
Chapter 3

Assembly Programming Issues

3.1 Introduction

This chapter reviews some preliminary assembly programming issues beginning with
the concepts of Real and Protected mode that define the space addressability for
16-bit and 32-bit Intel architectures, respectively. Important issues from the pro-
grammer perspective such as organization of nasm programs, assembly, link, and
compilation commands are discussed.

3.2 Modes of Operation

The IA32 family of processors supports three operating modes. The real mode,
in reference to ”real” direct memory addressing, provides the user with the pro-
gramming environment (software model) native to the Intel 8086/88 processor. All
Intel processors boot in real mode before they are switched into a different working
mode. The protected mode is the native operating mode available for users of IA32
machines. In this mode, all instructions and state of the art architectural features
are available, providing the highest performance and capability. A third mode of
operation available for users is a quasi-operating mode known as virtual-8086 mode.
This mode allows the processor the execution of 8086 software in a protected, mul-
titasking environment.

47

48 CHAPTER 3. ASSEMBLY PROGRAMMING ISSUES

3.2.1 Real Mode

In real mode the processor addresses only one megabyte of memory. The organiza-
tion of memory is segmented in maximum sizes of 64 Kbytes which can be directly
addressable with 16 bits. The 8086/88 machines have an address bus with 20 bits
and therefore capable of directly addressing 220 ≈ 1 megabyte of memory. To be
able to address any location in memory in real mode, the system uses two 16-bit
entities referred to as segment and offset in such a way that the segment part will
contain the first 16 bits of the base address with an offset of zero. To obtain the
physical address the segment part is shifted four places to the left and added to the
offset part:

Physical address = 24 × segment + offset (3.1)

Using hex digits, an alignment of segment and offset values is illustrated in
Fig. 3.1. Assume for example that the segment value is 0928h and the offset value is
0022h then applying equation 3.1 the physical address is then obtained as: 09280h
+ 0022 = 092A2h, as shown in Fig. 3.1. Note that right shifting the segment value
four positions to the left is equivalent to adding four zeroes on the right creating the
physical address of the very first location (offset zero) within the segment.

02 8

0 0 2 2

0 9 2 A 2

0 9

Physical address:

segment:

offset:

Figure 3.1: Alignment of segment and offset

In a segmented model the segment and the offset part of a physical address
are associated with segment registers and pointer/index registers, respectively. The
combination of a segment register and an appropriate 16-bit register are used as
pointers to the physical address. Typical segment:offset combinations are the fol-
lowing:

CS:IP
SS:SP
SS:BP
DS:SI

3.2. MODES OF OPERATION 49

ES:DI

Fig. 3.2 illustrates the use of such pair of registers as ’pointers’ to memory
segments. Memory segmentation corresponds to the way in which an application
is organized to run in a real mode segmented environment. The code segment CS
register and the offset IP register will always be used to point to the code section in
memory that corresponds to the code section of an assembly program. Likewise the
ES and DS segment registers paired with SI or DI registers will always point to the
section in memory where data resides; the data segment in memory corresponds to
the data section in an assembly program where all variables are declared. Similarly,
the SS segment combined with two offset registers, the SP and BP, are used to
point to the stack section in memory; an application programmed in assembly may
contain a stack section where the size of the stack is declared.

00000h

FFFFFh

CS:IP

DS:SI

ES:DI

SS:SP
Stack Segnent

Data Segment

DataSegment

Code Segment

Figure 3.2: Placement of memory segments

In contrast to the segmented model, the flat model does not divide memory into
sections . Code and data are allocated within a single 64K block of memory under
a real mode environment. Segment registers are set to point to the beginning of the

50 CHAPTER 3. ASSEMBLY PROGRAMMING ISSUES

64K block of memory and since offset registers can address a space of 64K, these are
used to address any byte within the block simplifying the addressing scheme. In a
protected flat model a program addresses memory within a single block as large as
4 Gbytes.

