS

-u 100 106
0AF9:0100 B82000 MOV AX,0020
0AF9:0103 BB0010 MOV BX,1000
0AF9:0106 F7E3 MUL BX

The range 100 — 106 given with the command u corresponds to the locations
where our program was placed in memory. If no range is given debug will dis-
play the contents of the next 32 bytes. Note that the code for each instruction
is given in hexadecimal notation and corresponds to the binary code shown in
Fig. 1.7.

3. To check the initial contents of the registers use the command r:

-r
AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0AF9 ES=0AF9 SS=0AF9 CS=0AF9 IP=0100 NV UP EI PL NZ NA PO NC
0AF9:0100 B82000 MOV AX,0020

Note that the contents of the ip register point to the first instruction mov
ax,0020h.

4. The command t will allow the execution trace of each instruction. The contents
of all visible registers are displayed and so is the status of the program, given
by the values of the flags in the register flag. A detailed explanation of the
Intel 8086/88 architecture is given in the next section.

-t

AX=0020 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0AF9 ES=0AF9 SS=0AF9 CS=0AF9 IP=0103 NV UP EI PL NZ NA PO NC
0AF9:0103 BB0010 MOV BX,1000
-t

AX=0020 BX=1000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0AF9 ES=0AF9 SS=0AF9 CS=0AF9 IP=0106 NV UP EI PL NZ NA PO NC
0AF9:0106 F7E3 MUL BX
-t

AX=0000 BX=1000 CX=0000 DX=0002 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0AF9 ES=0AF9 SS=0AF9 CS=0AF9 IP=0108 OV UP EI PL ZR NA PE CY
0AF9:0108 0080FF02 ADD [BX+SI+02FF],AL DS:12FF=75
-q

C:\>

1.4. INTEL PROCESSORS 13

While the first mov instruction is executed the ip register is incremented by 3 to
point to the next mov instruction. Note also that the constant 0020 is placed in the
ax register. The second t command executes the second mov instruction and the
contents of ip are now 0106 and point to the mul instruction. The constant value
1000 is now in the bx register. As shown in Fig. 1.7, the mul instruction requires
two bytes and after execution the concatenation of registers dx and ax show the
expected 32-bit result. The command q is used to exit debug.

1.4 Intel Processors

The 8086 is considered the first of the Intel Architecture (IA) family of processors
followed by a smaller and more cost effective version: the Intel 8088. Notable
predecessors of the IA family are the 4004 microprocessor designed in 1969 and the
subsequent 8-bit versions, the 8080 and the 8085. One distinctive feature of the
IA family of processors is upward compatibility by which object code created for
early machines (starting in 1978) will still execute on the newest members of the
IA family. The 8086 has 16-bit registers and a 16-bit external data bus. A 20-bit
addressing provides 220 ≈ 1-Megabyte of directly addressable memory space. This
is referred to as real mode memory organization. The 8088 is identical except for
a smaller external data bus of 8 bits. These processors introduced segmentation,
where 16-bit registers can act as pointers to memory segments of up to 64 KBytes
in size. This form of address partitioning is referred to as a segmented model. Four
segment registers can be used to hold 20-bit base addresses of the currently active
memory segments; therefore, up to 256 KBytes (4 × 64K) can be addressed without
switching between segments. For example, the full address in terms of segment and
offset values where the instruction mov ax, 0020h is found in the previous example
is 0AF9 : 0100.

The 80186/80188 family of embedded microprocessors was introduced in 1982.
The original 80186/80188 integrated an enhanced 8086/8088 cpu with six commonly
used system peripherals. The 80C186/80C188 introduced in 1987 is an enhanced
8086/8088 CPU redesigned as a static, stand-alone module known as the 80C186
Modular Core.

