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CHAPTER 1: Introduction

EXERCISES 1.1: Background, page 5

1. This equation involves only ordinary derivatives of x with respect to t, and the highest deriva-

tive has the second order. Thus it is an ordinary differential equation of the second order with

independent variable t and dependent variable x. It is linear because x, dx/dt, and d2x/dt2

appear in additive combination (even with constant coefficients) of their first powers.

3. This equation is an ODE because it contains no partial derivatives. Since the highest order

derivative is dy/dx, the equation is a first order equation. This same term also shows us that

the independent variable is x and the dependent variable is y. This equation is nonlinear

because of the y in the denominator of the term [y(2 − 3x)]/[x(1 − 3y)] .

5. This equation is an ODE because it contains only ordinary derivatives. The term dp/dt is the

highest order derivative and thus shows us that this is a first order equation. This term also

shows us that the independent variable is t and the dependent variable is p. This equation

is nonlinear since in the term kp(P − p) = kPp − kp2 the dependent variable p is squared

(compare with equation (7) on page 5 of the text).

7. This equation is an ordinary first order differential equation with independent variable x and

dependent variable y. It is nonlinear because it contains the square of dy/dx.

9. This equation contains only ordinary derivative of y with respect to x. Hence, it is an ordi-

nary differential equation of the second order (the highest order derivative is d2y/dx2) with

independent variable x and dependent variable y. This equation is of the form (7) on page 5

of the text and, therefore, is linear.
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Chapter 1

11. This equation contains partial derivatives, thus it is a PDE. Because the highest order deriva-

tive is a second order partial derivative, the equation is a second order equation. The terms

∂N/∂t and ∂N/∂r show that the independent variables are t and r and the dependent variable

is N .

13. Since the rate of change of a quantity means its derivative, denoting the coefficient propor-

tionality between dp/dt and p(t) by k (k > 0), we get

dp

dt
= kp.

15. In this problem, T ≥ M (coffee is hotter than the air), and T is a decreasing function of t,

that is dT/dt ≤ 0. Thus
dT

dt
= k(M − T ),

where k > 0 is the proportionality constant.

17. In classical physics, the instantaneous acceleration, a, of an object moving in a straight line

is given by the second derivative of distance, x, with respect to time, t; that is

d2x

dt2
= a.

Integrating both sides with respect to t and using the given fact that a is constant we obtain

dx

dt
= at+ C. (1.1)

The instantaneous velocity, v, of an object is given by the first derivative of distance, x,

with respect to time, t. At the beginning of the race, t = 0, both racers have zero velocity.

Therefore we have C = 0. Integrating equation (1.1) with respect to t we obtain

x =
1

2
at2 + C1 .

For this problem we will use the starting position for both competitors to be x = 0 at t = 0.

Therefore, we have C1 = 0. This gives us a general equation used for both racers as

x =
1

2
at2 or t =

√
2x

a
,

2



Exercises 1.2

where the acceleration constant a has different values for Kevin and for Alison. Kevin covers

the last 1
4

of the full distance, L, in 3 seconds. This means Kevin’s acceleration, aK , is

determined by:

tK − t3/4 = 3 =

√
2L

aK

−
√

2(3L/4)

aK

,

where tK is the time it takes for Kevin to finish the race. Solving this equation for aK gives,

aK =

(√
2 −√3/2

)2

9
L.

Therefore the time required for Kevin to finish the race is given by:

tK =

√√√√ 2L(√
2 −√3/2

)2

L/9
=

3√
2 −√3/2

√
2 = 12 + 6

√
3 ≈ 22.39 sec.

Alison covers the last 1/3 of the distance, L, in 4 seconds. This means Alison’s acceleration,

aA, is found by:

tA − t2/3 = 4 =

√
2L

aA
−
√

2(2L/3)

aA
,

where tA is the time required for Alison to finish the race. Solving this equation for aA gives

aA =

(√
2 −√4/3

)2

16
L.

Therefore the time required for Alison to finish the race is given by:

tA =

√√√√ 2L(√
2 −√4/3

)2

(L/16)
=

4√
2 −√4/3

√
2 = 12 + 4

√
6 ≈ 21.80 sec.

The time required for Alison to finish the race is less than Kevin; therefore Alison wins the

race by 6
√

3 − 4
√

6 ≈ 0.594 seconds.

EXERCISES 1.2: Solutions and Initial Value Problems, page 14

1. (a) Differentiating φ(x) yields φ′(x) = 6x2. Substitution φ and φ′ for y and y′ into the given

equation, xy′ = 3y, gives

x
(
6x2
)

= 3
(
2x3
)
,

3



Chapter 1

which is an identity on (−∞,∞). Thus φ(x) is an explicit solution on (−∞,∞).

(b) We compute
dφ

dx
=

d

dx
(ex − x) = ex − 1.

Functions φ(x) and φ′(x) are defined for all real numbers and

dφ

dx
+φ(x)2 = (ex − 1)+(ex − x)2 = (ex − 1)+

(
e2x − 2xex + x2

)
= e2x+(1−2x)ex+x2−1,

which is identically equal to the right-hand side of the given equation. Thus φ(x) is an

explicit solution on (−∞,∞).

(c) Note that the function φ(x) = x2 − x−1 is not defined at x = 0. Differentiating φ(x)

twice yields

dφ

dx
=

d

dx

(
x2 − x−1

)
= 2x− (−1)x−2 = 2x+ x−2;

d2φ

dx2
=

d

dx

(
dφ

dx

)
=

d

dx

(
2x+ x−2

)
= 2 + (−2)x−3 = 2

(
1 − x−3

)
.

Therefore

x2 d
2φ

dx2
= x2 · 2 (1 − x−3

)
= 2
(
x2 − x−1

)
= 2φ(x),

and φ(x) is an explicit solution to the differential equation x2y′′ = 2y on any interval not

containing the point x = 0, in particular, on (0,∞).

3. Since y = sin x+x2, we have y′ = cos x+2x and y′′ = − sin x+2. These functions are defined

on (−∞,∞). Substituting these expressions into the differential equation y′′ + y = x2 + 2

gives

y′′ + y = − sin x+ 2 + sin x+ x2 = 2 + x2 = x2 + 2 for all x in (−∞,∞).

Therefore, y = sin x+ x2 is a solution to the differential equation on the interval (−∞,∞).

5. Differentiating x(t) = cos 2t, we get

dx

dt
=

d

dt
(cos 2t) = (− sin 2t)(2) = −2 sin 2t.

4



Exercises 1.2

So,
dx

dt
+ tx = −2 sin 2t+ t cos 2t �≡ sin 2t

on any interval. Therefore, x(t) is not a solution to the given differential equation.

7. We differentiate y = e2x − 3e−x twice:

dy

dx
=

d

dx

(
e2x − 3e−x

)
= e2x(2) − 3e−x(−1) = 2e2x + 3e−x;

d2y

dx2
=

d

dx

(
dy

dx

)
=

d

dx

(
2e2x + 3e−x

)
= 2e2x(2) + 3e−x(−1) = 4e2x − 3e−x.

Substituting y, y′, and y′′ into the differential equation and collecting similar terms, we get

d2y

dx2
− dy

dx
− 2y =

(
4e2x − 3e−x

)− (2e2x + 3e−x
)− 2

(
e2x − 3e−x

)
= (4 − 2 − 2)e2x + (−3 − 3 − 2(−3))e−x = 0.

Hence y = e2x − 3e−x is an explicit solution to the given differential equation.

9. Differentiating the equation x2 + y2 = 6 implicitly, we obtain

2x+ 2yy′ = 0 ⇒ y′ = −x
y
.

Since there can be no function y = f(x) that satisfies the differential equation y′ = x/y and

the differential equation y′ = −x/y on the same interval, we see that x2 + y2 = 6 does not

define an implicit solution to the differential equation.

11. Differentiating the equation exy + y = x− 1 implicitly with respect to x yields

d

dx
(exy + y) =

d

dx
(x− 1)

⇒ exy d

dx
(xy) +

dy

dx
= 1

⇒ exy

(
y + x

dy

dx

)
+
dy

dx
= 1

⇒ yexy +
dy

dx
(xexy + 1) = 1

⇒ dy

dx
=

1 − yexy

1 + xexy
=
exy (e−xy − y)

exy (e−xy + x)
=
e−xy − y

e−xy + x
.

5



Chapter 1

Therefore, the function y(x) defined by exy + y = x − 1 is an implicit solution to the given

differential equation.

13. Differentiating the equation sin y + xy − x3 = 2 implicitly with respect to x, we obtain

y′ cos y + xy′ + y − 3x2 = 0

⇒ (cos y + x)y′ = 3x2 − y ⇒ y′ =
3x2 − y

cos y + x
.

Differentiating the second equation above again, we obtain

(−y′ sin y + 1)y′ + (cos y + x)y′′ = 6x− y′

⇒ (cos y + x)y′′ = 6x− y′ + (y′)2 sin y − y′ = 6x− 2y′ + (y′)2 sin y

⇒ y′′ =
6x− 2y′ + (y′)2 sin y

cos y + x
.

Multiplying the right-hand side of this last equation by y′/y′ = 1 and using the fact that

y′ =
3x2 − y

cos y + x
,

we get

y′′ =
6x− 2y′ + (y′)2 sin y

cos y + x
· y′

(3x2 − y)/(cos y + x)

=
6xy′ − 2(y′)2 + (y′)3 sin y

3x2 − y
.

Thus y is an implicit solution to the differential equation.

15. We differentiate φ(x) and substitute φ and φ′ into the differential equation for y and y′. This

yields

φ(x) = Ce3x + 1 ⇒ dφ(x)

dx
=
(
Ce3x + 1

)′
= 3Ce3x;

dφ

dx
− 3φ =

(
3Ce3x

)− 3
(
Ce3x + 1

)
= (3C − 3C)e3x − 3 = −3,

which holds for any constant C and any x on (−∞,∞). Therefore, φ(x) = Ce3x + 1 is a

one-parameter family of solutions to y′−3y = −3 on (−∞,∞). Graphs of these functions for

C = 0, ±0.5, ±1, and ±2 are sketched in Figure 1-A.

6
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–10

10

 

–0.5 0.5
 

C=2

C=1

C=0.5

C=0

C=−0.5

C=−1

C=−2

Figure 1–A: Graphs of the functions y = Ce3x + 1 for C = 0, ±0.5, ±1, and ±2.

17. Differentiating φ(x), we find that

φ′(x) =

(
2

1 − cex

)′
=
[
2 (1 − cex)−1]′

= 2(−1) (1 − cex)−2 (1 − cex)′ = 2cex (1 − cex)−2 . (1.2)

On the other hand, substitution of φ(x) for y into the right-hand side of the given equation

yields

φ(x)(φ(x) − 2)

2
=

1

2

2

1 − cex

(
2

1 − cex
− 2

)
=

2

1 − cex

(
1

1 − cex
− 1

)
=

2

1 − cex

1 − (1 − cex)

1 − cex
=

2cex

(1 − cex)2
,

which is identical to φ′(x) found in (1.2).

19. Squaring and adding the terms dy/dx and y in the equation (dy/dx)2 + y2 + 3 = 0 gives a

nonnegative number. Therefore when these two terms are added to 3, the left-hand side will

always be greater than or equal to three and hence can never equal the right-hand side which

is zero.

7
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21. For φ(x) = xm, we have φ′(x) = mxm−1 and φ′′(x) = m(m− 1)xm−2.

(a) Substituting these expressions into the differential equation, 3x2y′′ + 11xy′ − 3y = 0,

gives

3x2
[
m(m− 1)xm−2

]
+ 11x

[
mxm−1

]− 3xm = 0

⇒ 3m(m− 1)xm + 11mxm − 3xm = 0

⇒ [3m(m− 1) + 11m− 3] xm = 0

⇒ [
3m2 + 8m− 3

]
xm = 0.

For the last equation to hold on an interval for x, we must have

3m2 + 8m− 3 = (3m− 1)(m+ 3) = 0.

Thus either (3m− 1) = 0 or (m+ 3) = 0, which gives m =
1

3
, −3.

(b) Substituting the above expressions for φ(x), φ′(x), and φ′′(x) into the differential equa-

tion, x2y′′ − xy′ − 5y = 0, gives

x2
[
m(m− 1)xm−2

]− x
[
mxm−1

]− 5xm = 0 ⇒ [
m2 − 2m− 5

]
xm = 0.

For the last equation to hold on an interval for x, we must have

m2 − 2m− 5 = 0.

To solve for m we use the quadratic formula:

m =
2 ±√

4 + 20

2
= 1 ±

√
6 .

23. In this problem, f(x, y) = x3 − y3 and so

∂f

∂y
=
∂ (x3 − y3)

∂y
= −3y2.

Clearly, f and ∂f/∂y (being polynomials) are continuous on the whole xy-plane. Thus the

hypotheses of Theorem 1 are satisfied, and the initial value problem has a unique solution for

any initial data, in particular, for y(0) = 6.

8
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25. Writing
dx

dt
= −4t

x
= −4tx−1,

we see that f(t, x) = −4tx−1 and ∂f(t, x)/∂x = ∂(−4tx−1)/∂x = 4tx−2. The functions

f(t, x) and ∂f(t, x)/∂x are not continuous only when x = 0. Therefore, they are continuous

in any rectangle R that contains the point (2,−π), but does not intersect the t-axis; for

instance, R = {(t, x) : 1 < t < 3, −2π < x < 0}. Thus, Theorem 1 applies, and the given

initial problem has a unique solution.

26. Here f(x, y) = 3x − 3
√
y − 1 and ∂f(x, y)/∂y = −1

3
(y − 1)−2/3. Unfortunately, ∂f/∂y is not

continuous or defined when y = 1. So there is no rectangle containing (2, 1) in which both f

and ∂f/∂y are continuous. Therefore, we are not guaranteed a unique solution to this initial

value problem.

27. Rewriting the differential equation in the form dy/dx = x/y, we conclude that f(x, y) = x/y.

Since f is not continuous when y = 0, there is no rectangle containing the point (1, 0) in

which f is continuous. Therefore, Theorem 1 cannot be applied.