3.2.2 Protected Mode

As the complexity and size of applications increased, the maximum limit of 64
Kbytes in a real mode environment was not acceptable. In real mode once a program
is loaded segments remained at fixed positions in memory. The development of
virtual memory gave each applications a ”limitless” access to physical memory . In
practice the system is used by several applications in a multi-tasking manner that
requires taking turns on the use of the processor as well as main memory. Protected
mode was developed in response to additional memory requirements and to support
a multitasking execution environment. In the 80286’s 16-bit protected mode, it was
possible to move segments between hard disk storage and main memory as needed.
However, the entire segment was transferred in an out of physical memory. The
80386 introduced the 32-bit protected mode that expanded offsets to be 32 bits.
Therefore, segments can be up to 4 Gbytes in size. However, instead of segments,
memory was divided into pages of 4K bytes each; therefore, while a program was in
execution, only sections of a segment were moved between main memory and disk.

In a protected mode each segment is assigned an entry in a descriptor table.
This entry is a 64-bit descriptor that contains information regarding the size of the
segment, its current location, and access rights. Segment registers are used to access
a descriptor table. The contents of a segment register are divided into three fields
as shown in Fig. 3.3: a 13-bit selector field points to the descriptor in table, a 2-bit
field RPL indicates the requested privilege level, and the one-bit TI field indicates
whether the descriptor table is global (TI = 0) or local (TI = 1).

While global descriptors contain segment definitions that apply to all pro-
grams, local descriptor tables are unique to each program. Each table type has 8192
entries; therefore, each program has a total of 16,384 descriptors available at any
time. Fig. 3.6 shows the descriptor formats for both the 80286 and the 80386 (and
up) . Recall that the 80286 can address up to 224 bytes; therefore, the base address
specified in the descriptor requires 24 bits with the remaining 8 bits set to 0. A
base address field of 24 bits specifies the starting location of a segment anywhere
in memory within a range of 16 Megabytes. A 16-bit field specifies the limit of the
segment and corresponds to the last location in the segment whose maximum size
is 64 Kbytes. This is not the case for the 80386 processor which addresses segments
of size up to 4 Gbytes (232). Therefore, the 32-bit base field in the descriptor indi-

3.2. MODES OF OPERATION 51

cates that a segment can be placed anywhere in this range. The limit field for the
80386 descriptor is 20 bits in length indicating the maximum size of a segment is 1
Megabyte if the granularity bit G = 0 (the one-bit G field in the descriptor). If G
=1, the limit field specifies a multiple of 4 Kbytes resulting in a segment size from
4 Kbytes to 4 Gbytes. The D field (bit 6) indicates the default length for effective
addresses and operands referenced by the instructions in the segment. If this bit is
set, 32-bit addresses and 32-bit or 8-bit operands are assumed (32-bit instruction
mode), otherwise, 16-bit addresses 16-bit or 8-bit operands are assumed (16-bit in-
struction mode). Bit 5 is reserved and should be set to 0. Bit 4, A = 0 will indicate
that the segment is available. The formats of the descriptors used for the 80286 and
80386–Pentium processors are shown in Fig. 3.4.

0315

TI RPLSelector

2 1

Selects one descriptor from 8,192

Figure 3.3: Contents of a segment register in a protected-mode operation

Base(B23:B16)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

80386!Pentium Descriptor80286 Descriptor

Base(B31:B24)

Base(B15:B0)

Access rights

Limit(L15:L0) Limit(L15:L0)

Base(B15:B0)

Access rights Base(B23:B16)

(L19:L16)
Limit

15 0 15 05

D 0 A

67 4

G

Figure 3.4: Descriptor formats for the 80286/386/486/Pentium processors.

Both descriptors in Fig. 3.4 show an 8-bit access rights field which is described
in Fig. 3.5. The two-bit privilege level field is used to activate protection mechanisms
for segments containing critical software. The highest priority level (00) of protection
is assigned to critical software. Lower priority protection levels are assigned to
service programs and applications.