The 80286 processor appeared on the market also in 1982. A 16-bit external
data bus transfers both 8-bit and 16-bit data between the cpu, I/O devices and
memory. The address bus of the 80286 is 24 bits which allows up to 224 ≈ 16
Megabytes of directly addressable space. The Intel 80286 processor introduced the
protected mode into the IA family as an extension of the real mode operation associ-
ated with a 1 Mbyte addressability in earlier microprocessors. Protected mode uses
the contents of a segment register as a selector or pointer into a descriptor table. A

14 CHAPTER 1. SINGLE-PROCESSOR COMPUTER SYSTEMS

descriptor provides the 24-bit base address allowing 1) a maximum physical mem-
ory size of up to 16 Megabytes, 2) support for virtual memory management on a
segment swapping basis, and 3) various protection mechanisms. These mechanisms
include segment limit checking, read-only and execute-only segment options, and
up to four privilege levels to protect operating system code from application or user
programs. Furthermore, hardware task switching and the local descriptor tables
allow the operating system to protect application or user programs from each other.

The 80386 is the first of the IA-32 family which introduced 32-bit registers
for use both as operands for calculations and for addressing. The external data
bus carries up to 32 bits of data. The lower half of each 32-bit register retained
the properties of one of the 16-bit registers of the earlier 16-bit generation of mi-
croprocessors to provide complete upward compatibility. The 32-bit addressing is
supported with an external 32-bit address bus allowing up to 232 ≈ 4 Gigabytes
of directly addressable memory space. Large segments in combination with paging
allowed the implementation of a protected flat model addressing system. In contrast
to the segmented model which divides the addressable space into more than one
segment, a flat protected model allows the programmer to treat the entire memory
space as a single segment.

The IA 32-bit family introduced many features that characterized modern
processor design. Some of these features include the following:

1. A large number of internal registers. The execution of typical instructions re-
quire the involvement of more than one register which are used for temporary
storage of data within the cpu, as illustrated in Fig. 1.2. To boost the execu-
tion of complex or pipelined instructions a large number of internal registers
are needed. The set of internal files available for execution of instructions is
referred to as the register file in most modern processors.

2. Multiple cache units. A cache unit refers to a relatively small set of memory
cells within the cpu chip that acts as a buffer to store data or instructions
which are also stored in main memory but outside the cpu chip. If a data item
or instruction is requested and resides in cache then a hit occurs; otherwise, a
miss occurs and the item is fetched from main memory. Since accessing main
memory is slower than accessing cache then the use of a cache unit results in
faster access of instructions or data items. The design of modern processors
must address issues involving not only increasing the hit ratio but the number
of cache units organized in multiple levels, and the size and purpose of each
unit at each level. Since all cached data is also found in main memory, both
sets of data must must be maintained consistent when write operations occur.
Common techniques to maintain data consistency are write through and write

1.4. INTEL PROCESSORS 15

back.

3. Pipelining. This technique refers to the organization of the cpu in several
staged units such that when all of them are engaged several instructions are
in execution simultaneously. A typical organization pipelines the instruction
cycle as shown in Fig. 1.8 with five stages that streamline the execution of
up to five instructions when the pipe is full. Note that the instruction cycle is
augmented with the fetching of operands for which one unit is created as well
as a unit to store results in memory.

2 1

1S 2S 3S 4S 5S

Operand
Fetch

Decode Execute Store
ResultsFetch

I I I I5 4 3 I

Figure 1.8: A 5-stage pipeline organization

Each stage is labeled Ii, i = 1, . . . 5 to indicate that when a program segment
with 5 instructions fills the pipe, instruction I1 is storing results completing
its cycle while I5 is being fetched and thus, beginning its instruction cycle.
Assuming a program has no jump instructions the flow of work through a
5-stage pipeline is described in terms of clock cycles in Fig. 1.9

