
Chapter 4

Data Movement and Flow Control
Instructions

4.1 Introduction

Data movement instructions refer to the subset of instructions dedicated to the trans-
fer of data between 1) memory buffers, 2) between registers, and 3) between registers
and memory locations. This subset of instructions include those that transfer data
involving the stack structure. This chapter discusses the data definitions provided by
nasm and the syntax of data movement instructions with code illustrations. Using
primarily the syntax introduced for typical data movement instructions the concept
of addressing modes inherent in the design of instruction sets is discussed. Stack
operations are discussed as part of the set of data movement instrucitons. Program
control structures are essential in any language to determine the dynamic flow of
programs in execution. Therefore, the first set of nasm instructions covering com-
parison and branch instructions are discussed. The assembly implementation of HLL
structures described in the form of pseudo-code or flowcharts are discussed as imme-
diate examples of the use of flow control instructions. Also covered in this chapter
are array/string processing instructions provided to move data between memory
locations and between the processor and memory. Finally, a brief introduction to
video memory in real mode is addressed and used to illustrate data transfer between
memory buffers and internal registers using string processing instructions and flow
control instructions.

67

68CHAPTER 4. DATA MOVEMENT AND FLOW CONTROL INSTRUCTIONS

4.2 Pseudo-Instructions and Operators

Data type declarations are regarded as pseudo-instructions required to define data
in terms of the memory storage required and the label associated to each storage
definition. The term pseudo-instruction refers to the fact that these are assembly
directives used in the instruction field of the typical assembly instruction format.
Likewise, operators are prefixes used to modify the data statement, the operand, or
the instruction that follows them.

4.2.1 Data Definitions

A set of pseudo-instructions are used to initialize data items in the data section
or segment of the program. A variable is identified by a label, a variable type is
associated with it, and an initial value is declared. The declaration of variables has
the following general format:

[label][data type][initial value][;comments]

The following data types are supported by nasm:

db define byte 1 byte
dw define word 2 bytes
dd define double word 4 bytes
dq define quadword 8 bytes
dt define ten 10 bytes

Data types dq and dt that are used to allocate 8 and 10 bytes, respectively, are
not used to define numeric or string constants constants.

Define Byte: DB

The declaration of a DB type allocates one byte of memory. Examples:

a db ’A’
x db 14
list db 10,20,30,40

The above set of variables is allocated in the order in which they appear in the
declaration as follows:

4.2. PSEUDO-INSTRUCTIONS AND OPERATORS 69

10 ’A’ 14 20 30 40

Note that the above memory map shows the lower addresses on the left ex-
panded to the right by one byte at a time, and each square corresponds to one-byte
location.

Different data representations are possible, for example:

list db 32, 32h, 0x32, 00110010b

which declares an array ”list” of bytes. Likewise a declaration of strings of bytes
looks as follows:

message db “hi there”, 0 ;this is a null-terminated string

As the comment suggests, a 0 at the end of the string makes for a null-terminated
string. Also expressions that resolve to a constant can be used to initialize data, for
example:

rsize db 10*20+3

is a declaration that initializes rsize to the value 63. The prefix operator times is
used for large storage requirements. This is equivalent to the DUP operator in tasm
and masm. For example the following declaration:

array times 64 db 0

will initialize 64 bytes of “array” to a value of 0..

Define Word: DW

The declaration of a DW type allocates and initializes two-byte values. Ex-
amples:

v1 dw 1,2,3 ;1 = 0001h, 2 = 0002h, 3 = 0003h
v2 dw 0, 65535 ;65535 = FFFFh
v3 dw -32768, +32767 ; -32768 = 8000h, 32767 = 7FFFh

The allocation of the above variables is described as follows:

... ...
v1

8000FF00000001 7FFFFF

v2 v3

02 00 03 00

70CHAPTER 4. DATA MOVEMENT AND FLOW CONTROL INSTRUCTIONS

As before, the memory map shows each word allocated in the order in which
they appear in the declaration. Note however, that each word is allocated byte-wise
following the little endian machine data representation observed by IA32 processors.

Little-endian vs. big-endian. Intel processors are little-endian because they write
and read data keeping the lowest order data byte in correspondence with the lowest
address in memory. This is illustrated in the allocation of words shown in the
previous example; note that the word 7FFF is stored in such a way that the byte
FFh is stored in the lowest address in memory while the byte 7Fh is placed in the
highest address. If this word is read from memory and loaded in a 16-bit register
such as ax, the ah register will contain the value 7Fh and al will contain the value
FF . On big-endian machines such as Motorola processors, the correspondence is
reversed.

Define Double Word: DD

The following example illustrates the allocation of double words consistent
with the little-endian data representation:

v dd 12345678h

with an allocation illustrated as follows:

3456 12 78

Un-initialized data

In case variables are not required to be initialized nasm will allocate storage
using pseudo-instructions such as: resb, resw, resd, resq, and rest to reserve a byte,
a word, a double word, a quadword and a 10-byte value, respectively. Masm and
tasm use the character “?” to indicate non-initialized variables and the dup operator
for large buffers. Examples:

array resb 64 ; reserve 64 bytes labeled “array”
x resw 10 ; reserve 10 words
y resd 1 ; reserve 1 double word

Uninitialezed storage space can be declared in the bss segment. However, these
directives can also be used in the data segment as well.

