
Chapter 2

Data Representation

2.1 Introduction

Data representation implies the use (encoding) of a collection of symbols (codes)
that under some rules of interpretation (decoding) provides an important element of
communication between human beings. The base or radix used in a representation
corresponds to the maximum number of different symbols used in a language or
numeric representation. For example, 24 different symbols in the alphabet provide
the code for written English language, and 10 different symbols are used to encode
the decimal (base 10) representation of numeric values. A binary representation of
data relies on two basic symbols: 0 and 1. Modern digital computers use the binary
number system because it is easy to represent the state of physical components that
observe a binary behavior in nature. For example the terms (open, close), (on, off),
(in, out), (above, below), (hot, cold), (high, low), etc., are tuples that can easily
be represented with the symbols (0,1) which in turn are associated within a digital
computing device with the presence or non-presence of an electric signal, normally
a voltage level. As most numeric data representation is based on the number of
digits and their position, this chapter reviews the most common positional number
systems, conversions, signed number representations, and character representation
as well.

29

30 CHAPTER 2. DATA REPRESENTATION

Table 2.1: Common positional number representations

System Base Symbols
Binary 2 0, 1
Octal 8 0,1,2,3,4,5,6,7
Decimal 10 0,1,2,3,4,5,6,7,8,9
Hexadecimal 16 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

2.2 Positional Number Systems

A positional number system represents values in terms of their radix and the position
of each digit in the representation. In the binary system the smallest unit of data
is a bit which represents two different values (zero and one). Most applications
require the use of large strings of binary data. Grouping binary data in different
sets of bits derive into systems with a base that are powers of two, for example, in
systems with base 4, 2 bits are required to represent a single digit; likewise octal
systems (r = 8) require 3 bits for each digit. Hexadecimal systems (r = 16) require
four binary digits. A nibble is a collection of four bits and define the basic digit
in a hexadecimal representation as well as in the BCD (Binary Coded Decimal)
representation, in which each decimal digit is represented with a nibble . Typical
representations used in the computer literature are listed in table 2.1.

A radix-r number is encoded as a digital vector of n + k digits. Let A denote
a vector defined as follows:

A = an−1an−2...a1a0.a−1a−2 . . . a
−k

where each component ai,−k ≤ i ≤ n−1 is referred to as the ith digit of the vector
A. The weight assigned to the ith element of A is ri. The first n digits form the
integer portion of A and the remaining k digits form the fraction portion of the A.
The overall value V represented is then obtained as follows:

V = an−1r
n−1 + . . . + a1r

1 + a0r
0.a

−1r
−1 . . . a

−kr
−k

=
n−1
∑

i=−k

air
i (2.1)

Note that the value V obtained with equation (2.1) is in turn the decimal
representation of A.

2.2. POSITIONAL NUMBER SYSTEMS 31

The following examples illustrate several representations and the conversion
to the value V represented.

1. For r = 10 and A = 95243.25 the value V is obtained as follows:

V = 9× 104 + 5× 103 + 2× 102 + 4× 101 + 3× 100 + 2× 10−1 + 5× 10−2

2. For r = 2 and A = 1011010.101 obtain V :

V = 1× 26 + 0× 25 + 1× 24

+1× 23 + 1× 21 + 0× 20

+1× 2−1 + 1× 2−3

= 64 + 16 + 8 + 2 + .5 + .125 = 90.625

3. For r = 16 and A = 5A7 obtain V as follows:

V = 5× 162 + 10× 161 + 7× 160

= 1280 + 160 + 7 = 1447

4. For r = 8 and A = 2647 then:

V = 2× 83 + 6× 82 + 4× 81 + 7× 80

= 1024 + 384 + 32 + 7 = 1447

Notation

It is common to represent a number indicating the radix with a subscript. For
example:

(1011010)2 = (90)10

(5A7)16 = (2647)8

= (1447)10

Other notation used particularly in the context of assembly language include
the following:

32 CHAPTER 2. DATA REPRESENTATION

(5A7)16 = 5A7h

(1011010)2 = 1011010b

Also in the context of assembly language it is common that a hexadecimal number
that starts with a letter from A to F is preceded by a 0. For example: AFCDh =
0AFCDh . Otherwise, the assembler will interpret a number as a string of charac-
ters.