Stage/cycles 1 2 3 4 5 6 7 8 9
S1 I1 I2 I3 I4 I5 I6 I7 I8 I9

S2 I1 I2 I3 I4 I5 I6 I7 I8

S3 I1 I2 I3 I4 I5 I6 I7

S4 I1 I2 I3 I4 I5 I6

S5 I1 I2 I3 I4 I5

Figure 1.9: Time-space execution diagram of a 5-stage pipeline

Following instruction I1 through the pipe observe that during clock cycle 1,
I1 is being fetched at stage S1. During cycle 2, I1 travels to S2 to be decoded
while I2 is simultaneously being fetched. During cycle 3, I1 is at stage S3 in the
process of fetching its operands. Note that during this cycle two subsequent
instructions are already in the previous two stages. During cycle 4, I1 is
executed by stage S4, and finally, in S5 results are being stored. During clock
cycle 5 the pipeline is full. From now on there is one instruction executed
per clock cycle. A non-pipelined processor would need 5 cycles to execute one

16 CHAPTER 1. SINGLE-PROCESSOR COMPUTER SYSTEMS

instruction. Resulting in a pipeline execution time five times faster than the
non-pipeline execution time.

4. Branch prediction. This feature allows the processor to begin fetching and
executing instructions long before the previous branch outcomes are certain.
An optimal use of linear pipelines is intrinsic to the way a program in execu-
tion is organized. A program not containing jump instructions will increase its
throughput in linear proportion to the number of stages in the pipeline. How-
ever, a general purpose architecture is expected to execute jump instructions
randomly. A delayed execution results each time a jump instruction is exe-
cuted as all instructions already in the pipe must be flushed out before a new
instruction is allowed to enter the pipe. Branch prediction has the purpose of
minimizing this delay by pre-fetching the set of instructions in the targeted
address. Note that a conditional jump must go through the execution stage to
determine whether the condition is true or not. If true, the pre-fetched buffer
provides the next set of instructions; otherwise, the instructions already in the
pipeline continue their execution through the pipeline.

5. multiple alu’s. Several processors include multiple arithmetic logic units to
provide parallelism at the instruction level. Coupled with pipelined configu-
rations, each alu is provided with instructions and operands that have been
fetched from memory and exist in the pipeline resulting in the parallel execu-
tion of several instructions increasing consequently the pipeline throughput.

The 80486 expanded the 80386’S instruction decode and execution units into
five pipelined stages, where each stage operates in parallel with the others on up
to five instructions in different stages of execution. Consequently when all stages
are busy, the 80486 can execute as fast as five instruction per clock cycle. An 8-
KByte on-chip level-1 (L1) cache was added to the Intel 486 processor to increase the
percent of instructions that could execute at the scalar rate of one per clock. Memory
access instructions execute faster if operands were in the L1 cache. The 80486 is also
provided with an external 32-bit wide bus; hence, the directly addressable memory
space is the same as the one provided by the 80386.

The Intel Pentium processor added a second execution pipeline to achieve
super-scalar performance (two pipelines, known as u and v, together can execute
two instructions per clock). The on-chip L1 cache has also been doubled, with 8
KBytes devoted to code, and another 8 KBytes devoted to data. The data cache
supports an efficient write-back mode, as well as the write-through mode used by
the 80486 processor. Branch prediction with an on-chip branch table was added to
increase performance in looping constructs. The main registers are still 32 bits, but

1.4. INTEL PROCESSORS 17

the internal data paths of 128 and 256 bits increases internal data bandwidth, The
external data bus has been increased to 64 bits while the address bus remained at
32 bits.

The Intel Pentium Pro processor introduced a three-way super-scalar architec-
ture, which means that it can execute three instructions per CPU clock. It does this
by incorporating even more parallelism than the Pentium processor. The Pentium
Pro processor provides Dynamic Execution (micro-data flow analysis, out-of-order
execution, superior branch prediction, and speculative execution) in a super-scalar
implementation. Three instruction decode units work in parallel to decode instruc-
tions into smaller operations called micro-ops. Micro-ops are queued into an instruc-
tion pool, and if they are free from interdependencies, can be executed out of order
by the five parallel execution units (two integer, two FPU and one memory interface
unit). The Retirement Unit retires completed micro-ops in their original program
order. The power of the Pentium Pro processor is further enhanced by its caches:
it has the same two on-chip 8-KByte L1 caches as does the Pentium processor, and
also has a 256-KByte L2 cache that is in the same package as the CPU, using a
dedicated 64-bit backside full clock speed bus. The L2 cache supports up to 4 con-
current accesses. The Pentium Pro processor also has an expanded 36-bit address
bus, giving a maximum physical address space of 64 GBytes. The Intel Pentium
Pro is the first member of the P6 family of microprocessors.