To illustrate the use of addressing segments in protected mode assume the
segment register ds contains the value 0010h which points to a descriptor as shown
in Fig. 3.6. The data shown (50h) for the Pentium descriptor indicates that with
G=0, the maximum size of the segment is one Megabyte; a bit D=1 indicates that

52 CHAPTER 3. ASSEMBLY PROGRAMMING ISSUES

7 5 4 3 2 1 0
DPL S E AP CD RW

A=0 Segment not accessed
A=1 Segment has been accessed

P=0 segment is not valid
P=1 segment is valid

S=1 code or data segment
S=0 system segment

Sets segment privilege level

C:Conformity bit

R: Read access priveleges
W:Wriee access privileges

D=0 upward expansion (data)
(ignore/abide by privilege level)

D=1 downward expansion (stack)E=0 data segment
E=1 code segment

6

Figure 3.5: Access rights for 80286–Pentium segments.

32-bit addresses are used (protected mode), and the availability bit A=1 shows that
the segment is not available.

The access rights field has an entry value of 93h in both descriptors; the bit
P=1 indicates the segment is valid; DPL = 00 shows the lowest level of protection;
with S=1 the segment is a data or a code segment; E= 0 shows that a data segment
is addressed with upward expansion (D=0) with read and write access (RW=1) and
that it has been recently accessed (A=1).

3.2.3 Virtual Mode

This mode allows an emulation of the 8086/88 DOS-based real mode environment.
The opening of any DOS window involves the launching of a virtual 8086 mode
creating a virtual machine with all the 8086 real-mode functionality. Multiple 8086
virtual machines can be created and hence, multiple DOS-based applications can be
executed concurrently. Each virtual machine has its own one Megabyte addressing
space that can be placed anywhere in physical memory.

A virtual-8086 mode is entered from a protected mode and controlled by the
hosting operating system supporting a multitasking switching environment. Launch-
ing a virtual mode involves the activation of a new task. The operating system saves
the current status of an executing task and sets the VM bit of the eflags register.
Suspending a virtual session involves suspending the controlling task by saving its
status including the state of the eflags register. The previous state is restored and
the corresponding task takes control of the processor.

3.3. DESCRIPTOR TABLES 53

50

Data
Segment

000000h

a) The DS register selects a segment to access locations from 010000h to 0000FFh

b) 80286 Descriptor c) Peintium Descriptor

0010hDS = FF
00
00
00
10
92
00
00

00FFFFh
010000h

FFFFFFh

0000FFh

00
00
93

00 00
10

00
FF 00

00
93

00
10

00
FF

Figure 3.6: Use of segment registers and descriptor table to access physical memory
in the 80286 and Pentium processors.

3.3 Descriptor Tables

The data structures to manage memory in IA32-based systems include three types
of descriptor tables; the Global Descriptor Table (GDT), the Local Descriptor Table
(LDT) and the Interrupt Descriptor Table (IDT). The GDT is accessible across all
programs and tasks and it is pointed to by the tgdtr register. The LDT is local
to each task and it is pointed to by the ldtr register. Each table holds up to 8192
entries. The state of the TI bit in the segment register (see Fig. 3.3) selects which
data structure to access, The IDT contain up to 256 gates and each gate holds the
destination for various interrupts subroutines.

The main purpose of the gdtr and the ldtr registers is to locate the correspond-
ing descriptor tables. The gdtr is a 48-bit register with a 32-bit field for the base

54 CHAPTER 3. ASSEMBLY PROGRAMMING ISSUES

address and a 16-bit field to hold the table limit. The base address specifies the
linear address of byte zero in the GDT and the table limit specifies the number of
bytes in the table. The instructions ldgt and sgdt are provided to load and store the
gdtr register, respectively. By default the base address is initialized to zero with a
limit set to FFFFh. As part of the initialization process a new base address must
be loaded for protected mode operations. Fig. 3.7 summarizes the role of segment
registers, the gdtr register, the global descriptor table, and offset registers in the ad-
dress translation process. Since each descriptor contains 8 bytes the selector value
is multiplied by 8 to point to the correct descriptor. For illustration consider the
following examples.

Example: Assume that the contents of the gdtr are 003A00000FFFh, the contents of
the CS register are 2128h, and an offset value of 0000A123h is stored in eip . What
is RPL, TI? Determine the address of the descriptor in the GDT, and the size of
the GDT.