4.2. PSEUDO-INSTRUCTIONS AND OPERATORS 71

4.2.2 More pseudo-instructions

Defining constants: equ

equ assigns a symbol to a string or a numeric constant. This assignment can
not be changed later. Examples:

CR equ 13
LF equ 10
msg equ ’hello world’

To complete the illustration the above equ statements can be used in the declaration
of a string variable in a data segment as follows:

message db msg, CR, LF, ’$’

Repeating data or instructions: times

This is a prefix followed by an integer k which indicates the number of times
the instruction or data declaration that follows is repeated. Format:

times k instruction/data declaration

Examples:

warray: times 100 dw 0 ; an array of 100 words is initialized to zero

times 50 movsb ; executes movsb 50 times

Segment operator: seg

The seg operator returns the segment part of an address associated to a sym-
bol. Examples:

mov ax, seg label ; extract segment part, and
mov es, ax ; load it into a preferred segment register
mov di, label ; now es : di is a valid pointer to label

Note that seg operator is useful for large 16-bit applications that extend be-
yond a single memory segment.

Offset operator: wrt

The wrt operator is used to define an offset with respect to a specific segment.
Example:

72CHAPTER 4. DATA MOVEMENT AND FLOW CONTROL INSTRUCTIONS

mov ax, new seg ;new seg is the segment base
mov es, ax
mov bx, array wrt new seg ; es:bx point to array wrt new seg

The operator wrt is useful for applications with several segments that may
overlap, and it is not required for the offsets within the default segment.

4.3 Data Transfer Instructions

Data transfer instructions are designed to move data around from register-to-register,
memory-to-register, register-to-memory, and even memory-to-memory. This set of
instructions include those to manipulate the stack and those that allows transfers
of arrays of data. The latter are referred to as ”string processing instructions”. In-
structions execute operations that require operands; the way operands are accessed
is specified in the instruction itself with a dedicated field referred to as the address-
ing mode. Several addressing modes supported by IA32 processors are discussed in
this section.

4.3.1 The mov instruction

The mov instruction is the most common instruction designed to copy data from a
source (src) operand to a destination (dst) operand. Both operands are specified in
the instruction with a format as follows:

mov dst, src ; dst← src

The comment field is used to describe in standard transfer notation the internal
transfer operation. This notation will be used at times to emphasize the cpu’s
internal operation that takes place during the instruction execution. The source and
destination operands can be a combination of a register (reg), a memory reference
(mem), and a constant. Specifically, the following formats are common:

mov reg, reg/mem
mov reg/mem, reg/constant
mov segreg, reg/mem
mov reg/mem, segreg

Typical restrictions that apply to instructions with more than one operand
include the following:

4.3. DATA TRANSFER INSTRUCTIONS 73

1. Destination and source operands must be of the same size. As noted before, the
declaration of variable types has the purpose of allocating the right amount of
memory space. However nasm does not keep track of the size of the variables,
as intended in the code section of the program. To enforce the size declaration,
the programmer must use a size specifier which is pre-appended to the operand
used to reference memory, and ensure that the correct number of data bytes
is accessed. Commonly used type specifiers are byte, word, and dword. Other
type specifiers are qword and tword. For example the following instruction:

mov ax, word [x] ; ax← [x]16

will enforce a transfer of 16 bits of data referenced by x to register ax. The
following additional examples illustrate typical lines of code that enforce the
number of bytes accessed by memory references:

mov al, byte [di] ; al← [ds : di]8
neg word [bx] ; [ds : bx]16 ← [ds : bx]16 + 1
add eax, dword [es:esi] ; eax← eax + [es : esi]32

2. The mov instruction does not support transfer operations between two memory
locations. If this is needed and intermediate register must be used to enforce
the sequence:

memory ← register ← memory

3. A constant must be always used at the source operand field.

4. A transfer of a constant into a segment register (segreg) is not supported. If
segment register must be pre-loaded with a constant use a general purpose
register (gpreg) to enforce the sequence:

segreg ← gpreg ← constant

5. Transfers between segment registers are not supported. Instead, enforce the
sequence:

dest. segreg ← gpreg ← source segreg

6. Moving data into cs:eip is not allowed. Since the pair cs:eip always points to
the next instruction, an explicit over-writing of the contents of either register,
will modify the program during execution with consequently unpredictable
results.

74CHAPTER 4. DATA MOVEMENT AND FLOW CONTROL INSTRUCTIONS

4.3.2 Addressing modes

Upon fetching an instruction the control unit must also decode the way how operands
are made available to the current instruction. A dedicated field in the instruction
format specifies an addressing mode by which the processor will know if operands
are immediately available in the instruction itself, or if they are fetched from internal
registers, from the stack, or from general memory. The IA32 processors support the
following addressing modes:

Register addressing. In this mode the source and destination operands specify the
names of 8-bit, 16-bit, or 32-bit internal registers (except cs and ip). For example:

mov ax, bx ; ax← bx
mov si, ax ; si← ax

Immediate addressing. A source operand can be any 8-bit, 16-bit or 32-bit
constant contained in the instruction itself and for which no additional memory
reference is required. For example:

mov al, 10 ; ax← constant8
mov ax, data ; ax← data
mov ebx, 123456578h ; ebx← 123456578h
mov di, msg ; di← msg

Note that data refers to the 16-bit value of the segment part of the base ad-
dress where the data segment has been loaded in memory. In contrast msg is a
label associated to a string allocated within the data segment; therefore, the value
transferred to di corresponds to the offset within the data segment. Note once the
program is loaded for execution both data and msg are constants.