The Pentium II processor added MMX (MultiMedia eXtension) instructions
to the Pentium Pro processor architecture. MMX instructions were intended to
replace special multimedia coprocessors and speed up audio and video processing.
The Pentium II processor expanded the L1 data cache and L1 instruction cache to
16 KBytes each. The Pentium II processor has L2 cache sizes of 256 KBytes, 512
KBytes and 1 MByte or 2 MByte. A half-clock speed backside bus connects the L2
cache to the processor. The Pentium II Xeon combined characteristics of previous
generations of the IA architecture to include 4-way, 8-way (and up) scalability and
2 Mbyte 2L cache running on a full-clock speed backside bus. The Intel Celeron
focused the IA-32 architecture on the desktop and value PC market. It has an
integrated 128 Kbyte L2 cache.

The Pentium III processor introduced the Streaming SIMD Extensions (SSE).
SSE expands MMX technology by providing 128-bit registers and the ability to
perform SIMD operations on packed single-precision floating point values.

The Pentium 4 processor was introduced at 1.5GHz in November of 2000. It
features the Intel NetBurst micro-architecture at significantly higher clock rates.
The Pentium 4 processor enables real-time MPEG2 video encoding and near real-
time MPEG4 encoding, allowing efficient video editing and video conferencing.
The Pentium 4 works with 144 additional 128-bit Single Instruction Multiple Data

18 CHAPTER 1. SINGLE-PROCESSOR COMPUTER SYSTEMS

(SIMD) instructions called SSE2 (Streaming SIMD Extension 2) that improves per-
formance for multi-media, scientific, and engineering applications. The NetBurst
micro-architecture features a renaming logic to map the set of logical IA-32 reg-
isters onto the processor’s 128-entry register file. A later 3.07 Ghz version of the
Pentium 4 introduced hyperthreading intended to speed up execution by creating
two threads of control which divide the work in two parts that can run in parallel.

The Intel Xeon processor is also based on the Intel Netburst micro-architecture.
This family of IA-32 processors is designed for use in server systems and high-
performance workstations. The intel Xeon has the same advance features of the
Pentium 4 processor.

The Intel Pentium M is a low power mobile high-performance processor. It
features a primary 32 Kbyte cache and 32 Kbyte write-back data cache, and a 1
Mbyte second level cache. To reduce the number of mispredictions, the processor
features provide advance branch prediction. The Data Pre-fetch Logic fetches data
to the second-level cache before a cache request to the first-level data cache occurs.

The latest Intel processors includes the Itanium family. The Itanium is a 64-
bit architecture with explicit parallelism at the instruction level. This feature is
referred to as Explicitly Parallel Instruction Computing (EPIC). The Itanium is a
joint effort between Hewlett Packard and Intel; it features three levels of cache, level
1 (L1) with 32KB, level 2 (L2) with 96KB, and level 3 (L3) with 4MB. The Intel
Itanium 2 with a 1.7 Ghz. clock, also features three cache levels with 16K, 256K, and
9MB, respectively. The Itanium family provides a software layer referred to as the
IA32 Execution Layer to support a dynamic translation of IA32-based applications.
The Itanium architecture defines 128 general purpose 64-bit registers, 128 floating-
point 82-bit registers, 64 predict 1-bit registers to control conditional execution
and conditional branches, up to 128 special purpose 64-bit registers (application
registers), and a 64-bit instruction pointer register.