Solution: Note that CS = 0010 0001 0010 1000, indicates that RPL = 00 and since
TI = 0 then the descriptor is in the GDT. The address d of the descriptor is obtained
as follows:

d = 0000010000100101× 8 + 003A0000h

= 0010000100101000 + 003A0000h

= 2128h + 003A0000h

= 003A2128h

The size of the GDT is given in the gdtr as OFFFh bytes.

Example: Assume that the descriptor in the GDT accessed in the previous example
contains a segment base address of 00123456h, calculate the final physical address
referenced by the contents of cs:eip.

Solution:
physical address = 00123456h + 0000A123h

= 0012D579h

The GDT must contain a segment descriptor to locate the LDT segment. If
the system supports multiple LDTs, each must have a separate segment selector and
segment descriptor in the GDT. To select an LDT, the programmer must execute
the lldt instruction to load the lldt register with a selector value just like any other
segment register, in turn this selector is used to access the GDT and fetch the base
address, the limit and access rights needed to access the LDT.

To eliminate address translations when accessing the LDT, the segment se-
lector, base linear address, limit, and access rights of the LDT are stored into an

3.4. ASSEMBLY PROGRAMS 55

...

Base address limit

GDT
Segment Register

Selector

GDTR

Descriptor Segment

Offset register

Main memory

...

...

...

base address

offset

Physical address

8 X +

+

Figure 3.7: GDT-based generation of physical addresses

extended ldtr register as shown in Fig. 3.8(b) which also describes the invisible part
associated to segment registers Fig. 3.8(a). Associated with each visible segment
register is a cache structure that keeps a record of the base address, the limit and
access rights of segments recently accessed. Accessing the cached information, re-
peated accesses to the GDT are eliminated resulting in a faster address translation
process.

As part of the memory management data structures, the tr register holds a
selector that access a descriptor stored in the GDT. The purpose of the tr register
is to allow fast switching between tasks in a multitasking system.

3.4 Assembly Programs

A program running under dos can be divided into three primary sections identified in
tasm by the directives: .stack, .data, and .code. Each program section corresponds
to the segment in memory to which it will be allocated. In nasm assembly programs
are also divided into sections or segments. To illustrate consider the code shown in
example 1 that implements a typical hello world program using the segment-based
model approach. Comments are preceded with a “;”. An initial block of commented
lines are shown to provide information on how to produce the object code, link it and

56 CHAPTER 3. ASSEMBLY PROGRAMMING ISSUES

(b)

Segment Registers Descriptor cache
Base address Limit Access

Invisible part

(a)

Base address Limit Access

Base address Limit

TR
LDTR

GDTR
IDTR

GS
FS
SS
ES

CS
DS

Invisible

Figure 3.8: Visible and invisible registers in protected mode

generate an executable (binary) version of the program. The assembly command
shown is intended to create an intermediate file with .obj extension. To produce an
executable program, i.e, a program with an extension .exe, all object files created
must be first linked. A free 16-bit linker alink is used in this case. The result of
the linking step is an executable file. This is a 16-bit application and therefore, the
[BITS 16] directive is used to instruct the assembler to generate a binary code for
execution in a 16-bit real mode:

Example 1:

; This program illustrates the segmented memory model
; assemble using the 16-bit nasm assembler:
; nasm16 -f obj hello.asm -o hello.obj
; this will produce: hello.obj
; to link do: alink hello
; it will produce: hello.exe
; note: an entry point (..start) must be specified.

[BITS 16]

SEGMENT mystack stack

3.4. ASSEMBLY PROGRAMS 57

resb 100h
stacktop:

SEGMENT data
msg db "Hello, world!", 13, 10, ’$’

SEGMENT code
..start:

mov ax, data
mov ds, ax
mov ax, mystack
mov ss, ax
mov sp, stacktop

mov ah, 9
mov dx, msg
int 21H

mov ax, 04C00H
int 21H

The directive segment mystack stack directs nasm to create a structure with a
name mystack of type stack. The size of the stack is indicated with the statement
resb 100h that allocates 256 bytes of RAM space. The declaration of the stack
segment is not necessary for the correct execution of the program, however, alink
will issue a warning and/or generate an erroneous output if the segment of type
stack is not found.