29. (a) Clearly, both functions φ1(x) ≡ 0 and φ2(x) = (x − 2)3 satisfy the initial condition,

y(2) = 0. Next, we check that they also satisfy the differential equation dy/dx = 3y2/3.

dφ1

dx
=

d

dx
(0) = 0 = 3φ1(x)

2/3 ;

dφ2

dx
=

d

dx

[
(x− 2)3

]
= 3(x− 2)2 = 3

[
(x− 2)3

]2/3
= 3φ2(x)

2/3 .

Hence both functions, φ1(x) and φ2(x), are solutions to the initial value problem of

Exapmle 9.

(b) In this initial value problem,

f(x, y) = 3y2/3 ⇒ ∂f(x, y)

∂y
= 3

2

3
y2/3−1 =

2

y1/3
,

x0 = 0 and y0 = 10−7. The function f(x, y) is continuous everywhere; ∂f(x, y)/∂y is

continuous in any region which does not intersect the x-axis (where y = 0). In particular,

9
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both functions, f(x, y) and ∂f(x, y)/∂y, are continuous in the rectangle

R =
{
(x, y) : −1 < x < 1, (1/2)10−7 < y < (2)10−7

}
containing the initial point (0, 10−7). Thus, it follows from Theorem 1 that the given

initial value problem has a unique solution in an interval about x0.

31. (a) To try to apply Theorem 1 we must first write the equation in the form y′ = f(x, y).

Here f(x, y) = 4xy−1 and ∂f(x, y)/∂y = −4xy−2. Neither f nor ∂f/∂y are continuous

or defined when y = 0. Therefore there is no rectangle containing (x0, 0) in which both

f and ∂f/∂y are continuous, so Theorem 1 cannot be applied.

(b) Suppose for the moment that there is such a solution y(x) with y(x0) = 0 and x0 �= 0.

Substituting into the differential equation we get

y(x0)y
′(x0) − 4x0 = 0 (1.3)

or

0 · y′(x0) − 4x0 = 0 ⇒ 4x0 = 0.

Thus x0 = 0, which is a contradiction.

(c) Taking C = 0 in the implicit solution 4x2 − y2 = C given in Example 5 on page 9 gives

4x2 − y2 = 0 or y = ±2x. Both solutions y = 2x and y = −2x satisfy y(0) = 0.

EXERCISES 1.3: Direction Fields, page 22

1. (a) For y = ±2x,

dy

dx
=

d

dx
(±2x) = ±2 and

4x

y
=

4x

±2x
= ±2, x �= 0.

Thus y = 2x and y = −2x are solutions to the differential equation dy/dx = 4x/y on

any interval not containing the point x = 0.

(b) , (c) See Figures B.1 and B.2 in the answers of the text.

10
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(d) As x→ ∞ or x→ −∞, the solution in part (b) increases unboundedly and has the lines

y = 2x and y = −2x, respectively, as slant asymptotes. The solution in part (c) also

increases without bound as x→ ∞ and approaches the line y = 2x, while it is not even

defined for x < 0.

3. From Figure B.3 in the answers section of the text, we conclude that, regardless of the initial

velocity, v(0), the corresponding solution curve v = v(t) has the line v = 8 as a horizontal

asymptote, that is, limt→∞ v(t) = 8. This explains the name “terminal velocity” for the value

v = 8.

5. (a) The graph of the directional field is shown in Figure B.4 in the answers section of the

text.

(b), (c) The direction field indicates that all solution curves (other than p(t) ≡ 0) will approach

the horizontal line (asymptote) p = 1.5 as t→ +∞. Thus limt→+∞ p(t) = 1.5 .

(d) No. The direction field shows that populations greater than 1500 will steadily decrease,

but can never reach 1500 or any smaller value, i.e., the solution curves cannot cross

the line p = 1.5 . Indeed, the constant function p(t) ≡ 1.5 is a solution to the given

logistic equation, and the uniqueness part of Theorem 1, page 12, prevents intersections

of solution curves.

6. (a) The slope of a solution to the differential equation dy/dx = x+ sin y is given by dy/dx .

Therefore the slope at (1, π/2) is equal to

dy

dx
= 1 + sin

π

2
= 2.

(b) The solution curve is increasing if the slope of the curve is greater than zero. From part

(a) we know the slope to be x+ sin y. The function sin y has values ranging from −1 to

1; therefore if x is greater than 1 then the slope will always have a value greater than

zero. This tells us that the solution curve is increasing.

(c) The second derivative of every solution can be determined by finding the derivative of

11
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the differential equation dy/dx = x+ sin y. Thus

d

dx

(
dy

dx

)
=

d

dx
(x+ sin y);

⇒ d2y

dx2
= 1 + (cos y)

dy

dx
(chain rule)

= 1 + (cos y)(x+ sin y) = 1 + x cos y + sin y cos y;

⇒ d2y

dx2
= 1 + x cos y +

1

2
sin 2y.

(d) Relative minima occur when the first derivative, dy/dx, is equal to zero and the second

derivative, d2y/dx2, is greater than zero. The value of the first derivative at the point

(0, 0) is given by
dy

dx
= 0 + sin 0 = 0.

This tells us that the solution has a critical point at the point (0, 0). Using the second

derivative found in part (c) we have

d2y

dx2
= 1 + 0 · cos 0 +

1

2
sin 0 = 1.

This tells us the point (0, 0) is a relative minimum.

7. (a) The graph of the directional field is shown in Figure B.5 in the answers section of the

text.

(b) The direction field indicates that all solution curves with p(0) > 1 will approach the

horizontal line (asymptote) p = 2 as t→ +∞. Thus limt→+∞ p(t) = 2 when p(0) = 3.

(c) The direction field shows that a population between 1000 and 2000 (that is 1 < p(0) < 2)

will approach the horizontal line p = 2 as t→ +∞.

(d) The direction field shows that an initial population less than 1000 (that is 0 ≤ p(0) < 1)

will approach zero as t→ +∞.

(e) As noted in part (d), the line p = 1 is an asymptote. The direction field indicates that a

population of 900 (p(0) = 0.9) steadily decreases with time and therefore cannot increase

to 1100.

12
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9. (a) The function φ(x), being a solution to the given initial value problem, satisfies

dφ

dx
= x− φ(x), φ(0) = 1. (1.4)

Thus
d2φ

dx2
=

d

dx

(
dφ

dx

)
=

d

dx
(x− φ(x)) = 1 − dφ

dx
= 1 − x+ φ(x),

where we have used (1.4) substituting (twice) x− φ(x) for dφ/dx.

(b) First we note that any solution to the given differential equation on an interval I is

continuously diferentiable on I. Indeed, if y(x) is a solution on I, then y′(x) does exist

on I, and so y(x) is continuous on I because it is differentiable. This immediately implies

that y′(x) is continuous as the difference of two continuous functions, x and y(x).

From (1.4) we conclude that

dφ

dx

∣∣∣
x=0

= [x− φ(x)]
∣∣
x=0

= 0 − φ(0) = −1 < 0

and so the continuity of φ′(x) implies that, for |x| small enough, φ′(x) < 0. By the

Monotonicity Test, negative derivative of a function results that the function itself is

decreasing.

When x increases from zero, as far as φ(x) > x, one has φ′(x) < 0 and so φ(x) decreases.

On the other hand, the function y = x increases unboundedly, as x → ∞. Thus, by

intermediate value theorem, there is a point, say, x∗ > 0, where the curve y = φ(x)

crosses the line y = x. At this point, φ(x∗) = x∗ and hence φ′(x∗) = x∗ − φ(x∗) = 0.

(c) From (b) we conclude that x∗ is a critical point for φ(x) (its derivative vanishes at this

point). Also, from part (a), we see that

φ′′(x∗) = 1 − φ′(x∗) = 1 > 0.

Hence, by Second Derivative Test, φ(x) has a relative minimum at x∗.

(d) Remark that the arguments, used in part (c), can be applied to any point x̃, where

φ′(x̃) = 0, to conclude that φ(x) has a relative minimum at x̃. Since a continuously

13
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differentiable function on an interval cannot have two relative minima on an interval

without having a point of relative maximum, we conclude that x∗ is the only point where

φ′(x) = 0. Continuity of φ′(x) implies that it has the same sign for all x > x∗ and,

therefore, it is positive there since it is positive for x > x∗ and close to x∗ (φ′(x∗) = 0

and φ′′(x∗) > 0). By Monotonicity Test, φ(x) increases for x > x∗.

(e) For y = x − 1, dy/dx = 1 and x − y = x − (x − 1) = 1. Thus the given differential

equation is satisfied, and y = x− 1 is indeed a solution.

To show that the curve y = φ(x) always stays above the line y = x− 1, we note that the

initial value problem
dy

dx
= x− y, y(x0) = y0 (1.5)

has a unique solution for any x0 and y0. Indeed, functions f(x, y) = x−y and ∂f/∂y ≡ −1

are continuous on the whole xy-plane, and Theorem 1, Section 1.2, applies. This implies

that the curve y = φ(x) always stays above the line y = x− 1:

φ(0) = 1 > −1 = (x− 1)
∣∣
x=0

,

and the existence of a point x̃ with φ (x̃) ≤ (x̃− 1) would imply, by intermediate value

theorem, the existence of a point x0, 0 < x0 ≤ x̃, satisfying y0 := φ(x0) = x0 − 1 and,

therefore, there would be two solutions to the initial value problem (1.5).

Since, from part (a), φ′′(x) = 1−φ′(x) = 1−x+φ(x) = φ(x)−(x−1) > 0, we also conclude

that φ′(x) is an increasing function and φ′(x) < 1. Thus there exists limx→∞ φ′(x) ≤ 1.

The strict inequality would imply that the values of the function y = φ(x), for x large

enough, become smaller than those of y = x− 1. Therefore,

lim
x→∞

φ′(x) = 1 ⇔ lim
x→∞

[x− φ(x)] = 1,

and so the line y = x− 1 is a slant asymptote for φ(x).

(f), (g) The direction field for given differential equation and the curve y = φ(x) are shown in

Figure B.6 in the answers of the text.

14



Exercises 1.3

11. For this equation, the isoclines are given by 2x = c. These are vertical lines x = c/2. Each

element of the direction field associated with a point on x = c/2 has slope c. (See Figure B.7

in the answers of the text.)

13. For the equation ∂y/∂x = −x/y, the isoclines are the curves −x/y = c. These are lines that

pass through the origin and have equations of the form y = mx, where m = −1/c , c �= 0. If

we let c = 0 in −x/y = c, we see that the y-axis (x = 0) is also an isocline. Each element

of the direction field associated with a point on an isocline has slope c and is, therefore,

perpendicular to that isocline. Since circles have the property that at any point on the circle

the tangent at that point is perpendicular to a line from that point to the center of the circle,

we see that the solution curves will be circles with their centers at the origin. But since we

cannot have y = 0 (since −x/y would then have a zero in the denominator) the solutions will

not be defined on the x-axis. (Note however that a related form of this differential equation is

yy′ + x = 0. This equation has implicit solutions given by the equations y2 + x2 = C. These

solutions will be circles.) The graph of φ(x), the solution to the equation satisfying the initial

condition y(0) = 4, is the upper semicircle with center at the origin and passing through the

point (0, 4) (see Figure B.8 in the answers of the text).

15. For the equation dy/dx = 2x2−y, the isoclines are the curves 2x2−y = c, or y = 2x2−c. The

curve y = 2x2 − c is a parabola which is open upward and has the vertex at (0,−c). Three of

them, for c = −1, 0, and 2 (dotted curves), as well as the solution curve satisfying the initial

condition y(0) = 0, are depicted in Figure B.9.

17. The isoclines for the equation
dy

dx
= 3 − y +

1

x

are given by

3 − y +
1

x
= c ⇔ y =

1

x
+ 3 − c,

which are hyperbolas having x = 0 as a vertical asymptote and y = 3 − c as a horizontal

asymptote. Each element of the direction field associated with a point on such a hyperbola

has slope c. For x > 0 large enough: if an isocline is located above the line y = 3, then c ≤ 0,

15
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Figure 1–B: Isoclines and the direction field for Problem 17.

and so the elements of the direction field have negative or zero slope; if an isocline is located

below the line y = 3, then c > 0, and so the elements of the direction field have positive slope.

In other words, for x > 0 large enough, at any point above the line y = 3 a solution curve

decreases passing through this point, and any solution curve increases passing through a point

below y = 3. The direction field for this differential equation is depicted in Figure 1-B. From

this picture we conclude that any solution to the differential equation dy/dx = 3 − y + 1/x

has the line y = 3 as a horizontal asymptote.

19. Integrating both sides of the equation dy/y = −dx/x yields∫
1

y
dy = −

∫
1

x
dx ⇒ ln |y| = − ln |x| + C1 ⇒ ln |y| = ln

eC1

|x|
⇒ |y| =

eC1

|x| ⇒ |y| =
C2

|x| ,

where C1 is an arbitrary constant and so C2 := eC1 is an arbitrary positive constant. The last

equality can be written as

y = ±C2

x
=
C

x
,

16
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where C = ±C2 is any nonzero constant. The value C = 0 gives y ≡ 0 (for x �= 0), which is,

clearly, also a solution to the given equation.

EXERCISES 1.4: The Approximation Method of Euler, page 28

1. In this initial value problem, f(x, y) = x/y, x0 = 0, and y0 = −1. Thus, with h = 0.1, the

recursive formulas (2) and (3) on page 25 of the text become

xn+1 = xn + h = xn + 0.1 ,

yn+1 = yn + hf(xn, yn) = yn + 0.1 ·
(
xn

yn

)
, n = 0, 1, . . . .

We set n = 0 in these formulas and obtain

x1 = x0 + 0.1 = 0 + 0.1 = 0.1 ,

y1 = y0 + 0.1 ·
(
x0

y0

)
= −1 + 0.1 ·

(
0

−1

)
= −1.

Putting n = 1 in the recursive formulas yields

x2 = x1 + 0.1 = 0.1 + 0.1 = 0.2 ,

y2 = y1 + 0.1 ·
(
x1

y1

)
= −1 + 0.1 ·

(
0.1

−1

)
= −1.01 .

Continuing in the same manner, we find for n = 2, 3, and 4:

x3 = 0.2 + 0.1 = 0.3 , y3 = −1.01 + 0.1 ·
(

0.2

−1.01

)
= −1.02980 ;

x4 = 0.3 + 0.1 = 0.4 , y4 = −1.02980 + 0.1 ·
(

0.3

−1.02980

)
= −1.05893 ;

x5 = 0.4 + 0.1 = 0.5 , y5 = −1.05893 + 0.1 ·
(

0.4

−1.05893

)
= −1.09671 ,

where we have rounded off all answers to five decimal places.