Table 1.2 compares some characteristics of the most relevant and successful
Intel processors.

1.5 Software Model

The software model refers to the visible part of the system architecture that is avail-
able to the programmer to develop applications. Therefore, a software model of
a given system consists of information regarding the number and names of logical
registers that can be used, the size and organization of memory directly address-
able, size of internal and external address and data buses, and addressing modes
supported. The I8086 model and the Pentium 4 model are discussed in the next

1.5. SOFTWARE MODEL 19

Table 1.2: Key features of selected Intel processors

Year Clock Trans./ Register Data Address
Processor Intr. Freq. Die Sizes Bus Space

8086 June 1978 8Mhz 29K 16 16 1 MB (20)
80286 Feb. 1982 12.5 Mhz 134K 16 16 16 MB (24)

80386 DX Oct. 1985 16 Mhz 275K 32 32 4 GB (32)
80486 DX April 1989 25 Mhz 1.2M 32 32 4 GB (32)

80 FPU
Pentium Mar. 1993 60 Mhz 3.1M 32 64 4 GB (32)

80 FPU
Pentium 4 Nov. 2000 1.5Ghz 42M 32 64 64G (36)

80 FPU
64 MMX
128 XMM

Pentium 4 Feb. 2004 3.40Ghz 178M 32 64 64G (36)
80 FPU
64 MMX
128 XMM

Pentium M Mar. 2003 1.6Ghz 77M 32 64 64G (36)
80 FPU
64 MMX
128 XMM

Intel Itanium May 2001 800 MHz 25M 64 50
Intel Itanium 2 July 2002 1.7 Ghz 220M 64 50

two sections to contrast the need to represent inherent internal resources and make
them available to the programmer.

1.5.1 The I8086 model

Consider the architecture of the Intel 8086/88 processor as shown in Fig. 1.10. The
CPU features two separate processing units: an Execution Unit (EU) and a Bus
Interface Unit (BIU). The BIU and the EU interact via an internal ALU data bus
and an instruction pre-fetch queue. The EU executes instructions; the BIU fetches
instructions, reads operands and writes results.

The two units can operate independently of one another and are able, under
most circumstances, to overlap the fetching of the next instruction with the pro-
cessing of the instruction currently through the EU. Such overlapping exemplifies
an early application of pipelining. Whenever the EU requires another opcode byte,
it takes the byte out of the pre-fetch queue. The 16-bit alu performs 8-bit or 16-bit
arithmetic and logical operations. It provides for data movement between registers,

20 CHAPTER 1. SINGLE-PROCESSOR COMPUTER SYSTEMS

Figure 1.10: CPU block diagram of the 8086

memory and I/O space. The architecture features 14 basic registers grouped as
general registers, segment registers, pointer registers, and status and control reg-
isters. The four 16-bit general-purpose registers (ax, bx, cx, and dx) can be used
as operands for most arithmetic operations as either 8- or 16-bit units. The four
16-bit pointer registers (si, di, bp, and sp) can be used in arithmetic operations
and in accessing memory-based variables. Four 16-bit segment registers (cs, ds, ss,
and es) allow simple memory partitioning to aid in modular programming as pro-
grams can be organized into sections or segments that are associated with sections
in memory addressed by the corresponding segment register. The status and con-
trol registers consist of the Instruction Pointer (ip), and the Processor Status Word
(PSW) register, which contains flag bits that regulate the flow of the program during

1.5. SOFTWARE MODEL 21

its execution. The format of the 16-bit flag register as shown in Fig. 1.11 assigns
bits to two types of flags, status flags and control flags which are described as follows:

CF: The carry flag is a status flag that holds the carry after an addition operation
or the borrow after a subtraction. This is the status of the outgoing most
significant bit in the result.

PF: The parity flag is a status flag that contains a logic 0 for odd parity and a logic
1 for even parity. An odd parity occurs when the number of 1’s in a binary
word is odd. An even parity results when the number of 1’s is even. If the
binary value represented is 0 then an even parity is indicated and PF = 1.