2.3 Conversions

The examples shown in the previous section illustrate conversions from a number
represented in any base to a decimal representation. Given a decimal number, its
representation in any other base r is obtained by successively dividing the number
by r and keeping track of the remainders until the last quotient obtained is no longer
divisible by r. The target representation is obtained by ordering digits from left-
to-right in the order in which they are generated. The following examples illustrate
this simple rule for the most common representations.

Decimal-to-binary. In this case r = 2, hence, the decimal value given is successively
divided by two. Keeping track of the remainders results in a collection of 1’s and
0’s. For example the binary representation of (90)10 is obtained as follows:

90: 45 0
22 1
11 0
5 1
2 1
1 0
0 1

therefore, (90)10 = (1011010)2

Decimal-to-hex. In this case, the successive divisions are by r = 16. The remainders
are a collection of numbers between 0 and 15, with the substitution of hexadecimal
symbols when appropriate. Consider the hexadecimal representation of (6841)10:

6841: 427 9
26 11 (B)
1 10 (A)
0 1

2.3. CONVERSIONS 33

therefore, (6841)10 = (1AB9)16

Decimal-to-octal. . Succesive divisions by r = 8 result in a set of remainders between
0 and 7. Examine for example the octal representation of (1447)10:

1447: 180 7
22 4
2 6
0 2

and (1447)10 = (2647)8

2.3.1 Other conversions

Other conversions between bases not involving r = 10 are simple and are illustrated
in the examples that follow.

Hex-to-binary. Since 16 = 24, then each hex digit takes up to four binary digits and
the conversion process simply consists on converting each hex digit into its 4-bit
binary representation. Example:

(0EAC)16 = (0000 1110 1010 1100)2

Binary-to-hex. From right to left divide the binary digits into groups of four. Each
group of four bits is the binary representation of a single hexadecimal digit. Example:

(101 1010)2 = (5A)16

Octal-to-binary. Again note that 8 = 23 and indicates that each octal digit requires
thee binary digits. Each digit in the octal representation is converted to its 3-bit
binary representation. Example:

(2647)8 = (010 110 100 111)2

Binary-to-octal. From right to left divide digits in groups of three binary digits and
obtain their corresponding octal representation. Example:

(010 110 100 111)2 = (2647)8=23

Octal-to-hex. Convert first octal-to-binary followed by a binary-to-hex conversion.
Example:

(2647)8 = (010 110 100 111)2 = (5A7)16

34 CHAPTER 2. DATA REPRESENTATION

2.3.2 Conversion of Decimal Fractional Parts

Consider the conversion of the fractional part of a decimal representation into a
representation A where:

A = (.a
−1a−2 . . . a

−k)r

The conversion process requires a repeated multiplication by r. At each mul-
tiplication step an integer ≥ 0 is generated and the resulting fraction is again mul-
tiplied by r. The collection of these integers form the fractional part of the new
representation in the order in which they are generated from left-to-right.

Example. Obtain the binary representation of (.625)10:

.625× 2 = 1.250

.250× 2 = 0.500

.500× 2 = 1.000

Thus, the resulting fraction is A = (.101)2. It is easy to verify that (.625)10 =
(.22)4 = (.5)8.

2.4 Signed Radix Numbers

In general an n-bit signed radix number can be represented as follows:

A = (an−1an−2 . . . a1a0)r

where an−1 bit is dedicated to represent the sign as follows:

an−1 =

{

0 if V ≥ 0;
r − 1 if V < 0,

Thus, for r = 2, an−1 takes the value 0 to represent positive values and 1 for
negative values. The remaining digits in A represent the true magnitude of A or
the magnitude in a complemented form. In a positional number system, there are
three conventional ways to represent positive and negative numbers: sign magnitude,
diminished-radix complement and radix complement.