Direct addressing. An effective address can be specified directly or indirectly in
any of the two operand fields in the instruction format. A variable specified as a
source or a destination operand is a direct reference to memory. In this case the
processor uses the direct memory reference specified in the instruction to fetch the
operand. Nasm surrounds the variable with square brackets to indicate a direct
access to its contents. For example:

mov eax, dword [count] ; eax← [count]32
mov dword [count], 10 ; [count]32 ← 10

Note that the subscript value emphasizes nasm’s dword directive that a 32 bits
are addressed by count.

Indirect addressing. Any register specified as a source or a destination operand
contains the effective address. The processor uses the effective address to access the
operand from memory. �Nasm uses square brackets surrounding the register name
to indicate a register-based indirect access. Examples:

4.3. DATA TRANSFER INSTRUCTIONS 75

mov eax, dword [ebx] ; eax← [ebx]32
mov dl, byte [bx] ; bl← [bx]8

The first transfer indicates that ebx contains an effective address that points
to a 32-bit operand. The second illustrates an 8-bit transfer using a 16-bit address
in bx. In both cases the effective address is preloaded into ebx and bx.

Index (Based) addressing. This is a form of indirect addressing in which the
effective address (offset) is formed by adding the contents of an index register (index
addressing) or a base register (base addressing) with a displacement. A displacement
can be stated as a constant or as a label. This type of addressing mode can be used
to access a linear array in which the label provides the base address of the array and
an index register provides the moving offset within the array. Examples:

mov al, byte [bx + 2] ; al← [bx + 2]8
mov ebx, dword [y + si] ; ebx← [y + si]32
mov word [di + z], ax] ; [di + z]16 ← ax
mov cx, word [bp + 10] ; cx← [bp + 10]16

The first transfer copies a byte at bx+2 into al. In the second move instruction,
a double word at y + si is copied into ebx while a a word is stored into di + z in the
third move instruction. The last move instruction loads a word from the stack at
bp + 10 into cx.

Based-indexed addressing. This is a more sophisticated indirect addressing mode
designed to access multi-dimensional arrays. This mode uses both a base and an
index register whose contents are added to a displacement. The displacement can
be a constant or a label. Examples:

mov byte [bx + si + 3], al ; [bx + si + 3]8 ← al
mov eax, dword [ebx*4] ; eax← [ebx ∗ 4]32
mov eax, dword [array + 8*edi] ; eax← [array + 8 ∗ edi]32

The first move instruction stores a byte at bx + si + 3. The second instruction
implements a 32-bit transfer; the effective address can be calculated in several ways
in terms of the address specified in ebs multiplied by a factor. Although ebx is a
base register when multiplied by a factor it is treated as an index register. The last
transfer loads a double word into array + 8 ∗ edi.

A general expression to calculate the effective address for indirect access is given in
terms of a base register, an index register, a factor, and a displacement as follows:

[base register + factor ∗ index register + displacement]

where the base register can be one of eax, ebx, ecx, edx, ebp, esp, esi or edi. Likewise
one of any of these registers except esp can be used for an index register. The factor

76CHAPTER 4. DATA MOVEMENT AND FLOW CONTROL INSTRUCTIONS

can be 0, 1, 2, 4 or 8 and the displacement can be a zero or a 32-bit constant or a
label.

4.3.3 Stack operations

The stack is a last-in-first-out (LIFO) data structure. A data item poped from the
stack is the last item pushed into the stack. IA processors control stack operations
by assigning to the esp register the special task to always point to the top of the
stack. To use the stack in a real-mode segmented model a stack segment must be
declared in each program with the following declaration:

segment name of stack stack
resb size of stack ; declare size

stacktop:

Access to the stack segment name of stack will be possible after the initialization of
the pair ss:sp with the following instructions at the beginning of the code segment:

mov ax, name of stack
mov ss, ax
mov sp, stacktop

Note that in the flat model there is no need to initialize the stack as it is assigned
the highest portion of addresses of the single flat segment.

Data transfers from and into the stack are either 16 (real-mode) or 32-bit (protected
mode) items. The main instructions designed to manipulate the stack are push and
pop.

Store data: push

The format of the push instruction is as follows:

push reg/mem/constant ; [ss : esp]← reg/mem/constant

The source is an explicit operand giving the name of a register, a memory reference,
or a constant. The destination is an implicit operand given by the pointer to the
top of the stack ss:esp. The cpu processes this instruction in two steps:

1. it updates the sp or esp registers by subtracting 2 or 4, (depending on the
type of application) to point to the next entry in the top of the stack,

4.3. DATA TRANSFER INSTRUCTIONS 77

2. it transfers data to the top of the stack at [ss:sp] or [ss:esp].

To illustrate how the stack works during the process of a push operation consider
the 32-bit code sequence shown in Fig. ?? which shows the stack before and after
the execution of the sequence. The variations of the push instruction are given in
table ??. Note that memory reference transfers can take place in 16 bits or 32 bits; a
memory reference uses register indirect or a direct transfer with the effective address
specified in the instruction itself.