AF: This is the auxiliary carry flag and it is also a status flag that holds a half-
carry bit after an addition or a half-borrow bit after subtraction. This carry
bit is produced out of bit 3 in the al register and was primarily used for BCD
operations.

ZF: The zero flag is also a status flag that indicates if the result of an arithmetic
or logic operation is zero. If ZF = 1 then the result is zero; otherwise, the
result is not zero.

SF: As a status flag the sign flag holds the arithmetic sign of the result after an
arithmetic or logic operation. If SF = 1, the result is negative; otherwise, the
result is positive.

TF: The trap flag is a control flag that if enabled (TF = 1) a running program will
be interrupted each time an instruction is executed. This is a trap feature that
provides a single-step capability for debugging a program during its execution.

IF: The interrupt flag controls (control flag) an input pin labeled INTR. If IF = 1
then INTR is enabled, that is, any external interrupt signal will be acknowl-
edged and processed; otherwise, all external interrupts are ignored as INTR is
disabled.

DF: The direction flag is a control flag that determines either to increment or decre-
ment the contents of an index register, controlling the up or down direction of
a pointer to a section in memory. If DF = 0 the index register is automatically
incremented; otherwise, it is decremented.

OF: The overflow flag is a status flag to indicate the occurrence of an overflow.
An overflow occurs (OF = 1) if two numbers of the same sign are added and
the resulting value is of the opposite sign. The overflow flag is used for signed
operations and simply indicates that a result is too big to be represented with
the available number of bits.

22 CHAPTER 1. SINGLE-PROCESSOR COMPUTER SYSTEMS

PF

123456101112131415 9 78 0

DF IF TF SF ZF AF CFOF

Figure 1.11: I8086/88 Flag register

Table 1.3: Allocation of 1 Megabyte of memory in the I8086/88 processor
00000 — 00400 Interrupt vector table

array of addresses used by the cpu
when programs are interrupted

00400 — 9FFFF DOS data area
Software Bios – routines to manage the keyboard,
console, printer and time-of-day clock (IO.SYS file)
DOS kernel (MSDOS.SYS file)
Device drivers (CONFIG.SYS file)
COMMAND.COM – interprets commands, loads and
executes programs
RAM for applications

A0000 EGA/VGA graphics buffer
B0000 MDA text buffer (monochrome display adaptor)
B8000 CGA/EGA/VGA text buffer
C0000 reserved
F0000 ROM Bios – diagnostics, configuration software and

low-level I/O used by DOS

The 1 Megabyte of memory accessed via a 20-bit address bus in the I8086/88
is organized as shown in Table 1.3. Note that the range from 00000h to BFFFFh
is assigned for RAM, and from C0000h to FFFFFh for ROM storage. The rest is
used for video display, disk controller, BIOS, etc.

The set of visible registers, the size of internal and external buses, and the
memory capacity and organization are relevant information that must be available
to the assembler programmer, and therefore, it constitutes the software model of the
Intel 8086/88 machine.

1.5.2 The Pentium 4 Model

While the software model of the Intel 8086/88 processor corresponds closely to the
actual hardware implementation, that is not the case for current complex processor

1.5. SOFTWARE MODEL 23

designs. The description of the NetBurst microarchitecture of the Pentium 4 as
shown in Fig. 1.12 illustrates some of the current architecture features implemented
in modern processors. Some of these features include two levels of instruction cache
(L1) and (L2). The Trace Cache is the primary level (L1) from which most instruc-
tions in a program are fetched and executed. Only when there is a L1 miss, i.e, the
instruction is not found in L1, does the NetBurst micro-architecture fetch and decode
instructions from L2 cache. The L2 cache stores both instructions and data that
cannot fit in the Execution Trace Cache and the L1 data cache. In a sharp contrast
with the Instruction Queue in the 8086/88 architecture, the NetBurst provides the
Instruction Table Lookahead Buffer (ITLB) to translate instruction logical addresses
given to it into physical addresses needed to access the L2 cache. The front-end BTB
at level 2 and the trace-cache BTB at level 1 provide such functionality.