2.4. SIGNED RADIX NUMBERS 35

2.4.1 Signed magnitude

Positive integers are represented as follows:

A = (0an−2an−3 . . . a1a0)r

The range of integer values V is bounded as follows: 0 ≤ V ≤ rn−1 − 1

Negative numbers are represented as follows:

A = [(r − 1)an−2 . . . a1a0]r

with values V in the range: −(rn−1 − 1) ≤ V ≤ 0

Note that, since the most significant digit is used for the sign, then the mag-
nitude of V falls in the range: 0 ≤ |V | ≤ rn−1 − 1.

Therefore, positive and negative representations differ only in the sign. Typical
problems encountered with the signed-magnitude representation include:

1. the value of 0 is represented as +0 and −0, and

2. Signs must be compared during ’+’ and ’-’ operations.

2.4.2 Diminished-radix complement

The representation of positive integer values is the same as the signed-magnitude
representation:

A = (0an−2 . . . a1a0)r

with values V within the same range, 0 ≤ V ≤ rn−1 − 1 that includes the
representation of zero.

However, a negative representation of A can be obtained in terms of the abso-
lute value by complementing each digit such that:

Ā = [(r − 1)ān−2 . . . ā1ā0]r

where āi = (r − 1)− ai

The values represented are also fall in the range −(rn−1 − 1) ≤ V ≤ 0, which
provides a second representation of zero.

36 CHAPTER 2. DATA REPRESENTATION

2.4.3 Radix Complement

Representation of positive integers:

A = (0an−2 . . . a1a0)r

with values V in the range 0 ≤ V ≤ rn−1 − 1

Given A = (0an−2 . . . a1a0)r a representation of negative integers is obtained
as:

(Ā)+1 = {[(r − 1)ān−2 . . . ā1ā0] + 1}r (2.2)

with values in the range −(rn−1) ≤ V < 0 The procedure to obtain a radix-
complement representation of negative integers implicit in equation (2.2) can be
divided into three steps:

1. Diminished-radix-complement each digit, i.e., ai = (r − 1)− ai,

2. Add one to the least significant digit.

Note that that a decimal representation is normally preceded with the + and - signs
to denote positive and negative values respectively. In this case the two steps apply
to the absolute value instead.

Example: Use six digits to obtain the 10-complement representation of -018135:

1. Derive the 9-complement of the absolute value 018135: 981864

2. Add one to the least significant digit: 981865

You may verify that the 10’s complement representation of 981865 is indeed
018135.

A ”simplified rule” normally applied to a fast derivation of a two’s complement
representation can be generalized to any base r with the following two steps:

1. From right to left obtain the r-complement of the first non-zero digit,

2. (r-1)-complement the remaining digits

Example 1: Obtain the 10’s complement representation of 0189300.

2.4. SIGNED RADIX NUMBERS 37

1. From right to left up to the first non-zero digit: 300 becomes 700

2. The remaining digits are 9’s complemented: and 0189 becomes 9810

with a result: 9810700.

Example 2: Verify that the two’s complement representation of 00110010 is 11001110.

2.4.4 Two’s complement

The two’s complement representation is the representation of choice in the hard-
ware implementation of modern digital devices. Two’s complement not only makes
possible one representation of zero but simplifies the hardware implementation of
arithmetic functions because:

1. obtaining the two’s complement representation of any number is straightfor-
ward,

2. the addition of negative numbers is equivalent to the addition of their two’s
complement representation, and

3. the four fundamental operations can always be implemented in terms of addi-
tion and subtraction operations.

Example 1: Obtain the binary representation of 50, and add it to its two’s comple-
ment representation to verify a zero result.