2. In this problem, x0 = 0, y0 = 4, h = 0.1, and f(x, y) = −x/y. Thus, the recursive formulas

given in equations (2) and (3) on page 25 of the text become

xn+1 = xn + h = xn + 0.1 ,

17
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yn+1 = yn + hf(xn, yn) = yn + 0.1 ·
(
−xn

yn

)
, n = 0, 1, 2, . . . .

To find an approximation for the solution at the point x1 = x0 + 0.1 = 0.1, we let n = 0 in

the last recursive formula to find

y1 = y0 + 0.1 ·
(
−x0

y0

)
= 4 + 0.1 · (0) = 4.

To approximate the value of the solution at the point x2 = x1 + 0.1 = 0.2, we let n = 1 in the

last recursive formula to obtain

y2 = y1 + 0.1 ·
(
−x1

y1

)
= 4 + 0.1 ·

(
−0.1

4

)
= 4 − 1

400
= 3.9975 ≈ 3.998 .

Continuing in this way we find

x3 = x2 + 0.1 = 0.3 , y3 = y2 + 0.1 ·
(
−x2

y2

)
= 3.9975 + 0.1 ·

(
− 0.2

3.9975

)
≈ 3.992 ,

x4 = 0.4 , y4 ≈ 3.985 ,

x5 = 0.5 , y5 ≈ 3.975 ,

where all of the answers have been rounded off to three decimal places.

3. Here f(x, y) = y(2 − y), x0 = 0, and y0 = 3. We again use recursive formulas from Euler’s

method with h = 0.1. Setting n = 0, 1, 2, 3, and 4 and rounding off results to three decimal

places, we get

x1 = x0 + 0.1 = 0.1 , y1 = y0 + 0.1 · [y0(2 − y0)] = 3 + 0.1 · [3(2 − 3)] = 2.700;

x2 = 0.1 + 0.1 = 0.2 , y2 = 2.700 + 0.1 · [2.700(2 − 2.700)] = 2.511;

x3 = 0.2 + 0.1 = 0.3 , y3 = 2.511 + 0.1 · [2.511(2 − 2.511)] ≈ 2.383;

x4 = 0.3 + 0.1 = 0.4 , y4 = 2.383 + 0.1 · [2.383(2 − 2.383)] ≈ 2.292;

x5 = 0.4 + 0.1 = 0.5 , y5 = 2.292 + 0.1 · [2.292(2 − 2.292)] ≈ 2.225 .

5. In this problem, f(x, y) = (y2 + y)/x, x0 = y0 = 1, and h = 0.2. The recursive formulas (2)

and (3) on page 25 of the text, applied succesively with n = 1, 2, 3, and 4, yield

x1 = x0 + 0.2 = 1.2 , y1 = y0 + 0.2

(
y2

0 + y0

x0

)
= 1 + 0.2

(
12 + 1

1

)
= 1.400;

18
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x2 = 1.2 + 0.2 = 1.4 , y2 = 1.400 + 0.2

(
1.4002 + 1.400

1.2

)
≈ 1.960;

x3 = 1.4 + 0.2 = 1.6 , y3 = 1.960 + 0.2

(
1.9602 + 1.960

1.4

)
≈ 2.789;

x4 = 1.6 + 0.2 = 1.8 , y4 = 2.789 + 0.2

(
2.7892 + 2.789

1.6

)
≈ 4.110 .

7. For this problem notice that the independent variable is t and the dependent variable is x.

Hence, the recursive formulas given in equations (2) and (3) on page 25 of the text become

tn+1 = tn + h and φ(tn+1) ≈ xn+1 = xn + hf(tn, xn), n = 0, 1, 2, . . . .

For this problem, f(t, x) = 1+t sin(tx), t0 = 0, and x0 = 0. Thus the second recursive formula

above becomes

xn+1 = xn + h [1 + tn sin(tnxn)] , n = 0, 1, 2, . . . .

For the case N = 1, we have h = (1 − 0)/1 = 1 which gives us

t1 = 0 + 1 = 1 and φ(1) ≈ x1 = 0 + 1 · (1 + 0 · sin 0) = 1.

For the case N = 2, we have h = 1/2 = 0.5 . Thus we have

t1 = 0 + 0.5 = 0.5 , x1 = 0 + 0.5 · (1 + 0 · sin 0) = 0.5 ,

and

t2 = 0.5 + 0.5 = 1, φ(1) ≈ x2 = 0.5 + 0.5 · [1 + 0.5 · sin(0.25)] ≈ 1.06185 .

For the case N = 4, we have h = 1/4 = 0.25 , and so the recursive formulas become

tn+1 = tn + 0.25 and xn+1 = xn + 0.25 · [1 + tn sin(tnxn)] .

Therefore, we have

t1 = 0 + 0.25 = 0.25 , x1 = 0 + 0.25 · [1 + 0 · sin(0)] = 0.25 .
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Plugging these values into the recursive equations above yields

t2 = 0.25 + 0.25 = 0.5 and x2 = 0.25 + 0.25 · [1 + 0.25 · sin(0.0625)] = 0.503904 .

Continuing in this way gives

t3 = 0.75 and x3 = 0.503904 + 0.25 · [1 + 0.5 · sin(0.251952)] = 0.785066 ,

t4 = 1.00 and φ(1) ≈ x4 = 1.13920 .

For N = 8, we have h = 1/8 = 0.125 . Thus, the recursive formulas become

tn+1 = tn + 0.125 and xn+1 = xn + 0.125 · [1 + tn sin(tnxn)] .

Using these formulas and starting with t0 = 0 and x0 = 0, we can fill in Table 1-A. From this

we see that φ(1) ≈ x8 = 1.19157, which is rounded to five decimal places.

Table 1–A: Euler’s method approximations for the solution of x′ = 1+ t sin(tx), x(0) = 0,

at t = 1 with 8 steps (h = 1/8).

nnn tttnnn xxxnnn

1 0.125 0.125
2 0.250 0.250244
3 0.375 0.377198
4 0.500 0.508806
5 0.625 0.649535
6 0.750 0.805387
7 0.875 0.983634
8 1.000 1.191572

9. To approximate the solution on the whole interval [1, 2] by Euler’s method with the step

h = 0.1, we first approximate the solution at the points xn = 1 + 0.1n, n = 1, . . . , 10. Then,

on each subinterval [xn, xn+1], we approximate the solution by the linear interval, connecting
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(xn, yn) with (xn+1, yn+1), n = 0, 1, . . . , 9. Since f(x, y) = x−2 − yx−1 − y2, the recursive

formulas have the form

xn+1 = xn + 0.1 ,

yn+1 = yn + 0.1

(
1

x2
n

− yn

xn

− y2
n

)
, n = 0, 1, . . . , 9 ,

x0 = 1, y0 = −1. Therefore,

x1 = 1 + 0.1 = 1.1 , y1 = −1 + 0.1

(
1

12
− −1

1
− (−1)2

)
= −0.9 ;

x2 = 1.1 + 0.1 = 1.2 , y2 = −0.9 + 0.1

(
1

1.12
− −0.9

1.1
− (−0.9)2

)
≈ −0.81653719 ;

x3 = 1.2 + 0.1 = 1.3 , y3 = −0.81653719 + 0.1

(
1

1.22
− −0.81653719

1.2
− (−0.81653719)2

)
≈ −0.74572128 ;

x4 = 1.3 + 0.1 = 1.4 , y4 = −0.74572128 + 0.1

(
1

1.32
− −0.74572128

1.3
− (−0.74572128)2

)
≈ −0.68479653 ;

etc.

The results of these computations (rounded to five decimal places) are shown in Table 1-B.

Table 1–B: Euler’s method approximations for the solutions of y′ = x−2 − yx−1 − y2,

y(1) = −1, on [1, 2] with h = 0.1.

nnn xxxnnn yyynnn nnn xxxnnn yyynnn

0 1.0 −1.00000 6 1.6 −0.58511
1 1.1 −0.90000 7 1.7 −0.54371
2 1.2 −0.81654 8 1.8 −0.50669
3 1.3 −0.74572 9 1.9 −0.47335
4 1.4 −0.68480 10 2.0 −0.44314
5 1.5 −0.63176

The function y(x) = −1/x = x−1, obviously, satisfies the initial condition, y(1) = −1. Further

21



Chapter 1

–1

0

 

1.2 1.4 1.6 1.8 2
 

Polygonal approximation ↘

y=−1/x

Figure 1–C: Polygonal line approximation and the actual solution for Problem 9.

we compute both sides of the given differential equation:

y′(x) =
(−x−1

)′
= x−2 ,

f(x, y(x)) = x−2 − (−x−1
)
x−1 − (−x−1

)2
= x−2 + x−2 − x−2 = x−2 .

Thus, the function y(x) = −1/x is, indeed, the solution to the given initial value problem.

The graphs of the obtained polygonal line approximation and the actual solution are sketched

in Figure 1-C.

11. In this problem, the independent variable is t and the dependent variable is x; f(t, x) = 1+x2,

t0 = 0, and x0 = 0.

The function φ(t) = tan t satisfies the initial condition: φ(0) = tan 0 = 0. The differential

equation is also satisfied:

dφ

dt
= sec2 t = 1 + tan2 t = 1 + φ(t)2.

Therefore, φ(t) is the solution to the given initial value problem.
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For approximation of φ(t) at the point t = 1 with N = 20 steps, we take the step size

h = (1 − t0)/20 = 0.05. Thus, the recursive formulas for Euler’s method are

tn+1 = tn + 0.05 ,

xn+1 = xn + 0.05
(
1 + x2

n

)
.

Applying these formulas with n = 0, 1, . . . , 19, we obtain

x1 = x0 + 0.05
(
1 + x2

0

)
= 0.05 ,

x2 = x1 + 0.05
(
1 + x2

1

)
= 0.05 + 0.05

(
1 + 0.052

)
= 0.100125 ,

x3 = x2 + 0.05
(
1 + x2

2

)
= 0.100125 + 0.05

(
1 + 0.1001252

) ≈ 0.150626 ,

...

x19 = x18 + 0.05
(
1 + x2

18

) ≈ 1.328148 ,

φ(1) ≈ x20 = x19 + 0.05
(
1 + x2

19

)
= 1.328148 + 0.05

(
1 + 1.3281482

) ≈ 1.466347 ,

which is a good enough approximation to φ(1) = tan 1 ≈ 1.557408.

13. From Problem 12, yn = (1 + 1/n)n and so limn→∞ [(e− yn)/(1/n)] is a 0/0 indeterminant. If

we let h = 1/n in yn and use L’Hospital’s rule, we get

lim
n→∞

e− yn

1/n
= lim

h→0

e− (1 + h)1/h

h
= lim

h→0

g(h)

h
= lim

h→0

g′(h)
1

,

where g(h) = e− (1 + h)1/h. Writing (1 + h)1/h as eln(1+h)/h the function g(h) becomes

g(h) = e− eln(1+h)/h .

The first derivative is given by

g′(h) = 0 − d

dh

[
eln(1+h)/h

]
= −eln(1+h)/h d

dh

[
1

h
ln(1 + h)

]
.

Substituting Maclaurin’s series for ln(1 + h) we obtain

g′(h) = −(1 + h)1/h d

dh

[
1

h

(
h− 1

2
h2 +

1

3
h3 − 1

4
h4 + · · ·

)]
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= −(1 + h)1/h d

dh

[
1 − 1

2
h+

1

3
h2 − 1

4
h3 + · · ·

]
= −(1 + h)1/h

[
−1

2
+

2

3
h− 3

4
h2 + · · ·

]
.

Hence

lim
h→0

g′(h) = lim
h→0

{
−(1 + h)1/h

[
−1

2
+

2

3
h− 3

4
h2 + · · ·

]}
=
[
− lim

h→0
(1 + h)1/h

]
·
[
lim
h→0

{
−1

2
+

2

3
h− 3

4
h2 + · · ·

}]
.

From calculus we know that e = lim
h→0

(1 + h)1/h, which gives

lim
h→0

g′(h) = −e
(
−1

2

)
=
e

2
.

So we have

lim
n→∞

e− yn

1/n
=
e

2
.

15. The independent variable in this problem is the time t and the dependent variable is the

temperature T (t) of a body. Thus, we will use the recursive formulas (2) and (3) on page 25

with x replaced by t and y replaced by T . In the differential equation describing the Newton’s

Law of Cooling, f(t, T ) = K(M(t) − T ). With the suggested values of K = 1 (min)−1,

M(t) ≡ 70◦, h = 0.1, and the initial condition T (0) = 100◦, the initial value problem becomes

dT

dt
= 70 − T, T (0) = 100,

and so the recursive formulas are

tn+1 = tn + 0.1 ,

Tn+1 = Tn + 0.1(70 − Tn).

For n = 0,

t1 = t0 + 0.1 = 0.1 , T1 = T0 + 0.1(70 − T0) = 100 + 0.1(70 − 100) = 97 ;
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for n = 1,

t2 = t1 + 0.1 = 0.2 , T2 = T1 + 0.1(70 − T1) = 97 + 0.1(70 − 97) = 94.3 ;

for n = 2,

t3 = t2 + 0.1 = 0.3 , T3 = T2 + 0.1(70 − T2) = 94.3 + 0.1(70 − 94.3) = 91.87 .

Table 1–C: Euler’s method approximations for the solutions of T ′ = K(M − T ),

T (0) = 100, with K = 1, M = 70, and h = 0.1.

nnn tttnnn TTTnnn nnn tttnnn TTTnnn

0 0.0 100.00 11 1.1 79.414
1 0.1 97.000 12 1.2 78.473
2 0.2 94.300 13 1.3 77.626
3 0.3 91.870 14 1.4 76.863
4 0.4 89.683 15 1.5 76.177
5 0.5 87.715 16 1.6 75.559
6 0.6 85.943 17 1.7 75.003
7 0.7 84.349 18 1.8 74.503
8 0.8 82.914 19 1.9 74.053
9 0.9 81.623 20 2.0 73.647

10 1.0 80.460

By continuing this way and rounding results to three decimal places, we fill in Table 1-C.