Figure 1.12: NetBurst microarchitecture of the Pentium 4

The register file is shown as the integer register file because the same chip also
includes the floating point unit. The physical register file consists of 128 entries; a
register renaming logic maps the logical IA-32 registers given by the software model
onto the internal register file. The purpose of a systematic mapping is to eliminate

24 CHAPTER 1. SINGLE-PROCESSOR COMPUTER SYSTEMS

possible conflicts with the existence of several unique instances of registers such as
eax in the pipeline at one time.

The software model of the IA 32-bit family provides 16 logical registers for use
in general system and application programming. As in the case of the Intel 8086/88,
these registers can be grouped as follows:

1. General-purpose data registers: the primary general purpose registers are eax,
ebx, ecx, and edx, available to store data and as operands for the ALU opera-
tions. These registers can also hold 8-bit and 16-bit values for 8-bit and 16-bit
applications or simply data that fits these sizes in 32-bit applications. How-
ever, the main idea is to preserve upward compatibility with 16-bit processors
that deal with 8-bit and 16-bit data items. The use of the lower 16-bit or 8-bit
part of the register does not affect the remaining contents of the register.

2. Pointer registers: Two of these registers edi, esi are mainly used as index
registers. Register edi is normally used to point to a destination memory
buffer, and esi is normally used to point to a memory buffer used a source
of data. The pair ebp, esp are also used as pointers to memory but with the
intended purpose of accessing the stack.

3. Segment registers, there are six registers (cs, ds, es, ss, fs, gs) that are 16 bit
in size. Segment registers were designed to hold up to six segment selectors
that are used in the generation of physical addresses in protected mode.

4. Status and control registers, which are registers used to record and report any
modification of the state of the processor and of the program in execution. The
eip register holds the address of the next instruction in the normal program
sequence. It is modified to point to a target address if the current instruction
is a jump instruction. The eflags register is the extended version of the flags
register but includes additional flags to control the execution of programs in
virtual or protected mode.

Fig. 1.13 shows the names and a brief description of the specific purpose of
each register. The lower 16 bits of the general-purpose registers map directly to the
16-bit and 8-bit register set found in the 8086 and 80286 processors. As shown in
Fig. 1.13 some registers can be used for specific purposes . A short description of
each register is given as follows:

EAX: Historically this register is referred to as the accumulator and
it is used to hold operands as well as results from the alu
operations; special purposes of the accumulator include its role
in multiplication, division, and extended bit instructions.

1.5. SOFTWARE MODEL 25

The multi-purpose use of the accumulator has been extended
in the IA 32-bit family as a pointer to memory as well.

EBX: It is used as a general purpose register and it also holds
8 and 16-bit data. This register is identified as a base pointer
because it is also used as a pointer to address memory data
through a 16-bit and 32-bit address bus.

ECX: This is also a multi-purpose register that includes addressing
memory; it is especially used as a counter for string and loop
operations. It is also used as a counter of the number of one-bit
shifts that rotate and shift instructions must perform.

EDX: Another multipurpose register but with dedicated tasks that
include holding part of the results of multiplication and division
instructions. Another dedicated purpose of this register is as
I/O pointer as it can be used to hold the port numbers
associated with I/O devices.

ESI: This register is referred to as the source index register because
it addresses sections of memory from which data is read when
string instructions are used.
It is also used as a multi-purpose register.

EDI: This is the destination index register. It addresses sections
of memory into which data is written when string instructions
are used. It is also used as a multi-purpose register.

ESP: It is referred to as the stack pointer because it is
used to address a section of memory structured as a stack.

EBP: Used as a pointer to memory for data transfers. It is also
used to access a section of the stack called stack frame
where parameters passed via a call instruction are located.