0 0 1 1 0 0 1 0 = 50
1 1 0 0 1 1 1 0 = −50
0 0 0 0 0 0 0 0 = 0

which shows that the two’s complement operation has the effect of negating the
original value. Note that for r=2, negative values can be obtained directly from
the binary representation considering the negative contribution of the sign bit. For
example using equation (2.1), the value of -51 is obtained from its binary represen-
tation (11001101) as follows:

V =
∑

i=0

−27 + 26 + 23 + 22 + 20 = −128 + 64 + 8 + 4 + 1 = −51

The two’s complement representation is not fully symmetrical, i.e., the most
negative value −(rn−1) has no positive counterpart. For example, for r = 2 and
n = 8, the range of values:

38 CHAPTER 2. DATA REPRESENTATION

Table 2.2: Integer representation for r = 2 and n = 4

Bit pattern SM DTC TC
0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 -0 -7 -8
1001 -1 -6 -7
1010 -2 -5 -6
1011 -3 -4 -5
1100 -4 - 3 -4
1101 -5 -2 -3
1110 -6 - 1 -2
1111 -7 - 0 -1

−128 (1000 0000) ≤ V ≤ 127 (0111 1111)

for n = 16

−32768 <= V <= 32767

2.5 Overflow

So far the representation of signed and unsigned integers has been reviewed. Table
2.2 shows the integer values represented with signed magnitud (SM), diminished 2’s
complement (DTC), and two’s complement (TC), for r = 2 and n = 4. The values
shown are within the range of values that can be represented.

Table 2.3 compares the range of values for several number of bits for both
signed and unsigned integers. The number of bits designated to represent a value
signed or unsigned determines the precision of the representation. Values beyond the
possible range cause overflow. Likewise, values below the minimum boundary cause

2.6. FLOATING POINT NUMBERS 39

Table 2.3: Numeric range for several precision bits

Bits (Type) Bytes Unsigned Signed (TC)

4 (nibble) 1/2 0 to 16 -8 to +7
8 (byte) 1 0 to 255 -128 to +127
16 (word) 2 0 to 65,535 -32,768 to +32,767
32 (double word) 4 0 to 4,294,967,295 -2,147,483,648 to 2,147,483,647
64 (quad word) 8 0 to -9,223,372,036,854,775,808 to

18,446,744,073,709,551,615 9,223,372,036,854,775,807

an underflow. Overflow may arise during the execution of signed integer operations.
For example, the addition of values of the same sign may lead to a result either too
big or too small to be represented with the available number of bits.

2.6 Floating Point Numbers

Table 2.3 also shows the limitation of fixed-point arithmetic operations because even
for a large number of precision bits the values involved in the results eventually run
into overflow, particularly, in scientific applications where the use of large integers
and fractions is common. A floating point representation is an alternative to deal
with very large numbers, integers and fractions. The reason for using floating point
representation is that the range of possible values is much greater. A floating point
number is one in which the position of the point is determined within the number
and it is determined at processing time. Floating point representation is similar to
scientific notation in which floating point decimal numbers are displayed as decimal
numbers multiplied by some power of 10 that may be positive or negative. Like-
wise, a binary representation of floating point numbers requires a mantissa that is
multiplied by some power of 2. A typical notation used to express a floating point
number f is as follows:

f = (m, e)

where m and e denote the mantissa and the exponent, respectively. This notation
is used to express a real number:

f = m× re

For example, f = (0.00000578, 3) represents the following number:

f = 0.00000578× 10+3

40 CHAPTER 2. DATA REPRESENTATION

A shift of the mantissa k places to the left results in the same value if the exponent
is decremented by k. Likewise a shift of k places to the right and incrementing the
exponent by k does not change the value represented. Therefore, the following is an
alternate representation of the example above:

f1 = (0.57800,−2) = 0.578× 10−2

where k = 5 shifts to the left, and e = 3 − 5 = −2. A flp number is said to
be normalized if the leading digit in the mantissa is a non-zero digit. Thus the
normalization process involves shifting the mantissa a number of places such that
m results in a normalized mantissa and its absolute value is now within the range:

1

r
≤ |m| < 1

For binary systems (r = 2) 0.5 ≤ |m| < 1. After the mantissa is normalized, the
exponent is adjusted accordingly.