Instructions that push all registers take no operands it instructs the processor
to save the contents of the following sequence of registers: (e)ax, (e)cx, (e)dx, (e)bx,
(e)sp, (e)bp, (e)si, and (e)di. The stack pointer is decremented by 16 or 32 bytes
depending on the type of transfer. The number of bits pushed in the execution of
pusha or pushf depends on the setting (16 or 32) of the directive BITS.

Before: After:
sp

sp

.

.

.

.

.

.

.

.

00
00

78
56
34
12
01
FF

....

....

mov eax, 0FF01h
push eax
push 12345678h

Figure 4.1: A sequence of push instructions

Load data: pop

The format of the pop instruction is the following:

pop reg/mem ; reg/mem← [ss : esp]

78CHAPTER 4. DATA MOVEMENT AND FLOW CONTROL INSTRUCTIONS

Table 4.1: Variations of the push instructions

Symbolic Operation Note
push r [ss : (e)sp]16,32 ← r16,32 A 16,32-bit transfer
push (d)word [r/m] [ss : (e)sp]16,32 ← [r/m]16,32 A 16,32-bit mem. ref.
push imm [ss : (e)sp]8,16,32 ← imm8,16,32 An 8,16, or 32-bit transfer
pushaw [ss : (e)sp]16 ← all regs16 16-bit transfers
pushad [ss : (e)sp]32 ← all regs32 32-bit transfers
pusha A 16 or 32-bit transfer
pushfw [ss : (e)sp]16 ← flags16

pushfd [ss : (e)sp]32 ← flags32

pushf A 16 or 32-bit transfer

The pop instruction specifies a destination operand by providing the explicit name of
a register or a memory reference. The source is the stack and it is an implicit operand
given by the current pointer to the top of the stack ss:esp. The pop instruction is
also processed in two steps but in the reverse order of the push instruction:

1. the cpu retrieves a data item from the top of the stack into the specified register
or memory location,

2. the top of the stack, i.e., the pointer ss:esp is incremented by 2 or 4, depending
of the type of application.

For illustration assume the state of the stack is as shown in Fig. ??, then a
sequence of pop instructions changes the stack as shown in Fig. ??.

The variations of the pop instruction are shown in table ??. The programmer
must be aware that for every push instruction a corresponding pop instruction must
be executed. If a pushaw or a pushad are used, then the corresponding pop instruc-
tions popaw and popad must be executed to restore the contents of the registers in the
opposite sequence in which they were saved: (e)di, (e)si, (e)bp, (e)sp, (e)bx, (e)dx,
(e)cx, and (e)ax. Accordingly the stack pointer will be incremented two bytes for
16-bit transfers and four bytes for 32-bit transfers. Similar to the pusha and pushf
instructions, the popa and popf instructions use 16 or 32 bit transfers depending on
the value of the directive BITS.

4.4. FLOW CONTROL INSTRUCTIONS 79

sp

sp

.

.

.

.

00
00

78
56
34
12
01
FF

.

.

.

.

Before: After:

....

....

pop eax
pop ebx

....

....

eax = 12345678h
ebx = 0000FF01h

Figure 4.2: A sequence of pop instructions

4.4 Flow Control Instructions

Any application development process requires a design step. Assembly applications
are not the exception, particularly for a complex undertaking. The design process
involves a clear understanding of the set of specifications, computational and I/O
requirements. Typical design tools before writing code include flowcharts, pseudo-
code, etc., where the number of modules and their interactions are defined. After the
design phase implementation issues must be addressed. If assembly code is required
issues that must be resolved include for example, the use of 16-bit or 32-bit binaries,
coordination of several modules, and whether or not to combine assembly language
modules with high level language modules, etc. Finally, the actual implementation
of assembly modules requires an efficient choice of instructions that optimizes code
in terms of memory space and/or execution time.

Because of the need to connect sections of code conditionally or uncondition-
ally, control structures are an important element in the implementation of any ap-
plication. Any language must include support mechanisms to control the flow of a
program in response to the changing state of execution.

80CHAPTER 4. DATA MOVEMENT AND FLOW CONTROL INSTRUCTIONS

Table 4.2: Variations of the pop instruction

Symbolic Operation Note
pop r reg16,32 ← [ss : (e)sp]16,32 A 16,32-bit transfer
pop (d)word [r/m] [r/m]16,32 ← [ss : (e)sp]16,32 A 16,32-bit mem. ref. transfer
popaw all regs16 ← [ss : (e)sp]16 16-bit transfers
popad all regs32 ← [ss : (e)sp]32 32-bit transfers
popa A 16 or 32-bit transfer
popfw flags16 ← [ss : (e)sp]16
popfd flags32 ← [ss : (e)sp]32
popf A 16 or 32-bit transfer

4.4.1 Comparisons and Flags

The flow of a program changes according to the state of certain flags in the register
flag. A program in execution must check for these flags and decide whether or
not to take a jump out of the current flow. Many instructions change the set
of flags during execution. One of these instructions is the comparison instruction
that can be coded just to set a particular flag to a state that reflects the result
of the comparison. Because of this, any assembly language provides a comparison
instruction in its instruction set. For the Intel processors the comparison instruction
is used according to the following format:

cmp reg/mem, reg/mem/constant

The cmp instruction performs a subtraction operation between the source and the
destination operands but leaves the destination operand unchanged. Using register
transfer notation the operation can be described as follows:

result← destination− source

The operands are located in memory or in registers indicated by the notation
reg/mem in both destination and source fields. The instruction accepts only one
reference to memory; that is, only one operand can be loaded from or stored in
memory. An immediate operand (a constant) can only be specified as a source
operand. The objective of the comparison is to affect flags depending on the result.
The flags that may be affected by the subtraction operation are the following: the
overflow flag (OF) if overflow occurs, the zero flag (ZF) is set if the result is zero,
the sign flag (SF) is set if the result is negative, the carry flag (CF) is set if there is
a carry (the carry flag is set if an overflow occurs after an un-signed operation).