From this table we conclude that

(a) the temperature of a body after 1 minute T (1) ≈ 80.460◦ and

(b) its temperature after 2 minutes T (2) ≈ 73.647◦.

16. For this problem notice that the independent variable is t and the dependent variable is T .

Hence, in the recursive formulas for Euler’s method, the t will take the place of the x and the
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T will take the place of the y. Also we see that h = 0.1 and f(t, T ) = K (M4 − T 4), where

K = 40−4 and M = 70. The recursive formulas (2) and (3) on page 25 of the text become

tn+1 = tn + 0.1 ,

Tn+1 = Tn + hf (tn, Tn) = Tn + 0.1
(
40−4

) (
704 − T 4

n

)
, n = 0, 1, 2, . . . .

From the initial condition, T (0) = 100, we see that t0 = 0 and T0 = 100. Therefore, for n = 0,

t1 = t0 + 0.1 = 0 + 0.1 = 0.1 ,

T1 = T0 + 0.1
(
40−4

) (
704 − T 4

0

)
= 100 + 0.1

(
40−4

) (
704 − 1004

) ≈ 97.0316,

where we have rounded off to four decimal places. For n = 1, we have

t2 = t1 + 0.1 = 0.1 + 0.1 = 0.2 ,

T2 = T1 + 0.1
(
40−4

) (
704 − T 4

1

)
= 97.0316 + 0.1

(
40−4

) (
704 − 97.03164

) ≈ 94.5068 .

By continuing this way, we fill in Table 1-D.

Table 1–D: Euler’s method approximations for the solution of T ′ = K (M4 − T 4),

T (0) = 100, with K = 40−4, M = 70, and h = 0.1.

nnn tttnnn TTTnnn nnn tttnnn TTTnnn nnn tttnnn TTTnnn

0 0 100 7 0.7 85.9402 14 1.4 79.5681
1 0.1 97.0316 8 0.8 84.7472 15 1.5 78.9403
2 0.2 94.5068 9 0.9 83.6702 16 1.6 78.3613
3 0.3 92.3286 10 1.0 82.6936 17 1.7 77.8263
4 0.4 90.4279 11 1.1 81.8049 18 1.8 77.3311
5 0.5 88.7538 12 1.2 80.9934 19 1.9 76.8721
6 0.6 87.2678 13 1.3 80.2504 20 2.0 76.4459

From this table we see that

T (1) = T (t10) ≈ T10 = 82.694 and T (2) = T (t20) ≈ T20 = 76.446 .
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CHAPTER 2: First Order Differential Equations

EXERCISES 2.2: Separable Equations, page 46

1. This equation is separable because we can separate variables by multiplying both sides by dx

and dividing by 2y3 + y + 4.

3. This equation is separable because

dy

dx
=

yex+y

x2 + 2
=

(
ex

x2 + 2

)
yey = g(x)p(y).

5. Writing the equation in the form
ds

dt
=
s+ 1

st
− s2,

we see that the right-hand side cannot be represented in the form g(t)p(s). Therefore, the

equation is not separable.

7. Multiplying both sides of the equation by y2dx and integrating yields

y2dy = (1 − x2)dx ⇒
∫
y2dy =

∫
(1 − x2)dx

⇒ 1

3
y3 = x− 1

3
x3 + C1 ⇒ y3 = 3x− x3 + C ⇒ y =

3
√

3x− x3 + C ,

where C := 3C1 is an arbitrary constant.

9. To separate variables, we divide the equation by y and multiply by dx. This results

dy

dx
= y(2 + sin x) ⇒ dy

y
= (2 + sin x)dx

⇒
∫
dy

y
=

∫
(2 + sin x)dx ⇒ ln |y| = 2x− cos x+ C1

⇒ |y| = e2x−cos x+C1 = eC1e2x−cos x = C2e
2x−cos x,
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where C1 is an arbitrary constant and, therefore, C2 := eC1 is an arbitrary positive constant.

We can rewrite the above solution in the form

y = ±C2e
2x−cos x = Ce2x−cos x, (2.1)

with C := C2 or C = −C2. Thus C is an arbitrary nonzero constant. The value C = 0 in

(2.1) gives y(x) ≡ 0, which is, clearly, is also a solution to the differential equation. Therefore,

the answer to the problem is given by (2.1) with an arbitrary constant C.

11. Separating variables, we obtain
dy

sec2 y
=

dx

1 + x2
.

Using the trigonometric identities sec y = 1/ cos y and cos2 y = (1+cos 2y)/2 and integrating,

we get

dy

sec2 y
=

dx

1 + x2
⇒ (1 + cos 2y)dy

2
=

dx

1 + x2

⇒
∫

(1 + cos 2y)dy

2
=

∫
dx

1 + x2

⇒ 1

2

(
y +

1

2
sin 2y

)
= arctanx+ C1

⇒ 2y + sin 2y = 4 arctanx+ 4C1 ⇒ 2y + sin 2y = 4 arctanx+ C.

The last equation defines implicit solutions to the given differential equation.

13. Writing the given equation in the form dx/dt = x− x2, we separate the variables to get

dx

x− x2
= dt .

Integrate (the left side is integrated by partial fractions, with 1/(x− x2) = 1/x+ 1/(1 − x))

to obtain:

ln |x| − ln |1 − x| = t+ c ⇒ ln

∣∣∣∣ x

1 − x

∣∣∣∣ = t+ c

⇒ x

1 − x
= ±et+c = Cet, where C = ec

⇒ x = Cet − xCet ⇒ x+ xCet = Cet
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⇒ x
(
1 + Cet

)
= Cet ⇒ x =

Cet

1 + Cet
.

Note: When C is replaced by −K, this answer can also be written as x = Ket/(Ket − 1).

Further we observe that since we divide by x− x2 = x(1 − x), then x ≡ 0 and x ≡ 1 are also

solutions. Allowing K to be zero gives x ≡ 0, but no choice for K will give x ≡ 1, so we list

this as a separate solution.

15. To separate variables, we move the term containin dx to the right-hand side of the equation

and divide both sides of the result by y. This yields

y−1dy = −yecos x sin x dx ⇒ y−2dy = −ecos x sin x dx.

Integrating the last equation, we obtain∫
y−2dy =

∫
(−ecos x sin x) dx ⇒ −y−1 + C =

∫
eudu (u = cosx)

⇒ −1

y
+ C = eu = ecos x ⇒ y =

1

C − ecos x
,

where C is an arbitrary constant.

17. First we find a general solution to the equation. Separating variables and integrating, we get

dy

dx
= x3(1 − y) ⇒ dy

1 − y
= x3dx

⇒
∫

dy

1 − y
=

∫
x3dx ⇒ − ln |1 − y| + C1 =

x4

4

⇒ |1 − y| = exp

(
C1 − x4

4

)
= Ce−x4/4.

To find C, we use the initial condition, y(0) = 3. Thus, substitution 3 for y and 0 for x into

the last equation yields

|1 − 3| = Ce−04/4 ⇒ 2 = C.

Therefore, |1 − y| = 2e−x4/4. Finally, since 1 − y(0) = 1 − 3 < 0, on an interval containing

x = 0 one has 1− y(x) < 0 and so |1− y(x)| = y(x)− 1. The solution to the problem is then

y − 1 = 2e−x4/4 or y = 2e−x4/4 + 1.
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19. For a general solution, separate variables and integrate:

dy

dθ
= y sin θ ⇒ dy

y
= sin θ dθ

⇒
∫
dy

y
=

∫
sin θ dθ ⇒ ln |y| = − cos θ + C1

⇒ |y| = e− cos θ+C1 = Ce− cos θ ⇒ y = −Ce− cos θ

(because at the initial point, θ = π, y(π) < 0). We substitute now the initial condition,

y(π) = −3, and obtain

−3 = y(π) = −Ce− cos π = −Ce ⇒ C = 3e−1.

Hence, the answer is given by y = −3e−1e− cos θ = −3e−1−cos θ.

21. Separate variables to obtain
1

2
(y + 1)−1/2 dy = cosx dx.

Integrating, we have

(y + 1)1/2 = sin x+ C.

Using the fact that y(π) = 0, we find

1 = sin π + C ⇒ C = 1.

Thus

(y + 1)1/2 = sin x+ 1 ⇒ y = (sin x+ 1)2 − 1 = sin2 x+ 2 sin x .

23. We have

dy

dx
= 2x cos2 y ⇒ dy

cos2 y
= 2x dx ⇒ sec2 y dy = 2x dx

⇒
∫

sec2 y dy =

∫
2x dx ⇒ tan y = x2 + C.

Since y = π/4 when x = 0, we get tan(π/4) = 02 + C and so C = 1. The solution, therefore,

is

tan y = x2 + 1 ⇔ y = arctan
(
x2 + 1

)
.
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25. By separating variables we obtain (1 + y)−1dy = x2 dx. Integrating yields

ln |1 + y| =
x3

3
+ C . (2.2)

Substituting y = 3 and x = 0 from the initial condition, we get ln 4 = 0 + C, which implies

that C = ln 4. By substituting this value for C into equation (2.2) above, we have

ln |1 + y| =
x3

3
+ ln 4 .

Hence,

eln |1+y| = e(x
3/3)+ln 4 = ex3/3eln 4 = 4ex3/3

⇒ 1 + y = 4ex3/3 ⇒ y = 4ex3/3 − 1 .

We can drop the absolute signs above because we are assuming from the initial condition that

y is close to 3 and therefore 1 + y is positive.

27. (a) The differential equation dy/dx = ex2
separates if we multiply by dx. We integrate the

separated equation from x = 0 to x = x1 to obtain

x1∫
0

ex2

dx =

x=x1∫
x=0

dy = y
∣∣∣x=x1

x=0
= y(x1) − y(0).

If we let t be the variable of integration and replace x1 by x and y(0) by 0, then we can

express the solution to the initial value problem as

y(x) =

x∫
0

et2dt.

(b) The differential equation dy/dx = ex2
y−2 separates if we multiply by y2 and dx. We

integrate the separated equation from x = 0 to x = x1 to obtain

x1∫
0

ex2

dx =

x1∫
0

y2dy =
1

3
y3
∣∣∣x=x1

x=0
=

1

3

[
y(x1)

3 − y(0)3
]
.
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If we let t be the variable of integration and replace x1 by x and y(0) by 1 in the above

equation, then we can express the initial value problem as

x∫
0

et2dt =
1

3

[
y(x)3 − 1

]
.

Solving for y(x) we arrive at

y(x) =

1 + 3

x∫
0

et2dt

1/3

. (2.3)

(c) The differential equation dy/dx =
√

1 + sin x(1 + y2) separates if we divide by (1 + y2)

and multiply by dx. We integrate the separated equation from x = 0 to x = x1 and find

x1∫
0

√
1 + sin x dx =

x=x1∫
x=0

(1 + y2)−1dy = tan−1 y(x1) − tan−1 y(0).

If we let t be the variable of integration and replace x1 by x and y(0) by 1 then we can

express the solution to the initial value problem by

y(x) = tan

 x∫
0

√
1 + sin t dt+

π

4

 .
(d) We will use Simpson’s rule (Appendix B) to approximate the definite integral found in

part (b). (Simpson’s rule is implemented on the website for the text.) Simpson’s rule

requires an even number of intervals, but we don’t know how many are required to obtain

the desired three-place accuracy. Rather than make an error analysis, we will compute

the approximate value of y(0.5) using 2, 4, 6, . . . intervals for Simpson’s rule until the

approximate values for y(0.5) change by less than five in the fourth place.

For n = 2, we divide [0, 0.5] into 4 equal subintervals. Thus each interval will be of length

(0.5 − 0)/4 = 1/8 = 0.125. Therefore, the integral is approximated by

0.5∫
0

ex2

dx =
1

24

[
e0 + 4e(0.125)2 + 2e(0.25)2 + 4e(0.325)2 + e(0.5)2

]
≈ 0.544999003 .
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Substituting this value into equation (2.3) from part (b) yields

y(0.5) ≈ [1 + 3(0.544999003)]1/3 ≈ 1.38121 .

Repeating these calculations for n = 3, 4, and 5 yields Table 2-A.

Table 2–A: Successive approximations for y(0.5) using Simpson’s rule.

Number of Intervals yyy(0.5)

6 1.38120606
8 1.38120520

10 1.38120497

Since these values do not change by more than 5 in the fourth place, we can conclude that

the first three places are accurate and that we have obtained an approximate solution

y(0.5) ≈ 1.381 .

29. (a) Separating variables and integrating yields

dy

y1/3
= dx ⇒

∫
dy

y1/3
=

∫
dx

⇒ 1

2/3
y2/3 = x+ C1 ⇒ y =

(
2

3
x+

2

3
C1

)3/2

=

(
2x

3
+ C

)3/2

.

(b) Using the initial condition, y(0) = 0, we find that

0 = y(0) =

[
2(0)

3
+ C

]3/2

= C3/2 ⇒ C = 0 ,

and so y = (2x/3 + 0)3/2 = (2x/3)3/2, x ≥ 0, is a solution to the initial value problem.

(c) The function y(x) ≡ 0, clearly, satisfies both, the differential equation dy/dx = y1/3 and

the initial condition y(0) = 0.

(d) In notation of Theorem 1 on page 12, f(x, y) = y1/3 and so

∂f

∂y
=

d

dy

(
y1/3
)

=
1

3
y−2/3 =

1

3y2/3
.
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Since ∂f/∂y is not continuous when y = 0, there is no rectangle containing the point

(0, 0) in which both, f and ∂f/∂y, are continuous. Therefore, Theorem 1 does not apply

to this initial value problem.

30. (a) Dividing the equation by (y + 1)2/3 and multiplying by dx separate variables. Thus we

get

dy

dx
= (x− 3)(y + 1)2/3 ⇒ dy

(y + 1)2/3
= (x− 3)dx

⇒
∫

dy

(y + 1)2/3
=

∫
(x− 3)dx ⇒ 3(y + 1)1/3 =

x2

2
− 3x+ C1

⇒ y + 1 =

(
x2

6
− x+

C1

3

)3

⇒ y = −1 +

(
x2

6
− x+ C

)3

. (2.4)

(b) Substitution y(x) ≡ −1 into the differential equation gives

d(−1)

dx
= (x− 3)[(−1) + 1]2/3 ⇒ 0 = (x− 3) · 0,

which is an identity. Therefore, y(x) ≡ −1 is, indeed, a solution.