To facilitate the exchange of data across different architectures, two standard
formats are supported by the IEEE. One is the single-precision format with 32
bits that allows the representation of values from 1.175 × 10−38 to 3.403 × 10+38.
The double-precision format with 64 bits allows the representation of floating-point
numbers between 2.225× 10−308 to 1.798× 10+308.

2.6.1 Single Precision

One of the standard floating point representations is the 32-bit IEEE single precision
organized in three fields as shown in Fig. 2.1. Bit 31 represents the sign bit S, bits
23 to 30, a total of 8 bits represent the exponent E, and bits 0 to 22, for a total of
23 bits, represent the mantissa m. The value of the real number represented is:

(1− 2S)× 1.m× 2E

0222331 30

Exponent MantissaS

Figure 2.1: IEEE single-precision floating point representation

The exponent is an excess-127 number. This means that E = e + 127 where
e is the actual unnormalized exponent. An excess-127 representation gives a range

2.6. FLOATING POINT NUMBERS 41

of 0 to 255 for the machine representation while the range of the actual exponent
values e with 8 bits is -128 to +127 in two’s complement notation. The net effect is
that the use of excess-127 notation shows all exponents to be positive and there is
no need to represent negative exponents. The mantissa is shifted into a normalized
form. In the IEEE standard one more shift to the left provides the format 1.m where
the leading one is referred to as the hidden bit because there is no need to encode
it. Note that the value 1.m is now between 1 and 2.

For example, consider the single-precision IEEE representation for the decimal
number 8.1875. The first step is to convert from base 10 to base 2:

8.1875 = 1000.0011

A second step normalizes the mantissa by left shifting (floating) the point three
positions (or shifting zeroes 3 positions to the right). The number of shifts is the
shifting factor that is added to the excess number. Shifting the mantissa creates the
form 1.m:

1000.0011 = 1.0000011× 23

The last step calculates E = 3+127 = 130 = 10000010, and the IEEE floating point
representation is given as follows:

S E m
0 1000 0010 000001100 . . . 000

Now consider a second example in which the decimal number is 0.1875. The
first step converts to base 2:

0.1875 = 0.0011

The normalization step shifts all leading zeroes to the left by two positions. One
more shift creates the form 1.m with a shifting factor of 3 that is subtracted from
127:

0.0011 = 1.100 . . .× 2−3

The exponent E = −3 + 127 = 124 = 01111100. The final floating point represen-
tation is given as follows:

S E m
0 01111100 10000 . . . 000

42 CHAPTER 2. DATA REPRESENTATION

2.6.2 Double Precision

The double-precision standard requires 64 bits organized also in three fields as shown
in Fig. 2.2. Bit 63 is the sign bit. The exponent now occupies 11 bits, from bit 52 to
62. The mantissa occupies a total of 52 bits from bit 0 to 51. In two’s complement
notation the value of the exponent with 11 bits range from 1023 to -1024. Therefore,
the excess-1023 notation used by the standard allows the representation of exponents
from 0 to 2047. In excess-1023 notation, the exponent E = e + 1023. The mantissa
is normalized to the standard format 1.m.

Exponent

515463 62

MantissaS

0

Figure 2.2: IEEE double-precision floating point representation

2.7 Character Representation

The most common binary representation of alphanumeric characters makes use of the
ASCII (American Standard Code for Information Interchange) code which assigns a
unique numeric value (code) to each alphanumeric character. The original proposed
standard consists of 7-bit codes that allows the representation of up to 27 = 128
characters that can be grouped as follows:

Bit 6 Bit 5 Code group characters
0 0 01h — 1Fh control characters
0 1 20h — 40h digits and punctuation characters
1 0 41h — 60h Upper case and special characters
1 1 61h — 7Fh Lower case and special characters

Groups are identified by bits 5 and 6 in the code. The first group (00) codes
non-printing control characters. For example the ascii code for the carriage return
is 0Dh, the ascii code for the linefeed is 0Ah, and the code for the backspace key
is 08h. The second group (01) includes the code for various punctuation symbols,
special characters and numeric digits. The codes for numbers are from 48 (30h) to
57 (39h) and differ only in the lowest order nibble which corresponds to the numeric
value represented. Therefore to obtain the ascii code for a number n perform ”n”
= 30h + n.