4.4. FLOW CONTROL INSTRUCTIONS 81

4.4.2 Branch Instructions

After fetching an instruction, the pointer cs:eip is updated to point to the first byte
of the next instruction. However, if the current instruction is a branch instruction,
then the pointer cs:eip could be updated once again to point to a different instruc-
tion address. Unconditional branch instructions always update cs:eip. Conditional
branch instructions will update cs:eip according to the status of some flag. There-
fore, a conditional branch instruction will always follow a comparison instruction
or any other instruction that may or may not change a flag. Perhaps it is fair to
mention that the sequence of a comparison instruction and a conditional branch
instruction implement a decision point in a flowchart, or a decision statement such
as ”if”, ”while”, etc., in a pseudo-code sequence.

Unconditional jumps

Unconditional jumps are implemented by the jmp instruction which it is used
with the following formats:

jmp short label
jmp near label
jmp far label
jmp word label
jmp dword label
jmp reg/mem

The short jump specifies a target address located anywhere from -128 to 127 bytes
with respect to the current contents of eip. Therefore, a short jump will update the
eip by adding or subtracting an 8-bit value to calculate the target address specified
in the instruction. The near type is the default jump within a segment and updates
only the eip register. The 386 and up processors support a 2-byte jump and a 4-byte
jump. In protected mode the 4-byte jump is the default jump and a 2-byte jump is
specified with the word term before the label. An explicit specification of a 4-byte
jump is common with the dword term before the label. Another alternative specifies
a 16-bit or a 32-bit register or memory location to fetch the target address directly
or indirectly. With far jumps the flow of the program branches to a different code
segment; in this case both cs and eip are updated. In protected mode this is a rare
type of jump.

Conditional jumps

Table ?? shows three groups of conditional jumps. Group 1 deals with unsigned
integers such as addresses and characters. In group 3 jumps are decided according to
the state of an explicit flag; the description of each instruction in these two groups

82CHAPTER 4. DATA MOVEMENT AND FLOW CONTROL INSTRUCTIONS

is given in terms of the results of a cmp instruction. Group 2 deals with signed
integers; the flag involved is indicated in the description column. Table ?? is not
an exhaustive list of conditional jump instructions. For each conditional jump of
the form ”jcc” Intel instruction sets also includes the corresponding complemented
conditional jump instruction ”jncc”.

Table 4.3: Classification of conditional jump instructions
Mnemonic Description Flags
group 1
ja jump if above: dest. > source CF = 0 and ZF = 0
jae jump if above or equal: if dest. ≥ source CF = 0
jb jump if below: dest. < source CF = 1
jbe jump if below or equal: dest. ≤ source CF=1 or ZF=1
group 2
jg jump if greater: dest. > source SF=0 and ZF=0
jge jump if gerater than or equal: dest. ≥ source SF = OF
jl jump if less: dest. < source SF 6= OF
jle jump if less than or equal: dest. ≤ source ZF=1 or SF 6= OF
js jump if signed: dest. is negative SF = 1
jns jump if not signed: dest. is positive SF = 0
jo jump if overflow OF = 1
jno jump if no overflow OF = 0
group 3
jz jump if zero ZF = 1
jnz jump if not zero ZF = 0
jc jump if carry CF = 1
jnc jump if no carry CF = 0
jcxz(jecxz) jump if cx (ecx) is zero cx(ecx) = 0
jp jump if parity even PF = 1
jnp jump if parity odd PF = 0

Jumps out of range

For real-mode applications conditional jumps are limited to 8-bit jumps, i.e.,
within a range of -128 and 127 bytes. Conditional jumps are two-byte instructions
where the highest order byte contains the opcode and the lowest order byte contains
a displacement. The CPU utilizes the displacement value to calculate the target
address relative to the contents of the ip register. The following is the format of a
2-byte conditional jump instruction:

4.4. FLOW CONTROL INSTRUCTIONS 83

0 1 1 1 c c c c

8 bits 8 bits

displacement

The highest order four bits give an indication to the CPU that the instruction
is a conditional jump and takes the next four bits cccc as the code for the condition
to check. For example, the entire 8-bit opcode for jle is 01111110. Upon execution,
the CPU updates the ip register as follows:

1. Flags are checked, and if the condition holds, the CPU sign extends the 8-bit
displacement to a 16-bit value that is added to the current 16-bit contents of
the ip register,

2. The CPU fetches the next instruction using the updated value of the ip register.

If the assembler anticipates that the jump is out of range, reports an error and exits.
The user can resolve this problem by combining the 8-bit conditional short jump
with a 16-bit unconditional near jump. In real mode, near unconditional jumps use
a 16-bit displacement to allow a range within ±32K bytes. Near unconditional jump
instructions have the following binary format:

8 bits

1 1 1 0 1 0 0 1

16 bits

displacement

Therefore, in general terms any conditional jump of the form jcc label that
results in a ”jump-out-of range” can be replaced by the following sequence:

. . .
jncc new label
jmp label

new label:
. . .

where jncc is a conditional jump with the original condition complemented.