(c) With any choice of constant C, x2/6 − x + C is a quadratic polynomial which is not

identically zero. So, in (2.4), y = −1 + (x2/6 − x+ C)
3 �≡ − 1 for all C, and the solution

y(x) ≡ −1 was lost in separation of variables.

31. (a) Separating variables and integrating yields

dy

y3
= x dx ⇒

∫
dy

y3
=

∫
x dx

⇒ 1

−2
y−2 =

1

2
x2 + C1 ⇒ y−2 = −x2 − 2C1

⇒ x2 + y−2 = C, (2.5)

where C := −2C1 is an arbitrary constant.

(b) To find the solution satisfying the initial condition y(0) = 1, we substitute in (2.5) 0 for

x and 1 for y and obtain

02 + 1−2 = C ⇒ C = 1 ⇒ x2 + y−2 = 1.
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Solving for y yields

y = ± 1√
1 − x2

. (2.6)

Since, at the initial point, x = 0, y(0) = 1 > 1, we choose the positive sign in the above

expression for y. Thus, the solution is

y =
1√

1 − x2
.

Similarly we find solutions for the other two initial conditions:

y(0) =
1

2
⇒ C = 4 ⇒ y =

1√
4 − x2

;

y(0) = 2 ⇒ C =
1

4
⇒ y =

1√
(1/4) − x2

.

(c) For the solution to the first initial problem in (b), y(0) = 1, the domain is the set of all

values of x satisfying two conditions{
1 − x2 ≥ 0 (for existence of the square root)

1 − x2 �= 0 (for existence of the quotient)
⇒ 1 − x2 > 0.

Solving for x, we get

x2 < 1 ⇒ |x| < 1 or − 1 < x < 1.

In the same manner, we find domains for solutions to the other two initial value problems:

y(0) =
1

2
⇒ −2 < x < 2 ;

y(0) = 2 ⇒ −1

2
< x <

1

2
.

(d) First, we find the solution to the initial value problem y(0) = a, a > 0, and its domain.

Following the lines used in (b) and (c) for particular values of a, we conclude that

y(0) = a ⇒ 02 + a−2 = C ⇒ y =
1√

a−2 − x2
and so its domain is

a−2 − x2 > 0 ⇒ x2 < a−2 ⇒ −1

a
< x <

1

a
.

As a → +0, 1/a → +∞, and the domain expands to the whole real line; as a → +∞,

1/a→ 0, and the domain shrinks to x = 0.
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Figure 2–A: Solutions to the initial value problem y′ = xy3, y(0) = a, a± 0.5, ±1,

and ±2.

(e) For the values a = 1/2, 1, and 2 the solutions are found in (b); for a = −1, we just have

to choose the negative sign in (2.6); similarly, we reverse signs in the other two solutions

in (b) to obtain the answers for a = −1/2 and −2. The graphs of these functions are

shown in Figure 2-A.

33. Let A(t) be the number of kilograms of salt in the tank at t minutes after the process begins.

Then we have

dA(t)

dt
= rate of salt in − rate of salt out.

rate of salt in = 10 L/min × 0.3 kg/L = 3 kg/min.

Since the tank is kept uniformly mixed, A(t)/400 is the mass of salt per liter that is flowing

out of the tank at time t. Thus we have

rate of salt out = 10 L/min × A(t)

400
kg/L =

A(t)

40
kg/min.
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Therefore,
dA

dt
= 3 − A

40
=

120 − A

40
.

Separating this differential equation and integrating yield

40

120 −A
dA = dt ⇒ −40 ln |120 − A| = t+ C

⇒ ln |120 −A| = − t

40
+ C, where − C

40
is replaced by C

⇒ 120 − A = Ce−t/40 , where C can now be positive or negative

⇒ A = 120 − Ce−t/40 .

There are 2 kg of salt in the tank initially, thus A(0) = 2. Using this initial condition, we find

2 = 120 − C ⇒ C = 118 .

Substituting this value of C into the solution, we have

A = 120 − 118e−t/40 .

Thus

A(10) = 120 − 118e−10/40 ≈ 28.1 kg.

Note: There is a detailed discussion of mixture problems in Section 3.2.

35. In Problem 34 we saw that the differential equation dT/dt = k(M − T ) can be solved by

separation of variables to yield

T = Cekt +M.

When the oven temperature is 120◦ we have M = 120. Also T (0) = 40. Thus

40 = C + 120 ⇒ C = −80.

Because T (45) = 90, we have

90 = −80e45k + 120 ⇒ 3

8
= e45k ⇒ 45k = ln

(
3

8

)
.

Thus k = ln(3/8)/45 ≈ −0.02180. This k is independent of M . Therefore, we have the

general equation

T (t) = Ce−0.02180t +M.
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(a) We are given that M = 100. To find C we must solve the equation T (0) = 40 = C+100.

This gives C = −60. Thus the equation becomes

T (t) = −60e−0.02180t + 100.

We want to solve for t when T (t) = 90. This gives us

90 = −60e−0.02180t + 100 ⇒ 1

6
= e−0.02180t

⇒ −0.0218t = ln

(
1

6

)
⇒ 0.0218t = ln 6 .

Therefore t = ln 6/0.0218 ≈ 82.2 min.

(b) Here M = 140, so we solve

T (0) = 40 = C + 140 ⇒ C = −100.

As above, solving for t in the equation

T (t) = −100e−0.02180t + 140 = 90 ⇒ t ≈ 31.8 .

(c) With M = 80, we solve

40 = C + 80,

yielding C = −40. Setting

T (t) = −40e−0.02180t + 80 = 90 ⇒ −1

4
= e−0.02180t.

This last equation is impossible because an exponential function is never negative. Hence

it never attains desired temperature. The physical nature of this problem would lead

us to expect this result. A further discussion of Newton’s law of cooling is given in

Section 3.3.

37. The differential equation
dP

dt
=

r

100
P
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separates if we divide by P and multiply by dt.∫
1

P
dP =

r

100

∫
dt ⇒ lnP =

r

100
t+ C ⇒ P (t) = Kert/100 ,

where K is the initial amount of money in the savings account, K = $1000, and r% is the

interest rate, r = 5. This results in

P (t) = 1000e5t/100 . (2.7)

(a) To determine the amount of money in the account after 2 years we substitute t = 2 into

equation (2.7), which gives

P (2) = 1000e10/100 = $1105.17 .

(b) To determine when the account will reach $4000 we solve equation (2.7) for t with

P = $4000:

4000 = 1000e5t/100 ⇒ e5t/100 = 4 ⇒ t = 20 ln 4 ≈ 27.73 years.

(c) To determine the amount of money in the account after 31
2

years we need to determine

the value of each $1000 deposit after 31
2

years has passed. This means that the initial

$1000 is in the account for the entire 31
2

years and grows to the amount which is given

by P0 = 1000e5(3.5)/100. For the growth of the $1000 deposited after 12 months, we take

t = 2.5 in equation (2.7) because that is how long this $1000 will be in the account. This

gives P1 = 1000e5(2.5)/100. Using the above reasoning for the remaining deposits we arrive

at P2 = 1000e5(1.5)/100 and P3 = 1000e5(0.5)/100. The total amount is determined by the

sum of the Pi’s.

P = 1000
[
e5(3.5)/100 + e5(2.5)/100 + e5(1.5)/100 + e5(0.5)/100

] ≈ $4, 427.59 .

39. Let s(t), t > 0, denote the distance traveled by driver A from the time t = 0 when he ran

out of gas to time t. Then driver A’s velocity vA(t) = ds/dt is a solution to the initial value

problem
dvA

dt
= −kv2

A , vA(0) = vB ,
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where vB is driver B’s constant velocity, and k > 0 is a positive constant. Separating variables

we get

dvA

v2
A

= −k dt ⇒
∫
dvA

v2
A

= −
∫
k dt ⇒ 1

vA(t)
= kt+ C .

From the initial condition we find

1

vB
=

1

vA(0)
= k · 0 + C = C ⇒ C =

1

vB
.

Thus

vA(t) =
1

kt+ 1/vB
=

vB

vBkt+ 1
.

The function s(t) therefore satisfies

ds

dt
=

vB

vBkt+ 1
, s(0) = 0.

Integrating we obtain

s(t) =

∫
vB

vBkt+ 1
dt =

1

k
ln (vBkt+ 1) + C1 .

To find C1 we use the initial condition:

0 = s(0) =
1

k
ln (vBk · 0 + 1) + C1 = C1 ⇒ C1 = 0.

So,

s(t) =
1

k
ln (vBkt+ 1) .

At the moment t = t1 when driver A’s speed was halved, i.e., vA(t1) = vA(0)/2 = vB/2, we

have

1

2
vB = vA(t1) =

vB

vBkt1 + 1
and 1 = s(t1) =

1

k
ln (vBkt1 + 1)

⇒ vBkt1 + 1 = 2 and so k = ln (vBkt1 + 1) = ln 2

⇒ s(t) =
1

ln 2
ln (vBt ln 2 + 1) .
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Since driver B was 3 miles behind driver A at time t = 0, and his speed remained constant,

he finished the race at time tB = (3 + 2)/vB = 5/vB. At this moment, driver A had already

gone

s(tB) =
1

ln 2
ln (vBtB ln 2 + 1) =

1

ln 2
ln

(
5

vB
vB ln 2 + 1

)
=

1

ln 2
ln (5 ln 2 + 1) ≈ 2.1589 > 2 miles,

i.e., A won the race.

EXERCISES 2.3: Linear Equations, page 54

1. Writing
dy

dx
− x−2y = −x−2 cosx ,

we see that this equation has the form (4) on page 50 of the text with P (x) = −x−2 and

Q(x) = −x−2 cosx. Therefore, it is linear.

Isolating dy/dx yields
dy

dx
=
y − cosx

x2
.

Since the right-hand side cannot be represented as a product g(x)p(y), the equation is not

separable.

3. In this equation, the independent variable is t and the dependent variable is x. Dividing by

x, we obtain
dx

dt
=

sin t

x
− t2.

Therefore, it is neither linear, because of the sin t/x term, nor separable, because the right-

hand side is not a product of functions of single variables x and t.

5. This is a linear equation with independent variable t and dependent variable y. This is also

a separable equation because

dy

dt
=
y(t− 1)

t2 + 1
=

(
t− 1

t2 + 1

)
y = g(t)p(y).
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7. In this equation, P (x) ≡ −1 and Q(x) = e3x. Hence the integrating factor

µ(x) = exp

(∫
P (x)dx

)
= exp

(∫
(−1)dx

)
= e−x.

Multiplying both sides of the equation by µ(x) and integrating, we obtain

e−x dy

dx
− e−xy = e−xe3x = e2x ⇒ d (e−xy)

dx
= e2x

⇒ e−xy =

∫
e2xdx =

1

2
e2x + C

⇒ y =

(
1

2
e2x + C

)
ex =

e3x

2
+ Cex.

9. This is a linear equation with dependent variable r and independent variable θ. The method

we will use to solve this equation is exactly the same as the method we use to solve an

equation in the variables x and y since these variables are just dummy variables. Thus we

have P (θ) = tan θ and Q(θ) = sec θ which are continuous on any interval not containing odd

multiples of π/2. We proceed as usual to find the integrating factor µ(θ). We have

µ(θ) = exp

(∫
tan θ dθ

)
= e− ln | cos θ|+C = K · 1

| cos θ| = K| sec θ|, where K = eC .

Thus we have

µ(θ) = sec θ,

where we can drop the absolute value sign by making K = 1 if θ is in an interval where sec θ is

positive or by making K = −1 if sec θ is negative. Multiplying the equation by the integrating

factor yields

sec θ
dr

dθ
+ (sec θ tan θ)r = sec2 θ ⇒ Dθ(r sec θ) = sec2 θ .

Integrating with respect to θ yields

r sec θ =

∫
sec2 θ dθ = tan θ + C ⇒ r = cos θ tan θ + C cos θ ⇒ r = sin θ + C cos θ .

Because of the continuity of P (θ) and Q(θ) this solution is valid on any open interval that

has end points that are consecutive odd multiples of π/2.
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11. Choosing t as the independent variable and y as the dependent variable, we put the equation

put into standard form:

t+ y + 1 − dy

dt
= 0 ⇒ dy

dt
− y = t+ 1. (2.8)

Thus P (t) ≡ −1 and so µ(t) = exp
[∫

(−1)dt
]

= e−t. We multiply both sides of the second

equation in (2.8) by µ(t) and integrate. This yields

e−t dy

dt
− e−ty = (t+ 1)e−t ⇒ d

dt

(
e−ty

)
= (t+ 1)e−t

⇒ e−ty =

∫
(t+ 1)e−tdt = −(t+ 1)e−t +

∫
e−tdt

= −(t+ 1)e−t − e−t + C = −(t+ 2)e−t + C

⇒ y = et
(−(t+ 2)e−t + C

)
= −t− 2 + Cet,

where we have used integration by parts to find
∫

(t+ 1)e−tdt.

13. In this problem, the independent variable is y and the dependent variable is x. So, we divide

the equation by y to rewrite it in standard form.

y
dx

dy
+ 2x = 5y2 ⇒ dx

dy
+

2

y
x = 5y2.

Therefore, P (y) = 2/y and the integrating factor, µ(y), is

µ(y) = exp

(∫
2

y
dy

)
= exp (2 ln |y|) = |y|2 = y2.

Multiplying the equation (in standard form) by y2 and integrating yield

y2 dx

dy
+ 2y x = 5y4 ⇒ d

dy

(
y2x
)

= 5y4

⇒ y2x =

∫
5y4 dy = y5 + C ⇒ x = y−2

(
y5 + C

)
= y3 + Cy−2.

15. To put this linear equation in standard form, we divide by (x2 + 1) to obtain

dy

dx
+

x

x2 + 1
y =

x

x2 + 1
. (2.9)
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Here P (x) = x/(x2 + 1), so∫
P (x) dx =

∫
x

x2 + 1
dx =

1

2
ln(x2 + 1).

Thus the integrating factor is

µ(x) = e(1/2) ln(x2+1) = eln[(x
2+1)1/2] = (x2 + 1)1/2.