EIP: This register contains a pointer to the next sequential
instruction of a program in execution. The contents may be
modified if the current instruction is a jump.

EFLAGS: This is a 32-bit register that consists of a collection of
one-bit flags that control and describe the general execution
state of a program in execution. The format is shown in Fig. 1.14.

The first 16 bits contain the same flags for the I8086/88. In fact, from the
I8086/88 to the Pentium 4, all flag registers are upward compatible. The remaining
flags in Fig. 1.14 are briefly described as follows:

IOPL: This is a two-bit I/O privilege level flag as it requires 2 bits to describe up
to four privilege levels for I/O devices. If IOPL = 00 corresponds to the

26 CHAPTER 1. SINGLE-PROCESSOR COMPUTER SYSTEMS

ES

Status and Control Registers

0

0

0

0

General!Purpose Registers
31 15

15 Segment Registers

31

31

AH
BH
CH
DH

AL
BL
CL
DL

SI
DI
BP
SP

CS
DS

FS
GS

IP

FLAGS

EAX
EBX
ECX
EDX
ESI
EDI

EBP
ESP

AX: Accumulator
BX: Base Index
CX: Count
DX: Data
Source Index
Destination Index
Base Pointer
Stack Pointer

Code
Data
Extra
Stack
General Address
General Address

Instruction Pointer

Status Register

EIP

EFLAGS

SS

Figure 1.13: Visible set of registers for the IA family

highest or most trusted level, and IOPL = 11 corresponds to the lowest or
least trusted level.

NT: Indicates that the current task is nested.

RF: The resumption flag controls the resumption of execution after the next in-
struction.

VM A virtual mode system is selected if the virtual mode flag is set. A virtual mode
allows multiple DOS memory partitions and each partition can be regarded as
one more task in a multitasking environment.

AC: This is the alignment check flag which is set if the a word or doubleword is
addressed on a non-word or non-doubleword boundary.

VIF: The virtual interrupt flag is a virtual copy of the interrupt flag (IF).

1.6. EXERCISES 27

IOPL

0711

OF DF IF TF SF ZF AF PF CF

13212225262728293031 24 23 20 19 18 17 16 15 14 12 10 9 8 6 5 4 3 2 1
ID VIPVIF NTRFVMAC

Figure 1.14: Eflags register

VIP: The virtual interrupt pending flag is used in a multitasking environment to
provide information to the operation system about virtual interrupt flags.

ID: The identification flag is set to indicate that the CPUID instruction is sup-
ported. This instruction provides information such as version number and
manufacturer.

1.6 Exercises

1. Give a short definition of the following:

(a) BIU

(b) Assembler

(c) Compiler

(d) Cross assembler

(e) Machine Language

(f) Loader

(g) Instruction cycle

2. Explain the function of the following:

(a) Program counter

(b) Instruction pointer

3. How many bytes are in the following data types?

(a) quadword

(b) doubleword

(c) word

(d) byte

28 CHAPTER 1. SINGLE-PROCESSOR COMPUTER SYSTEMS

4. For the number n of bits specified determine the maximum number of memory
locations (in Megabytes) that can be addressed directly:

(a) n = 20

(b) n = 24

(c) n = 32

(d) n = 42

5. If a manufacturer advertises the following number of bytes as the memory
capacity of certain computer systems, indicate what are the number of bits
required to address memory and the actual memory capacity in number of
bytes the systems have:

(a) 1 Gigabyte

(b) 520 Megabytes

(c) 250 Megabytes

(d) 120 Megabytes

(e) 60 Megabytes

6. Single out and explain three features of modern IA processors.

7. What is the purpose of the term software model?

8. Name and describe the functions of the following set of registers for the Pen-
tium software model.

(a) General purpose registers

(b) Segment registers

(c) Pointer registers

(d) Status and control registers

9. Comment on the main differences between a flat protected model and a seg-
mented model.