For 32-bit applications, 80386 processors and up support a four-byte condi-
tional instruction with the following format:

16 bits

displacement

16 bits

0 0 0 0 1 1 1 1 1000cccc

For example the entire 16-bit op-code for the jle instruction is: 00001111 10001110
with a 16-bit displacement.

84CHAPTER 4. DATA MOVEMENT AND FLOW CONTROL INSTRUCTIONS

4.4.3 The loop Instruction

During the design process of an application, a decision point in a flowchart or pseudo-
code is followed by a block that performs a task. The conditional execution of a
block of code results in a loop if the condition tested at each iteration remains true.
The appropriate conditional jump instruction can be used to implement a loop. An
alternative is to use a loop instruction that most assembly languages provide. The
Intel instruction set provides a loop instruction that repeats the execution of a block
of code as long as the contents of the ecx register are greater than zero. Therefore,
if the loop instruction is used, it is important to always initialize ecx before the first
iteration starts. The loop instruction decrements the contents of the ecx register
and jumps out of the loop if this value becomes zero. Other variations of the loop
instruction involve the zero flag as commented in the following available formats:

loop label ; loop to label if CX > 0
loopz label ; loop if CX > 0 and Z = 1
loope label ; loop if CX > 0 and Z = 1
loopne label ; loop if CX > 0 and Z = 0
loopnz label ; loop if CX > 0 and Z = 0

Note that the term ”and” is a logical connection that emphasizes that both
events should be true to make the overall condition true.

4.4.4 HLL Control Structures

The inter-relation between the state of a program (captured by the flag register)
and the use of jump instructions to change the flow of execution makes high-level
language control structures easy to implement with assembly instructions. In this
section we illustrate only few of the structures available in high-level languages and
their mapping, in general terms, into assembly blocks. Pseudo-code and flowcharts
are used to emphasize the design phase that precedes the actual code implementation
and because the pseudo-code specification of any program has a close resemblance
to its HLL implementation.

If-then blocks.

The following pseudo-code illustrates the use of IF statements:

if (op1 R op2) then
. . .
HLL statements
. . .

endif

4.4. FLOW CONTROL INSTRUCTIONS 85

The term R is used to generalize the conditional relationship between op1 and
op2. The following flowchart can be used as an alternative description of if-then
blocks:

false

true

HLL statements

endif

op1 R op2

To map HLL constructs into an assembly block the notation jcc and jncc used before,
refers to the list of jump instructions in Table ??. The following assembly structure
implements the HLL if statement

cmp op1, op2
jncc endif ; code is not executed if cc is not true (jncc)
. . .
assembly code
. . .

endif: . . .

To illustrate consider the following pseudo-code:

if (Y<X) then
X = Y

endif

The following is a possible implementation in assembly language:

mov ax, word [Y]
cmp ax, word[X]
jge endif ; code is not executed if (<) is not true
mov word [X], ax

endif: . . .

86CHAPTER 4. DATA MOVEMENT AND FLOW CONTROL INSTRUCTIONS

IF-then-else blocks

In a similar fashion if-then-else blocks are described by the following flowchart
in which the only difference is that either one block of statements (block 1) is
executed if the condition is met if the condition is not met then a second block of
statements is executed (block 2).

else

op1 R op2false

endif

true

HLL block 1HLL block 2

if-then-else structures can also be described by pseudo-code as follows:

if (op1 R op2) then
. . .
HLL block 1
. . .

else
. . .
HLL block 2
. . .

endif

the following sequence which shows the appropriate combination of the compare
instruction, conditional and unconditional jumps, illustrates a possible implementa-
tion in assembly:

4.4. FLOW CONTROL INSTRUCTIONS 87

cmp op1, op2
jncc else ; code is not executed if cc is not met
. . .
assembly code
for block 1
. . .
jmp endif

else:
. . .
assembly code
for block 2
. . .

endif:

A simple extension of the previous example illustrates the execution of alter-
nate blocks of code:

if (Y<X) then
X = Y

else
Y = X

endif

with a possible assembly code implementation as follows:

mov ax, word [Y]
cmp ax, word[X]
jge else ; block 1 is not executed if (<) is not true
mov word [X], ax
jump endif

else: mov ax, word [x] ; execution of block 2
mov word [y], ax

endif: . . .

While loops.

These are very common structures where the condition is first tested before
another iteration is executed. The following pseudo-code illustrates a typical while
loop structure:

88CHAPTER 4. DATA MOVEMENT AND FLOW CONTROL INSTRUCTIONS

while (op1 R op2) do
. . .
HLL statements
. . .

endwhile

A flowchart can be used to describe these blocks as follows

false

true

HLL statements

op1 R op2

This structure could be mapped into the following assembly sequence:

while:
cmp op1, op2
jncc endwhile ; code is not executed if cc is not met
. . .
assembly code
. . .
jmp while

endwhile: . . .

For illustration consider the following example:

while (Y<X) do
Y = Y+1

endwhile

This is a very simple loop that can be implemented as follows:

4.4. FLOW CONTROL INSTRUCTIONS 89

. . .
mov eax, dword [Y]
while:

cmp eax, dword [X]
jge endwhile ; code is not executed if cc is not met
inc eax
jmp while

endwhile:
mov dword [Y], eax
. . .