Multiplying equation (2.9) by µ(x) yields

(x2 + 1)1/2 dy

dx
+

x

(x2 + 1)1/2
y =

x

(x2 + 1)1/2
,

which becomes
d

dx

[
(x2 + 1)1/2y

]
=

x

(x2 + 1)1/2
.

Now we integrate both sides and solve for y to find

(x2 + 1)1/2y = (x2 + 1)1/2 + C ⇒ y = 1 + C(x2 + 1)−1/2.

This solution is valid for all x since P (x) and Q(x) are continuous for all x.

17. This is a linear equation with P (x) = −1/x and Q(x) = xex which is continuous on any

interval not containing 0. Therefore, the integrating factor is given by

µ(x) = exp

[∫ (
−1

x

)
dx

]
= e− lnx =

1

x
, for x > 0.

Multiplying the equation by this integrating factor yields

1

x

dy

dx
− y

x2
= ex ⇒ Dx

(y
x

)
= ex.

Integrating gives
y

x
= ex + C ⇒ y = xex + Cx.

Now applying the initial condition, y(1) = e− 1, we have

e− 1 = e+ C ⇒ C = −1.
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Thus, the solution is

y = xex − x, on the interval (0,∞).

Note: This interval is the largest interval containing the initial value x = 1 in which P (x) and

Q(x) are continuous.

19. In this problem, t is the independent variable and x is the dependent variable. One can notice

that the left-hand side is the derivative of xt3 with respect to t. Indeed, using product rule

for differentiation, we get

d

dt

(
xt3
)

=
dx

dt
t3 + x

d (t3)

dt
= t3

dx

dt
+ 3t2x.

Thus the equation becomes

d

dt

(
xt3
)

= t ⇒ xt3 =

∫
t dt =

t2

2
+ C

⇒ x = t−3

(
t2

2
+ C

)
=

1

2t
+
C

t3
.

(Of course, one could divide the given equation by t3 to get standard form, conclude that

P (t) = 3/t, find that µ(t) = t3, multiply by t3 back, and come up with the original equation.)

We now use the initial condition, x(2) = 0, to find C.

0 = x(2) =
1

2(2)
+
C

23
⇒ 1

4
+
C

8
= 0 ⇒ C = −2.

Hence, the solution is x = 1/(2t) − 2/(t3).

21. Putting the equation in standard form yields

dy

dx
+

sin x

cosx
y = 2x cosx ⇒ dy

dx
+ (tan x)y = 2x cosx.

Therefore, P (x) = tanx and so

µ(x) = exp

(∫
tan x dx

)
= exp (− ln | cosx|) = | cosx|−1.

45



Chapter 2

At the initial point, x = π/4, cos(π/4) > 0 and, therefore, we can take µ(x) = (cosx)−1.

Multiplying the standard form of the given equation by µ(x) gives

1

cosx

dy

dx
+

sin x

cos2 x
y = 2x ⇒ d

dx

(
1

cosx
y

)
= 2x

⇒ 1

cos x
y =

∫
2x dx = x2 + C ⇒ y = cosx

(
x2 + C

)
.

From the initial condition, we find C:

−15
√

2π2

32
= y
(π

4

)
= cos

π

4

[(π
4

)2

+ C

]
⇒ C = −π2.

Hence, the solution is given by y = cosx (x2 − π2).

23. We proceed similarly to Example 2 on page 52 and obtain an analog of the initial value

problem (13), that is,
dy

dt
+ 5y = 40e−20t , y(0) = 10. (2.10)

Thus P (t) ≡ 5 and µ(t) = exp
(∫

5dt
)

= e5t. Multiplying the differential equation in (2.10)

by µ(t) and integrating, we obtain

e5t dy

dt
+ 5e5ty = 40e−20te5t = 40e−15t

⇒ d (e5ty)

dt
= 40e−15t ⇒ e5ty =

∫
40e−15t dt =

40

−15
e−15t + C.

Therefore, a general solution to the differential equation in (2.10) is

y = e−5t

(
40

−15
e−15t + C

)
= Ce−5t − 8

3
e−20t.

Finally, we find C using the initial condition.

10 = y(0) = Ce−5·0 − 8

3
e−20·0 = C − 8

3
⇒ C = 10 +

8

3
=

38

3
.

Hence, the mass of RA2 for t ≥ 0 is given by

y(t) =
38

3
e−5t − 8

3
e−20t .
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25. (a) This is a linear problem and so an integrating factor is

µ(x) = exp

(∫
2x dx

)
= exp

(
x2
)
.

Multiplying the equation by this integrating factor yields

ex2 dy

dx
+ 2xex2

y = ex2 ⇒ Dx

(
yex2
)

= ex2

⇒
x∫

2

Dt

(
yet2
)
dt =

x∫
2

et2dt,

where we have changed the dummy variable x to t and integrated with respect to t from

2 (since the initial value for x in the initial condition is 2) to x. Thus, since y(2) = 1,

yex2 − e4 =

x∫
2

et2dt ⇒ y = e−x2

e4 +

x∫
2

et2dt

 = e4−x2

+ e−x2

x∫
2

et2dt .

(b) We will use Simpson’s rule (page A.3 of the Appendix B) to approximate the definite

integral found in part (a) with upper limit x = 3. Simpson’s rule requires an even

number of intervals, but we don’t know how many are required to obtain the desired 3

place accuracy. Rather than make an error analysis, we will compute the approximate

value of y(3) using 4, 6, 8, 10, 12, . . . intervals for Simpson’s rule until the approximate

values for y(3) change by less than 5 in the fourth place. For n = 2 we divide [2, 3] into 4

equal subintervals. Thus, each subinterval will be of length (3 − 2)/4 = 1/4. Therefore,

the integral is approximated by

3∫
2

et2dt ≈ 1

12

[
e(2)

2

+ e(2.25)2 + e(2.5)2 + e(2.75)2 + e(3)
2
]
≈ 1460.354350 .

Dividing this by e(3)
2

and adding e4−32
= e−5, gives

y(3) ≈ 0.186960 .

Doing calculations for 6, 8, 10, and 12 intervals yields Table 2-B.
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Table 2–B: Successive approximations for y(3) using Simpson’s rule.

Number of Intervals yyy(3)

6 0.183905
8 0.183291

10 0.183110
12 0.183043

Since the last 3 approximate values do not change by more than 5 in the fourth place,

it appears that their first three places are accurate and the approximate solution is

y(3) ≈ 0.183 .

27. (a) The given differential equation is in standard form. Thus P (x) =
√

1 + sin2 x. Since

we cannot express
∫
P (x) dx as an elementary function, we use fundamental theorem of

calculus to conclude that, with any fixed constant a, x∫
a

P (t)dt

′

= P (x),

that is, the above definite integral with variable upper bound is an antiderivative of P (x).

Since, in the formula for µ(x), one can choose any antiderivative of P (x), we take the

above definite integral with a = 0. (Such a choice of a comes from the initial point x = 0

and makes it easy to satisfy the initial condition.) Therefore, the integrating factor µ(x)

can be chosen as

µ(x) = exp

 x∫
0

√
1 + sin2 t dt

 .

Multiplying the differential equaion by µ(x) and integrating from x = 0 to x = s, we

obtain

d[µ(x)y]

dx
= µ(x)x ⇒ d[µ(x)y] = µ(x)x dx
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⇒
s∫

0

d[µ(x)y] =

s∫
0

µ(x)x dx ⇒ µ(x)y(x)
∣∣∣x=s

x=0
=

s∫
0

µ(x)x dx

⇒ µ(s)y(s) − µ(0)y(0) =

s∫
0

µ(x)x dx .

From the initial condition, y(0) = 2. Also, note that

µ(0) = exp

 0∫
0

√
1 + sin2 t dt

 = e0 = 1.

This yields µ(0)y(0) = 2 and so

µ(s)y(s) =

s∫
0

µ(x)x dx+ 2 .

Dividing by µ(s) and interchanging x and s give the required.

(b) The values of µ(x), x = 0.1, 0.2, . . ., 1.0, approximated by using Simpson’s rule, are

given in Table 2-C.

Table 2–C: Approximations of ν(x) =
∫ x

0

√
1 + sin2 t dt and µ(x) = eν(x) using Simpson’s

rule.

xxx ν(x)ν(x)ν(x) µ(x)µ(x)µ(x) xxx ν(x)ν(x)ν(x) µ(x)µ(x)µ(x)

0.0 0.0 1.0000 0.6 0.632016 1.881401
0.1 0.100166 1.105354 0.7 0.748903 2.114679
0.2 0.201315 1.223010 0.8 0.869917 2.386713
0.3 0.304363 1.355761 0.9 0.994980 2.704670
0.4 0.410104 1.506975 1.0 1.123865 3.076723
0.5 0.519172 1.680635

We now use these values of µ(x) to approximate
∫ 1

0
µ(s)s ds by applying Simpson’s rule

again. With n = 5 and

h =
1 − 0

2n
= 0.1
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the Simpson’s rule becomes

1∫
0

µ(s)s ds ≈ 0.1

3
[µ(0)(0) + 4µ(0.1)(0.1) + 2µ(0.2)(0.2) + 4µ(0.3)(0.3)

+2µ(0.4)(0.4) + 4µ(0.5)(0.5) + 2µ(0.6)(0.6) + 4µ(0.7)(0.7)

+2µ(0.8)(0.8) + 4µ(0.9)(0.9) + µ(1.0)(1.0)] ≈ 1.064539 .

Therefore,

y(1) ≈ 1

µ(1)

1∫
0

µ(s)s ds+
2

µ(1)
=

1

3.076723
· 1.064539 +

2

3.076723
= 0.9960 .

(c) We rewrite the differential equation in the form used in Euler’s method,

dy

dx
= x−

√
1 + sin2 x y , y(0) = 2,

and conclude that f(x, y) = x −
√

1 + sin2 xy. Thus the recursive formulas (2) and (3)

on page 25 of the text become

xn+1 = xn + h,

yn+1 = yn + h
(
xn −

√
1 + sin2 xn yn

)
, n = 0, 1, . . . ,

x0 = 0, y0 = 2. With h = 0.1 we need (1 − 0)/0.1 steps to get an approximation at

x = 1.

n = 0 : x1 = 0.1 , y1 = (2) + 0.1[(0) −
√

1 + sin2(0) (2)] = 1.8000;

n = 1 : x2 = 0.2 , y2 = (1.8) + 0.1[(0.1) −
√

1 + sin2(0.1) (1.8)] ≈ 1.6291;

n = 2 : x3 = 0.3 , y3 = (1.6291) + 0.1[(0.2) −
√

1 + sin2(0.2) (1.6291)] ≈ 1.4830;
...

Results of these computations, rounded off to four decimal places, are given in Table 2-D.

Thus Euler’s method with step h = 0.1 gives y(1) ≈ 0.9486 .

Next we take h = 0.05 and fill in the Table 2-E. So, with step h = 0.05, we have

y(1) ≈ 0.9729 .
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Table 2–D: Euler’s method approximations for the solution of y′ + y
√

1 + sin2 x = x,

y(0) = 2, at x = 1 with h = 0.1.

kkk xxxkkk yyykkk kkk xxxkkk yyykkk kkk xxxkkk yyykkk

0 0.0 2.0000 4 0.4 1.3584 8 0.8 1.0304
1 0.1 1.8000 5 0.5 1.2526 9 0.9 0.9836
2 0.2 1.6291 6 0.6 1.1637 10 1.0 0.9486
3 0.3 1.4830 7 0.7 1.0900

Table 2–E: Euler’s method approximations for the solution of y′ + y
√

1 + sin2 x = x,

y(0) = 2, at x = 1 with h = 0.05.

nnn xxxnnn yyynnn nnn xxxnnn yyynnn nnn xxxnnn yyynnn

0 0.00 2.0000 7 0.35 1.4368 14 0.70 1.1144
1 0.05 1.9000 8 0.40 1.3784 15 0.75 1.0831
2 0.10 1.8074 9 0.45 1.3244 16 0.80 1.0551
3 0.15 1.7216 10 0.50 1.2747 17 0.85 1.0301
4 0.20 1.6420 11 0.55 1.2290 18 0.90 1.0082
5 0.25 1.5683 12 0.60 1.1872 19 0.95 0.9892
6 0.30 1.5000 13 0.65 1.1490 20 1.00 0.9729

29. In the presented form, the equation

dy

dx
=

1

e4y + 2x

is, clearly, not linear. But, if we switch the roles of variables and consider y as the independent

variable and x as the dependent variable (using the connection between derivatives of inverse

functions, that is, the formula y′(x) = 1/x′(y)), then the equation transforms to

dx

dy
= e4y + 2x ⇒ dx

dy
− 2x = e4y .

This is a linear equation with P (y) = −2. Thus the integrating factor is

µ(y) = exp

(∫
(−2)dy

)
= e−2y
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and so
d

dy

(
e−2yx

)
= e−2ye4y = e2y ⇒ e−2yx =

∫
e2ydy =

e2y

2
+ C.

Solving for x yields

x = e2y

(
e2y

2
+ C

)
=
e4y

2
+ Ce2y .

31. (a) On the interval 0 ≤ x ≤ 2, we have P (x) = 1. Thus we are solving the equation

dy

dx
+ y = x, y(0) = 1.

The integrating factor is given by

µ(x) = exp

(∫
dx

)
= ex.

Multiplying the equation by the integrating factor, we obtain

ex dy

dx
+ exy = xex ⇒ Dx [exy] = xex ⇒ exy =

∫
xex dx .

Calculating this integral by parts and dividing by ex yields

y = e−x (xex − ex + C) = x− 1 + Ce−x.

(b) Using the initial condition, y(0) = 1, we see that

1 = y(0) = 0 − 1 + C = −1 + C ⇒ C = 2.

Thus the solution becomes

y = x− 1 + 2e−x.

(c) In the interval x > 2, we have P (x) = 3. Therefore, the integrating factor is given by

µ(x) = exp

(∫
3 dx

)
= e3x.

Multiplying the equation by this factor and solving yields

e3x dy

dx
+ 3e3xy = xe3x ⇒ Dx

(
e3xy

)
= xe3x ⇒ e3xy =

∫
xe3x dx .