The declaration segment data, indicates the section of the program where nasm
expects to find all the definitions of data that require initialization. An additional
section referred to as the .bss segment can also be used to declare and allocate non-
initialized data. The declaration segment code is the section of the program where
nasm expects to find the actual code.

Since memory is addressed through the segment structure, the corresponding
segment registers are initialized. Thus, ds is initialized to contain a 16-bit value
used to address the data segment. Likewise, the ss register is initialized to mystack.
Also the stack pointer register (sp) is initialized to 100h which is the offset stored at
stacktop. Recall that the pair ss:sp will always point to the top of the stack. Note
that the program provides an entry point labeled ..start to identify the initial module
where the execution begins; the presence of this label is helpful for multi-module
applications and the label ”..start” will simply identify the first module.

58 CHAPTER 3. ASSEMBLY PROGRAMMING ISSUES

Within the data section of the program a string variable msg of type db (define
byte) is initialized. This string is $-terminated to be used by a DOS interrupt call
int 21h. This call requires a function code to be specified in the 8-bit register ah, and
the address of the string to be placed in the 16-bit register dx. Note that the string
contains the character codes 13 and 10 which correspond to the carriage return and
new line ascii codes, respectively. The program terminates with the execution of
another int 21h interrupt call; in this case, the call requires a function code 4Ch in
ah and a value 0 in al. The purpose of this call is to implement a return to dos.

The implementation of the hello, world program using a flat model approach
is shown in Example 2. Note that there is no need to initialize the data segment
in order to access the string to display. The directive ORG 0100h sets the origin
address where code execution begins. The implication of this directive in a flat
model is that when the program is loaded for execution, the ip register will contain
the value 0100h to point to the first instruction of the program. A .com program is
a binary program directly generated by nasm without the need of a linking step.

Example 2:

; this program uses a flat memory model
; it must be assemble using the 16-bit nasm assembler
; to assemble do: nasm -f bin first.asm -o first.com
; this will produce: first.com
;

[BITS 16] ;alternatively USE16 can be used
ORG 0100h ;DOS will place the program at this address

;for execution

SEGMENT .text

hello:
mov ah, 9
mov dx, msg
int 21H

mov ax, 04C00H
int 21H

SEGMENT .data ;SEGMENT is equivalent to SECTION

msg db "Hello, world!", 13, 10, ’$’

3.5. ASSEMBLY COMMANDS 59

3.4.1 Instruction Formats

The general instruction format for Intel processor is as follows:

[label:][mnemonic][operands][;comments]

The label is an identifier followed by a colon; it specifies an address where the main
procedure begins or simply identifies the target address of a jump instruction. The
mnemonic field specifies a reserved name for instruction opcodes used by the pro-
cessor for execution. The operands field specifies up to three operands required by
the instruction. Most instructions operate on two operands specified as: destina-
tion, source. The results of the operation will overwrite the current contents of the
destination operand. The comments field is preceded by a ”;” and the comments
are ignored by the assembler.

3.5 Assembly Commands

The first step to develop applications in assembly language is to open a DOS window
from a window-based environment, To assemble code using nasm type the command
line:

nasm -f object-format myprogram.asm

The object-format is one of the following: bin, coff, elf, obj or win32, depending
of the expected output and the available compiler. To generate binary files without
the linking step assemble source code into .com files. Nasm can generate .com files
using the 16-bit assembler with the following command:

nasm16 -f bin myprogram.asm -o myprogram.com

The assembly process generates object files that can be linked into a single
binary file. Nasm creates object files by using the command:

nasm16 -f obj myprogram.asm -o myprogram.obj

Object files for 16-bit applications, can be linked using a 16-bit linker such as
alink to generate executable files with the extension .exe. The following command:

alink myprogram

60 CHAPTER 3. ASSEMBLY PROGRAMMING ISSUES

will take the object file myprogram.obj and generate myprogram.exe. The linker tool
alink was created by Anthony Willians and is now available at http://alink.sourceforge.net.
In general to assemble n different object files prog1, prog2, . . . ,progn, the linker is
used as follows:

alink prog1 prog2 . . . progn

this command will yield an executable file: prog1.exe; the module prog1.asm is
identified as the main or initial module and must be the only module with a ”..start”
entry point to indicate to the linker where code execution is to begin. The remaining
modules are external and do not require additional entry points.