Do while loops.

In these loop structures the condition is tested after each iteration as shown
in the following flowchart:

HLL statements

op1 R op2true

false

The pseudo-code description looks as follows:

do
. . .
HLL statements
. . .

while (op1 R op2)

A possible assembly implementation is given below:

90CHAPTER 4. DATA MOVEMENT AND FLOW CONTROL INSTRUCTIONS

do:
. . .
assembly code
. . .
cmp op1, op2
jcc do ; a new iteration is executed if cc is true

The following example illustrates two possible assembly implementation of a
very simple HLL loop described as follows:

do
Y = Y+1
X = X-1

while (X > 0)

A first implementation makes use of explicit conditional jumps:

do:
inc dword [Y]
dec dword [X]
cmp dword [X], 0
jg do ; a new iteration is executed if X>0 is true

A second implementations makes use of the ecx register as a counter and the
loop instruction:

mov ecx, dword [X]
do:

inc dword [Y]
loop do ;a new iteration is executed if ecx > 0

mov word [X], ecx ; implied result in the pseudo-code

4.5 Array/String Transfer Instructions

This is a set of instructions designed to transfer large amounts of data from one array
to a different array or from/to the cpu. The execution of one of these instructions
will transfer one data item (byte, word, or double word) from a source array to a
destination array. The source array is located at ds:esi and after the execution of a
single transfer, the index register esi is incremented or decremented automatically to

4.5. ARRAY/STRING TRANSFER INSTRUCTIONS 91

point to the next data unit. Similarly, the destination array is located at es:edi, and
after each single transfer the index register edi is also incremented or decremented
automatically. Source and destination pointers increment or decrement depending
on the state of the direction flag D. A D = 0, which is the default state, indicates an
automatic increment of the contents of the index registers, otherwise, an automatic
decrement occurs. The instruction set provides two instructions to set or reset
the direction flag: cld will establish the auto-increment mode, while std sets the
flag D to one and establishes the auto-decrement mode. Automatic increment or
decrement of the pointers involved makes string/array transfer instructions inserted
within a loop, very useful to transfer large amounts of data between different data
buffers. Array/string transfer instructions with implicit operands are classified in
the following groups:

Memory-to-memory transfers. instructions that perform these transfers are the fol-
lowing:

movsb ; [es : edi]8 ← [ds : esi]8
movsw ; [es : edi]16 ← [ds : esi]16
movsd ; [es : edi]32 ← [ds : esi]32

Memory-to-register transfers. A data item is transferred from a source array into a
register one byte, a word, or a double word at a time, depending on which of the
following instructions is executed:

lodsb ; al← [ds : esi]8
lodsw ; ax← [ds : esi]16
lodsd ; eax← [ds : esi]32

Register-to-memory transfers. The flow of data items implemented by this instruc-
tions is from cpu register to a destination array one data unit at a time:

stosb ; [es : edi]8 ← al
stosw ; [es : edi]16 ← ax
stosd ; [es : edi]32 ← eax

Example 1. The following code segment implements a data transfer from a source
list into a destination list:

SEGMENT data
list_s dw 1000h, 2000h, 3000h, 4000h

92CHAPTER 4. DATA MOVEMENT AND FLOW CONTROL INSTRUCTIONS

SEGMENT bss
list_d resw 4

SEGMENT code
..start:

mov ax, data
mov ds, ax
...
...
mov si, list_s ; sets the pointer ds:si to list_s
mov ax, bss
mov es, ax
mov di, list_d
mov cx, 4
rep movsw ; ds:si --> es:di
...
...

The rep prefix causes the repetition of the next instruction a specified number of
times. The rep prefix is not an instruction in itself but it is a byte field appended
to the currently fetched instruction intended to implement a single-instruction loop
with a number of iterations specified in ecx.

Example 2. This example shows the implementation of the transfer of the contents
of video memory in page 0 to a data buffer:

SEGMENT bss
dbuffer resw 2000

SEGMENT code
..start:

...

...
mov ax, bss
mov es, ax
mov di, dbuffer
mov ax, 0B800h
mov ds, ax
mov cx, 2000
mov si, 0

next:
movsw ; ds:si --> es:di
loop next
...

4.6. VIDEO MEMORY 93

...

As will be discussed in the next section, a page p in video memory is located
at an offset of 4096× p bytes. Note that for p = 0 then the offset is zero as implied
in the instruction mov si, 0 in example 2.