Integrating by parts and dividing by e3x gives

y = e−3x

[
1

3
xe3x − 1

9
e3x + C

]
=
x

3
− 1

9
+ Ce−3x.
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(d) We want the value of the initial point for the solution in part (c) to be the value of the

solution found in part (b) at the point x = 2. This value is given by

y(2) = 2 − 1 + 2e−2 = 1 + 2e−2.

Thus the initial point we seek is

y(2) = 1 + 2e−2.

Using this initial point to find the constant C given in part (c) yields

1 + 2e−2 = y(2) =
2

3
− 1

9
+ Ce−6 ⇒ C =

4

9
e6 + 2e4.

Thus, the solution of the equation on the interval x > 2 is given by

y =
x

3
− 1

9
+

[
4

9
e6 + 2e4

]
e−3x.

Patching these two solutions together gives us a continuous solution to the original equa-

tion on the interval x ≥ 0:

y =


x− 1 + 2e−x, 0 ≤ x ≤ 2;

x

3
− 1

9
+

(
4

9
e6 + 2e4

)
e−3x, 2 < x.

(e) The graph of the solution is given in Figure B.18 of the answers in the text.

33. (a) Writing the equation in standard form yields

dy

dx
+

2

x
y = 3.

Therefore, P (x) = 2/x and

µ(x) = exp

(∫
2

x
dx

)
= exp (2 ln |x|) = |x|2 = x2.

Hence

d

dx

(
x2y
)

= 3x2 ⇒ x2y =

∫
3x2 dx = x3 + C ⇒ y = x+

C

x2
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is a general solution to the given differential equation. Unless C = 0 and so y = x, the

function y = x + C/x2 is not defined when x = 0. Therefore, among all solutions, the

only function defined at x = 0 is φ(x) = x, and the initial value problem with y(0) = y0

has a solution (and unique) if and only if

y0 = φ(x)
∣∣∣
x=0

= 0.

(b) Standard form of the equation xy′ − 2y = 3x is

dy

dx
− 2

x
y = 3.

This gives P (x) = −2/x, µ(x) = exp
[∫

(−2/x)dx
]

= x−2, and

d

dx

(
x−2y

)
= 3x−2 ⇒ x−2y =

∫
3x−2 dx = −3x−1 + C ⇒ y = −3x+ Cx2.

Therefore, any solution is a polynomial and so is defined for all real numbers. Moreover,

any solution satisfies the initial condition y(0) = 0 because

−3x+ Cx2
∣∣∣
x=0

= −3(0) + C(0)2 = 0

and, therefore, is a solution to the initial value problem. (This also implies that the

initial value problem with y(0) = y0 �= 0 has no solution.)

35. (a) This part of the problem is similar to Problem 33 in Section 2.2. So, we proceed in the

same way.

Let A(t) denote the mass of salt in the tank at t minutes after the process begins. Then

we have

rate of input = 5 L/min × 0.2 kg/L = 1 kg/min ,

rate of exit = 5 L/min × A(t)

500
kg/L =

A(t)

100
kg/min ,

dA

dt
= 1 − A

100
=

100 − A

100
.

Separating this differential equation yields dA/(100 − A) = dt/100. Integrating, we

obtain

− ln |100 − A| =
t

100
+ C1 ⇒ |100 − A| = e−t/100−C1 = e−C1e−t/100
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⇒ 100 − A = Ce−t/100
(
C = ±e−C1

) ⇒ A = 100 − Ce−t/100 .

The initial condition, A(0) = 5 (initially, there were 5 kg of salt in the tank) implies that

5 = A(0) = 100 − C ⇒ C = 95.

Substituting this value of C into the solution, we have

A(t) = 100 − 95e−t/100 .

Thus the mass of salt in the tank after 10 min is

A(10) = 100 − 95e−10/100 ≈ 14.04 kg ,

which gives the concentration 14.04 kg/500 L ≈ 0.0281 kg/L.

(b) After the leak develops, the system satisfies a new differential equation. While the rate of

input remains the same, 1 kg/min, the rate of exit is now different. Since, every minute,

5 liters of the solution is coming in and 5 + 1 = 6 liters are going out, the volume of

the solution in the tank decreases by 6 − 5 = 1 liter per minute. Thus, for t ≥ 10, the

volume of the solution in the tank is 500 − 1 · (t − 10) = 510 − t liters. This gives the

concentration of salt in the tank
A(t)

510 − t
kg/L (2.11)

and

rate of exit = 6 L/min × A(t)

510 − t
kg/L =

6A(t)

510 − t
kg/min .

Hence, the differential equation, for t > 10, becomes

dA

dt
= 1 − 6A

510 − t
⇒ dA

dt
+

6A

510 − t
= 1

with the initial condition A(10) = 14.04 (the value found in (a) ). This equation is a

linear equation. We have

µ(t) = exp

(∫
6

510 − t
dt

)
= exp (−6 ln |510 − t|) = (510 − t)−6
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⇒ d

dt

[
(510 − t)−6A

]
= 1 · (510 − t)−6 = (510 − t)−6

⇒ (510 − t)−6A =

∫
(510 − t)−6dt =

1

5
(510 − t)−5 + C

⇒ A =
1

5
(510 − t) + C(510 − t)6.

Using the initial condition, A(10) = 14.04, we compute C.

14.04 = A(10) =
1

5
(510 − 10) + C(510 − 10)6 ⇒ C = − 85.96

(500)6
.

Therefore,

A(t) =
1

5
(510 − t) − 85.96

(500)6
(510 − t)6 =

1

5
(510 − t) − 85.96

(
510 − t

500

)6

and, according to (2.11), the concentration of salt is given by

A(t)

510 − t
=

1

5
− 85.96

510 − t
·
(

510 − t

500

)6

.

20 minutes after the leak develops, that is, when t = 30, the concentration will be

1

5
− 85.96

510 − 30
·
(

510 − 30

500

)6

≈ 0.0598 kg/L .

37. We are solving the equation

dx

dt
+ 2x = 1 − cos

(
πt

12

)
, x(0) = 10.

This is a linear problem with dependent variable x and independent variable t so that P (t) = 2.

Therefore, to solve this equation we first must find the integrating factor µ(t).

µ(t) = exp

(∫
2 dt

)
= e2t.

Multiplying the equation by this factor yields

e2tdx

dt
+ 2xe2t = e2t

[
1 − cos

(
πt

12

)]
= e2t − e2t cos

(
πt

12

)
⇒ xe2t =

∫
e2t dt−

∫
e2t cos

(
πt

12

)
dt =

1

2
e2t −

∫
e2t cos

(
πt

12

)
dt.
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The last integral can be found by integrating by parts twice which leads back to an integral

similar to the original. Combining these two similar integrals and simplifying, we obtain∫
e2t cos

(
πt

12

)
dt =

e2t
[
2 cos

(
πt
12

)
+ π

12
sin
(

πt
12

)]
4 + ( π

12
)2

+ C.

Thus we see that

x(t) =
1

2
− 2 cos

(
πt
12

)
+ π

12
sin
(

πt
12

)
4 + ( π

12
)2

+ Ce−2t.

Using the initial condition, t = 0 and x = 10, to solve for C, we obtain

C =
19

2
+

2

4 + ( π
12

)2
.

Therefore, the desired solution is

x(t) =
1

2
− 2 cos

(
πt
12

)
+ π

12
sin
(

πt
12

)
4 + ( π

12
)2

+

[
19

2
+

2

4 + ( π
12

)2

]
e−2t.

39. Let Tj(t), j = 0, 1, 2, . . ., denote the temperature in the classroom for 9 + j ≤ t < 10 + j,

where t = 13 denotes 1 : 00 p.m., t = 14 denotes 2 : 00 p.m., etc. Then

T (9) = 0, (2.12)

and the continuity of the temperature implies that

lim
t→10+j

= Tj+1(10 + j), j = 0, 1, 2, . . . . (2.13)

According to the work of the heating unit, the temperature satisfies the equation

dTj

dt
=

{
1 − Tj , if j = 2k

−Tj , if j = 2k + 1
, 9 + j < t < 10 + j k = 0, 1, . . . .

The general solutions of these equations are:

for j even

dTj

dt
= 1 − Tj ⇒ dTj

1 − Tj

= dt

⇒ ln |1 − Tj| = −t+ cj ⇒ Tj(t) = 1 − Cje
−t ;
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for j odd

dTj

dt
= −Tj ⇒ dTj

−Tj
= dt

⇒ ln |Tj| = −t+ cj ⇒ Tj(t) = Cje
−t ;

where Cj �= 0 are constants. From (2.12) we have:

0 = T0(9) =
(
1 − C0e

−t
) ∣∣∣

t=9
= 1 − C0e

−9 ⇒ C0 = e9.

Also from (2.13), for even values of j (say, j = 2k) we get

(
1 − C2ke

−t
) ∣∣∣

t=9+(2k+1)
= C2k+1e

−t
∣∣∣
t=9+(2k+1)

⇒ 1 − C2ke
−(10+2k) = C2k+1e

−(10+2k)

⇒ C2k+1 = e10+2k − C2k .

Similarly from (2.13) for odd values of j (say, j = 2k + 1) we get

C2k+1e
−t
∣∣∣
t=9+(2k+2)

=
(
1 − C2k+2e

−t
) ∣∣∣

t=9+(2k+2)

⇒ C2k+1e
−(11+2k) = 1 − C2k+2e

−(11+2k)

⇒ C2k+2 = e11+2k − C2k+1 .

In general we see that for any integer j (even or odd) the following formula holds:

Cj = e9+j − Cj−1.

Using this recurrence formula we successively compute

C1 = e10 − C0 = e10 − e9 = e9(e− 1)

C2 = e11 − C1 = e11 − e10 + e9 = e9(e2 − e+ 1)

...

Cj = e9
j∑

k=0

(−1)j−kek .
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Therefore, the temperature at noon (when t = 12 and j = 3) is

T3(12) = C3e
−12 = e−12e9

3∑
k=0

(−1)3−kek = 1 − e−1 + e−2 − e−3 ≈ 0.718 = 71.8◦ F.

At 5 p.m.(when t = 17 and j = 8), we find

T8(17) = 1 − C8e
−17 = 1 − e−17e9

8∑
k=0

(−1)8−kek =
8∑

k=1

(−1)k+1e−k

= e−1 · 1 − (−e−1)8

1 + e−1
≈ 0.269 = 26.9◦ F.

EXERCISES 2.4: Exact Equations, page 65

1. In this equation, M(x, y) = x2y + x4 cosx and N(x, y) = −x3. Taking partial derivatives, we

obtain
∂M

∂y
=

∂

∂y

(
x2y + x4

)
= x2 �= −3x2 =

∂N

∂x
.

Therefore, according to Theorem 2 on page 61 of the text, the equation is not exact.

Rewriting the equation in the form

dy

dx
=
x2y + x4 cosx

x3
=

1

x
y + x cosx, (2.14)

we conclude that it is not separable because the right-hand side in (2.14) cannot be factored

as p(x)q(y). We also see that the equation is linear with y as the dependent variable.

3. Here M(x, y) = yexy + 2x, N(x, y) = xexy − 2y. Thus

∂M

∂y
=

∂

∂y
(yexy + 2x) = exy + y

∂

∂y
(exy) = exy + yexyx = exy(1 + yx),

∂N

∂x
=

∂

∂x
(xexy − 2y) = exy + x

∂

∂x
(exy) = exy + xexyy = exy(1 + xy),

∂M/∂y = ∂N/∂x, and the equation is exact.

We write the equation in the form

dy

dx
= −ye

xy + 2x

xexy − 2y
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and conclude that it is not separable because the right-hand side cannot be represented as a

product of two functions of single variables x and y. Also, the right-hand side is not linear

with respect to y which implies that the equation is not linear with y as the dependent

variable. Similarly, choosing x as the dependent variable (taking the reciprocals of both sides)

we conclude that the equation is not linear either.

5. The differential equation is not separable because (2xy + cos y) cannot be factored. This

equation can be put in standard form by defining x as the dependent variable and y as the

independent variable. This gives

dx

dy
+

2

y
x =

− cos y

y2
,

so we see that the differential equation is linear.

If we set M(x, y) = y2 and N(x, y) = 2xy + cos y we are able to see that the differential

equation is also exact because My(x, y) = 2y = Nx(x, y).

7. In this problem, the variables are r and θ, M(r, θ) = θ, and N(r, θ) = 3r − θ − 1. Because

∂M

∂θ
= 1 �= 3 =

∂N

∂r
,

the equation is not exact. With r as the dependent variable, the equation takes the form

dr

dθ
= −3r − θ − 1

θ
= −3

θ
r +

θ + 1

θ
,

and it is linear. Since the right-hand side in the above equation cannot be factored as p(θ)q(r),

the equation is not separable.

9. We have that M(x, y) = 2xy + 3 and N(x, y) = x2 − 1. Therefore, My(x, y) = 2x = Nx(x, y)

and so the equation is exact. We will solve this equation by first integrating M(x, y) with

respect to x, although integration of N(x, y) with respect to y is equally easy. Thus

F (x, y) =

∫
(2xy + 3) dx = x2y + 3x+ g(y).
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Differentiating F (x, y) with respect to y gives Fy(x, y) = x2 + g′(y) = N(x, y) = x2 − 1.

From this we see that g′ = −1. (As a partial check we note that g′(y) does not involve x.)

Integrating gives

g(y) =

∫
(−1) dy = −y.

Since the constant of integration will be incorporated into the parameter of the solution, it is

not written here. Substituting this expression for g(y) into the expression that we found for

F (x, y) yields

F (x, y) = x2y + 3x− y.

Therefore, the solution of the differential equation is

x2y + 3x− y = C ⇒ y =
C − 3x

x2 − 1
.

The given equation could be solved by the method of grouping. To see this, express the differ-

ential equation in the form

(2xy dx+ x2 dy) + (3 dx− dy) = 0.

The first term of the left-hand side we recognize as the total differential of x2y. The second

term is the total differential of (3x− y). Thus we again find that

F (x, y) = x2y + 3x− y

and, again, the solution is x2y + 3x− y = C.