2.8. EXERCISES 43

The third group (10) includes a subset of codes for 26 upper case alphabetic
symbols. The remaining codes are used for special symbols. Likewise the fourth
group (11) assigns 26 codes for lower case alphabetic symbols and the remaining
codes are assigned to special characters including the last code (127) reserved for
the delete control character. Note that bit 5 is the only bit that is different between
the codes for upper and lower alphabetic characters.

The extended IBM ascii character set consists of 8 bits such that up to 28 = 256
symbols can be represented. This extension is useful for accommodating mathemat-
ical, graphical, and foreign symbols.

Ascii tables are accessible at http://www.LookupTables.com. For convenience
the extended IBM ascii set is reproduced in Appendix B.

2.7.1 The Unicode Standard

In response to the rapid growth of the Internet, web servers, and global service net-
working, the Unicode standard (http://www.unicode.org/standard/principles.html)
is the universal character encoding standard for data representation currently in use.
The design of Unicode is derived from the simplicity and consistency of ASCII, but
goes far beyond ASCII’s limited ability to encode only the Latin alphabet. To keep
character coding simple and efficient, the Unicode Standard assigns each character
a unique numeric value and name. Codes are assigned to characters used in all
the major languages written today; it includes punctuation marks, diacritics, math-
ematical symbols, technical symbols, arrows, dingbats, etc. It provides codes for
diacritics, which are modifying character marks such as the tilde ()̃, that are used in
conjunction with base characters to represent accented letters. The Unicode Stan-
dard, Version 3.2 provides codes for 95,221 characters from the world’s alphabets,
ideograph sets, and symbol collections. The original intent was to use a single 16-bit
encoding that provides code points for more than 65,000 characters. While 65,000
characters are sufficient for encoding most of the many thousands of characters used
in major languages of the world, the Unicode standard now supports three encoding
forms that use a common repertoire of characters but allow for encoding as many
as a million more characters. This is sufficient for all known character encoding
requirements, including full coverage of all historic scripts of the world, as well as
common notational systems.

2.8 Exercises

1. Obtain the decimal representation of the following unsigned binary integers:

44 CHAPTER 2. DATA REPRESENTATION

(a) 1000 1111 0101 1110

(b) 0010 1110

(c) 1100 1011 0101 1011

2. What is the minimum number of binary bits required to represent each of the
following unsigned integers?

(a) 3098

(b) 512

(c) 65534

3. Obtain the binary representation of the decimal values in the previous exercise
with a number of digits n = 16

4. Obtain the hexadecimal representation of the following unsigned binary num-
bers:

(a) 0110 1110 1100 0010

(b) 1111 1010 0011 1101

(c) 1100 1110 1011 1110

5. Repeat the previous exercise assuming signed binary numbers in two’s com-
plement notation. Verify that the hexadecimal notation represents the same
value.

6. Obtain the binary representation of the following numbers:

(a) (B687A3C1)16

(b) (3112301223231331)4

(c) (5645231671)8

7. Obtain a hexadecimal representation of each of the following signed decimal
integers:

(a) -455

(b) -62

(c) +138

8. The following hexadecimal values represent signed integers. Convert to deci-
mal:

2.8. EXERCISES 45

(a) F789h

(b) 7123h

(c) 83BAh

9. Obtain the 16-bit binary two’s complement representation of the following
signed numbers:

(a) -127

(b) -48

(c) +12345

(d) +254.125

(e) -5.25

10. What is the largest value you can represent using a 256-bit unsigned integer?

11. What is the smallest and largest number you can represent with 256 bits in
two’s complement?