To assemble 32-bit applications a separate nasm tool is used to generate inter-
mediate object files. The command line that calls for nasm32 also must specify the
assembly code:

nasm32 -f coff myprogam.asm

which it will create the object file myprogram.o. The object file thus generated
can be combined with other object code and/or ”C” source code to generate an
executable via a 32-bit compiler such as linux or djgpp. Using djgpp object files can
be created from “C” source files as follows:

gcc -c acprogram.c

If both object files acprogram.o and myprogram.o need to be linked, the following
djgpp command line is used to produce an executable file myexe.exe:

gcc -o myexec acprogram.o myprogram.o

The code shown in Example 3 implements again the hello world! program in 32
bits. This small program is assembled using the command nasm32 -f coff first.asm.
The coff is the compiling option that the djgpp linker reads. The object file first.o is
generated and can be used in the linking step. The djgpp provides the linking step
and generates an executable program. The command line gcc -o first first.o links
the single object file provided and generates an executable named first.

Example 3:

; To assemble use the 32-bit nasm assembler: nasm32 -f coff first.asm
; this will produce: first.o

3.5. ASSEMBLY COMMANDS 61

; To link use djgpp: gcc -o first first.o

BITS 32
global _main

section .data
msg db "Hello, world!", 13, 10, ’$’

section .text
_main:

mov ah, 9
mov edx, msg
int 21h
ret

The first line BITS 32 directs nasm to use 32-bit instructions. Now the ad-
dressable space is a huge flat 32-bit space. The second line global main is actually
a directive to the linker to locate a global label main.

3.5.1 Public and External Declarations

An external declaration causes the linker to look for the declared label in another
module. The label corresponds to a global variable or the name of a procedure.

The declaration:

EXTERN ClearW

tells the assembler that the label ClearW is not found in the current module and
therefore it will be resolved later during the linking process. However, to make a
procedure or a variable externally accessible it must first be made public . The
declaration:

GLOBAL ClearW

will make the label ClearW public and therefore, accessible by any other external
module. For any global declaration, nasm will record its name and address into the
object file it creates. Object files with a external declarations are interpreted as
references, or unresolved links, to other object files, variables, etc., The linker takes
all the object files named in the command line, matches up the names, and resolves
the addresses of the global procedures or variables into the code.

62 CHAPTER 3. ASSEMBLY PROGRAMMING ISSUES

3.6 Exercises

1. A typical stack segment declaration is as follows:

segment stackno1 stack
resb 100h

stacktop:

(a) What are the hexadecimal contents of SP when the program begins?

(b) What is the maximum number of words that the stack may contain?

2. Determine the memory locations addressed by the following combinations of
segment:offset registers:

(a) DS:DI = 1000:2000h

(b) DS:SI = 2000:1002h

(c) SS:BP = 2300:3200h

(d) SS:SP = 2900:3A00h

3. The following hexadecimal values represent a physical 20-bit address. Provide
a possible representation using 2 16-bit values in the segmented model, i.e.,
segment:offset format:

(a) 02008h

(b) BF00h

(c) 4200h

(d) BFA2h

4. What is a selector, where is it found, and what is its purpose?

5. Explain the purpose of a segment register in protected mode memory address-
ing.

6. What information is contained in a segment descriptor?

7. Explain how a linear address is generated using segment selectors and descrip-
tors.

8. If the limit and base in the global descriptor table are 0FFFh and 00210000h,
respectively.

3.6. EXERCISES 63

(a) What is the starting and ending address of the descriptor table?

(b) What is the size of the table in bytes?

(c) How many descriptors can be stored in the table?

9. If DS = 0305h in a protected mode environment derive which entry, what
table, and requested privileges are selected?

10. How is the local descriptor table addressed in the memory system?

11. Three sections can be identified in a real-mode assembly program: data, stack,
and code sections. For each section indicate at least one possible pair registers
that can be used to addressed the corresponding section in memory when the
program is loaded.

12. A virtual 8086-mode corresponds to a task controlled by the operating system.
Explain how the operating system establishes a 8086 virtual machine.