4.6 Video Memory

Recall from the memory map discussed in Chapter 1, that the 8086/88 assigns a
memory section to video display within the 1 Megabyte of its directly addressable
space. The section from A0000h to AFFFFh is assigned to graphics display, from
B0000h to B7FFFh to a monochrome display adapter (MDA) for text display, and
from B8000h to BFFFFh is used for CGA/EGA/VGA adapter for text display. The
text buffer beginning at B8000h spans a size of 32 Kbytes. This space is divided in
8 pages and the size of each page is 4 Kbytes. The programmer can select any page
indexed from 0 to 7 for display. The video memory map for a color display adapter
is as follows:

B800:0000 — page 0
B800:1000 — page 1
B800:2000 — page 2
B800:3000 — page 3
B800:4000 — page 4
B800:5000 — page 5
B800:6000 — page 6
B800:7000 — page 7

The screen displays a maximum of 25 × 80 = 2000 characters in text mode.
The total number of rows in this mode is 25 and the total number of columns is
80. A particular character location in the screen is referenced in terms of its row
and column coordinates. A page in video memory is displayed one at a time and
each character in video memory requires two bytes. The first byte is used for the
character itself, and the second byte is used for the display attribute. The additional
attribute byte doubles the memory used by the characters to a total of 4 Kbytes
which is the size assigned to each page. The attribute format is as follows:

blink r g b I R G B

background forground

94CHAPTER 4. DATA MOVEMENT AND FLOW CONTROL INSTRUCTIONS

Table ?? shows the possible bit combinations using the three bits available for
either the foreground and background colors. For example, an attribute with value
07h specifies a white foreground on a black foreground display.

Table 4.4: Attribute values

Foreground or
Background Foreground only

000 black 1000 gray
001 blue 1001 light blue
010 green 1010 light green
011 cyan 1011 light cyan
100 red 1100 light red
101 magenta 1101 light magenta
110 brown 1110 yellow
111 white 1111 bright white

Consider for example a null-terminated string such as abcdef.... To display this
string with a given attribute it will have to be stored in video memory as follows:

background forground

0 0 0 0 10 1 1

In general to display any information, we will need to map the initial coor-
dinates in the screen and the page number into the corresponding offset in video
memory. Let O denote the offset with respect to the initial address B8000h, then
to obtain O in bytes use the expression:

O = 160r + 2c + 4096p

where r and c are the row and column, respectively, where the initial character of
a message will be displayed, and p is the page number selected. Consider again the
implementation of example 2 in the previous subsection in which page 0 of video
memory is copied into a data buffer. Any page, or a section of the page, can be
copied into a local buffer by specifying the three main parameters (r, c, p) to find the
offset of video information with respect to the base address B8000. Two possible
implementations are discussed:

4.7. EXERCISES 95

1. Replace the line with the instruction mov si, 0 with the following:
mov si, 160*r+2*c+4096*p

where r, c, and p can be specified with equ statements with the desired coor-
dinate values.

2. Use the following line in place of the instruction mov si, 0:
mov si, offs

and add a %define directive at the beginning of the program as follows:
%define offs 160*r+2*c+4096*p

right after the equ declarations for r, c, and p.

The code to write into or read from video memory can be generalized to be
used with any set of coordinate parameters. The design and use of sub-procedures
is one of the topics to be addressed in a subsequent chapter.

4.7 Exercises

1. Write the most appropriate data declaration statement for the following cases:

(a) Three distinct variables initialized with the following values:
ABCD0123h, 001Fh, ”ABCD”

(b) Draw a memory map to indicate how the values declared in a) are allo-
cated in memory.

2. Use an appropriate data declaration to initialize the following items in memory:

(a) An array of 1000 bytes initialized to zero.

(b) A $-terminated string: ”which class is this?”.

(c) An array of 1000 double words initialized to zero.

3. Explain the difference between big endian and little endian formats for storing
numerical data larger than a 8 bits in width.

4. Identify whether or not the following mov instructions are valid or invalid.
Justify your answer.

(a) mov al, 1234h

(b) mov ax, var

(c) mov bx, [var]

96CHAPTER 4. DATA MOVEMENT AND FLOW CONTROL INSTRUCTIONS

(d) mov 10h, al

(e) mov dl, ax

(f) mov eax, 10h

(g) mov ds, data

(h) mov x, y

(i) mov eip, dword [x]

5. Identify the source and destination addressing modes used in each of the in-
structions listed.

(a) mov di, msg

(b) xor eax, eax

(c) mov eax, dword [total]

(d) mov ax, word [di]

(e) mov ebx, dword[esi + y]

(f) mov dword [ebx + 4*edi + array], eax

6. Explain the operation of the following instructions:

(a) stowb

(b) lodsw

(c) movsd

(d) stosd

7. Consider the instruction push reg/mem. Explain briefly the CPU operations
performed to execute this instruction.

8. Which registers move onto the stack with the execution of pusha ?

9. Which registers move onto the stack with the execution of pushad?

10. Describe the operation of each of the following instructions:

(a) pop eax

(b) push word [bx]

(c) pushfd

(d) pop esi

(e) pop dword [edi]

4.7. EXERCISES 97

11. Identify which conditional jump instruction follows the comparison of unsigned
numbers.

12. Identify which conditional jump instruction follows the comparison of signed
numbers.

13. Contrast the operation of a jmp x with a jmp word [x].

14. Develop a sequence of instructions that searches an array of 0100h bytes, and
counts all entries above or equal to 100 and place them into an array above; it
also counts all entries below 100 and place them in an array below. Define all
data types required for the two counts and the two arrays needed.

15. Explain the purpose of the direction flag, and indicate which instructions are
used to clear it and set it.

16. Write a sequence of instructions to transfer 100 bytes of data from a memory
buffer addressed by source into memory buffer addressed by dest.

17. The area of video memory for color display in text mode begins at B8000h. A
particular page p is located at 4096 × p. Thus, to access page 0 it suffices to
set the corresponding index register to zero. Write a sequence of instructions
to transfer 2000 words in a data buffer to page 0 in video memory.