11. Computing partial derivatives of M(x, y) = cosx cos y+ 2x and N(x, y) = −(sin x sin y+ 2y),

we obtain

∂M

∂y
=

∂

∂y
(cosx cos y + 2x) = − cosx sin y ,

∂N

∂x
=

∂

∂x
[− (sin x sin y + 2y)] = − cosx sin y ,

⇒ ∂M

∂y
=
∂N

∂x
,

and the equation is exact.
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Integrating M(x, y) with respect to x yields

F (x, y) =

∫
M(x, y)dx =

∫
(cosx cos y + 2x) dx

= cos y

∫
cosx dx+

∫
2x dx = sin x cos y + x2 + g(y).

To find g(y), we compute the partial derivative of F (x, y) with respect to y and compare the

result with N(x, y).

∂F

∂y
=

∂

∂y

[
sin x cos y + x2 + g(y)

]
= − sin x sin y + g′(y) = − (sin x sin y + 2y)

⇒ g′(y) = −2y ⇒ g(y) =

∫
(−2y)dy = −y2.

(We take the integration constant C = 0.) Therefore,

F (x, y) = sin x cos y + x2 − y2 = c

is a general solution to the given equation.

13. In this equation, the variables are y and t, M(y, t) = t/y, N(y, t) = 1 + ln y. Since

∂M

∂t
=

∂

∂t

(
t

y

)
=

1

y
and

∂N

∂y
=

∂

∂y
(1 + ln y) =

1

y
,

the equation is exact.

Integrating M(y, t) with respect to y, we get

F (y, t) =

∫
t

y
dy = t ln |y|+ g(t) = t ln y + g(t).

(From N(y, t) = 1 + ln y we conclude that y > 0.) Therefore,

∂F

∂t
=

∂

∂t
[t ln y + g(t)] = ln y + g′(t) = 1 + ln y

⇒ g′(t) = 1 ⇒ g(t) = t

⇒ F (y, t) = t ln y + t,

and a general solution is given by t ln y + t = c (or, explicitly, t = c/(ln y + 1)).

62



Exercises 2.4

15. This differential equation is expressed in the variables r and θ. Since the variables x and y

are dummy variables, this equation is solved in exactly the same way as an equation in x and

y. We will look for a solution with independent variable θ and dependent variable r. We see

that the differential equation is expressed in the differential form

M(r, θ) dr +N(r, θ) dθ = 0, where M(r, θ) = cos θ and N(r, θ) = −r sin θ + eθ.

This implies that

Mθ(r, θ) = − sin θ = Nr(r, θ),

and so the equation is exact. Therefore, to solve the equation we need to find a function

F (r, θ) that has cos θ dr + (−r sin θ + eθ) dθ as its total differential. Integrating M(r, θ) with

respect to r we see that

F (r, θ) =

∫
cos θ dr = r cos θ + g(θ)

⇒ Fθ(r, θ) = −r sin θ + g′(θ) = N(r, θ) = −r sin θ + eθ.

Thus we have that

g′(θ) = eθ ⇒ g(θ) = eθ,

where the constant of integration will be incorporated into the parameter of the solution.

Substituting this expression for g(θ) into the expression we found for F (r, θ) yields

F (r, θ) = r cos θ + eθ.

From this we see that the solution is given by the one parameter family r cos θ + eθ = C, or,

solving for r,

r =
C − eθ

cos θ
= (C − eθ) sec θ.

17. Partial derivatives of M(x, y) = 1/y and N(x, y) = − (3y − x/y2) are

∂M

∂y
=

∂

∂y

(
1

y

)
= − 1

y2
and

∂N

∂x
=

∂

∂x

(
−3y +

x

y2

)
=

1

y2
.

Since ∂M/∂y �= ∂N/∂x, the equation is not exact.
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19. Taking partial derivatives of M(x, y) = 2x+ y/(1 + x2y2) and N(x, y) = −2y + x/(1 + x2y2)

with respect to y and x, respectively, we get

∂M

∂y
=

∂

∂y

(
2x+

y

1 + x2y2

)
=

(1)(1 + x2y2) − yx2(2y)

(1 + x2y2)2
=

1 − x2y2

(1 + x2y2)2
,

∂N

∂x
=

∂

∂x

(
−2y +

x

1 + x2y2

)
=

(1)(1 + x2y2) − xy2(2x)

(1 + x2y2)2
=

1 − x2y2

(1 + x2y2)2
.

Therefore, the equation is exact.

F (x, y) =

∫ (
2x+

y

1 + x2y2

)
dx = x2 +

∫
d(xy)

1 + (xy)2
= x2 + arctan(xy) + g(y)

∂F

∂y
=

∂

∂y

[
x2 + arctan(xy) + g(y)

]
=

x

1 + (xy)2
+ g′(y) = −2y +

x

1 + x2y2

⇒ g′(y) = −2y ⇒ g(y) = −y2

⇒ F (x, y) = x2 − y2 + arctan(xy)

and a general solution then is given implicitly by x2 − y2 + arctan(xy) = c.

21. We check the equation for exactness. We have M(x, y) = 1/x+ 2y2x, N(x, y) = 2yx2 − cos y,

∂M

∂y
=

∂

∂y

(
1

x
+ 2y2x

)
= 4yx,

∂N

∂x
=

∂

∂x

(
2yx2 − cos y

)
= 4yx.

Thus ∂M/∂y = ∂N/∂x. Integrating M(x, y) with respect to x yields

F (x, y) =

∫ (
1

x
+ 2y2x

)
dx = ln |x| + x2y2 + g(y).

Therefore,

∂F

∂y
=

∂

∂y

[
ln |x| + x2y2 + g(y)

]
= 2x2y + g′(y) = N(x, y) = 2yx2 − cos y

⇒ g′(y) = − cos y ⇒ g(y) =

∫
(− cos y)dy = − sin y

⇒ F (x, y) = ln |x| + x2y2 − sin y,

and a general solution to the given differential equation is

ln |x| + x2y2 − sin y = c.
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Substituting the initial condition, y = π when x = 1, we find c.

ln |1| + 12π2 − sin π = c ⇒ c = π2.

Therefore, the answer is given implicitly by ln |x| + x2y2 − sin y = π2. (We also used the fact

that at the initial point, (1, π), x > 0 to skip the absolute value sign in the logarithmic term.)

23. Here M(t, y) = ety + tety and N(t, y) = tet + 2. Thus My(t, y) = et + tet = Nt(t, y) and so

the equation is exact. To find F (t, y) we first integrate N(t, y) with respect to y to obtain

F (t, y) =

∫
(tet + 2) dy = (tet + 2)y + h(t),

where we have chosen to integrate N(t, y) because this integration is more easily accomplished.

Thus

Ft(t, y) = ety + tety + h′(t) = M(t, y) = ety + tety

⇒ h′(t) = 0 ⇒ h(t) = C.

We will incorporate this constant into the parameter of the solution. Combining these results

gives F (t, y) = tety + 2y. Therefore, the solution is given by tety + 2y = C. Solving for y

yields y = C/(tet + 2). Now we use the initial condition y(0) = −1 to find the solution that

passes through the point (0,−1). Thus

y(0) =
C

0 + 2
= −1 ⇒ C

2
= −1 ⇒ C = −2.

This gives us the solution

y = − 2

tet + 2
.

25. One can check that the equation is not exact (∂M/∂y �= ∂N/∂x), but it is separable because

it can be written in the form

y2 sin x dx+
1 − y

x
dy = 0 ⇒ y2 sin x dx =

y − 1

x
dy

⇒ x sin x dx =
y − 1

y2
dy.
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Integrating both sides yields∫
x sin x dx =

∫
y − 1

y2
dy ⇒ x(− cosx) −

∫
(− cosx)dx =

∫ (
1

y
− 1

y2

)
dy

⇒ −x cosx+ sin x = ln |y|+ 1

y
+ C,

where we applied integration by parts to find
∫
x sin x dx. Substitution of the initial condition,

y(π) = 1, results

−π cosπ + sin π = ln |1| + 1

1
+ C ⇒ C = π − 1.

So, the solution to the initial value problem is

−x cosx+ sin x = ln y + 1/y + π − 1 .

(Since y(π) = 1 > 0, we have removed the absolute value sign in the logarithmic term.)

27. (a) We want to find M(x, y) so that for N(x, y) = sec2 y − x/y we have

My(x, y) = Nx(x, y) = −1

y
.

Therefore, we must integrate this last expression with respect to y. That is,

M(x, y) =

∫ (
−1

y

)
dy = − ln |y| + f(x),

where f(x), the “constant” of integration, is a function only of x.

(b) We want to find M(x, y) so that for

N(x, y) = sin x cos y − xy − e−y

we have

My(x, y) = Nx(x, y) = cosx cos y − y.

Therefore, we must integrate this last expression with respect to y. That is

M(x, y) =

∫
(cosx cos y − y) dy = cosx

∫
cos y dy −

∫
y dy

= cosx sin y − y2

2
+ f(x),

where f(x), a function only of x, is the “constant” of integration.
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29. (a) We have M(x, y) = y2 + 2xy and N(x, y) = −x2. Therefore My(x, y) = 2y + 2x and

Nx(x, y) = −2x. Thus My(x, y) �= Nx(x, y), so the differential equation is not exact.

(b) If we multiply (y2 + 2xy)dx− x2dy = 0 by y−2, we obtain(
1 +

2x

y

)
dx− x2

y2
dy = 0.

In this equation we have M(x, y) = 1 + 2xy−1 and N(x, y) = −x2y−2. Therefore,

∂M(x, y)

∂y
= −2x

y2
=
∂N(x, y)

∂x
.

So the new differential equation is exact.

(c) Following the method for solving exact equations we integrate M(x, y) in part (b) with

respect to x to obtain

F (x, y) =

∫ (
1 + 2

x

y

)
dx = x+

x2

y
+ g(y) .

To determine g(y), take the partial derivative of both sides of the above equation with

respect to y to obtain
∂F

∂y
= −x

2

y2
+ g′(y) .

Substituting N(x, y) (given in part (b)) for ∂F/∂y, we can now solve for g′(y) to obtain

N(x, y) = −x
2

y2
= −x

2

y2
+ g′(y) ⇒ g′(y) = 0 .

The integral of g′(y) will yield a constant and the choice of the constant of integration

is not important so we can take g(y) = 0. Hence we have F (x, y) = x + x2/y and the

solution to the equation is given implicitly by

x+
x2

y
= C .

Solving the above equation for y, we obtain

y =
x2

C − x
.
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(d) By dividing both sides by y2 we lost the solution y ≡ 0.

31. Following the proof of Theorem 2, we come to the expression (10) on page 63 of the text for

g′(y), that is

g′(y) = N(x, y) − ∂

∂y

x∫
x0

M(s, y) ds (2.15)

(where we have replaced the integration variable t by s). In other words, g(y) is an antideriva-

tive of the right-hand side in (2.15). Since an antiderivative is defined up to an additive

constant and, in Theorem 2, such a constant can be chosen arbitrarily (that is, g(y) can be

any antiderivative), we choose g(y) that vanishes at y0. According to fundamental theorem

of calculus, this function can be written in the form

g(y) =

y∫
y0

g′(t) dt =

y∫
y0

N(x, t) − ∂

∂t

x∫
x0

M(s, t) ds

 dt
=

y∫
y0

N(x, t) dt−
y∫

y0

∂

∂t

 x∫
x0

M(s, t) ds

 dt
=

y∫
y0

N(x, t) dt−
 x∫

x0

M(s, t) ds


∣∣∣∣∣∣
t=y

t=y0

=

y∫
y0

N(x, t) dt−
x∫

x0

M(s, y) ds+

x∫
x0

M(s, y0) ds .

Substituting this function into the formula (9) on page 63 of the text, we conclude that

F (x, y) =

x∫
x0

M(t, y) dt+

 y∫
y0

N(x, t) dt−
x∫

x0

M(s, y) ds+

x∫
x0

M(s, y0) ds


=

y∫
y0

N(x, t) dt+

x∫
x0

M(s, y0) ds .

(a) In the differential form used in Example 1, M(x, y) = 2xy2 + 1 and N(x, y) = 2x2y.
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Thus, N(x, t) = 2x2t and M(s, y0) = 2s · 02 + 1 = 1, and (18) yields

F (x, y) =

y∫
0

(
2x2t

)
dt+

x∫
0

1 · ds = x2

y∫
0

2t dt+

x∫
0

ds

= x2t2
∣∣∣t=y

t=0
+s
∣∣∣s=x

s=0
= x2y2 + x.

(b) Since M(x, y) = 2xy − sec2 x and N(x, y) = x2 + 2y, we have

N(x, t) = x2 + 2t and M(s, y0) = 2s · 0 − sec2 s = − sec2 s,

F (x, y) =

y∫
0

(
x2 + 2t

)
dt+

x∫
0

(− sec2 s
)
ds

=
(
x2t+ t2

) ∣∣∣t=y

t=0
− tan s

∣∣∣s=x

s=0
= x2y + y2 − tanx.

(c) Here, M(x, y) = 1 + exy + xexy and N(x, y) = xex + 2. Therefore,

N(x, t) = xex + 2 and M(s, y0) = 1 + es · 0 + ses · 0 = 1,

F (x, y) =

y∫
0

(xex + 2) dt+

x∫
0

1 · ds

= (xex + 2) t
∣∣∣t=y

t=0
+s
∣∣∣s=x

s=0
= (xex + 2) y + x,

which is identical to F (x, y) obtained in Example 3.

32. (a) The slope of the orthogonal curves, say m⊥, must be −1/m, where m is the slope of the

original curves. Therefore, we have

m⊥ =
Fy(x, y)

Fx(x, y)
⇒ dy

dx
=
Fy(x, y)

Fx(x, y)
⇒ Fy(x, y) dx− Fx(x, y) dy = 0.

(b) Let F (x, y) = x2 + y2. Then we have Fx(x, y) = 2x and Fy(x, y) = 2y. Plugging these

expressions into the final result of part (a) gives

2y dx− 2x dy = 0 ⇒ y dx− x dy = 0.
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To find the orthogonal trajectories, we must solve this differential equation. To this end,

note that this equation is separable and thus∫
1

x
dx =

∫
1

y
dy ⇒ ln |x| = ln |y| + C

⇒ eln |x|−C = eln |y| ⇒ y = kx, where k = ±e−C .

Therefore, the orthogonal trajectories are lines through the origin.

(c) Let F (x, y) = xy. Then we have Fx(x, y) = y and Fy(x, y) = x. Plugging these expres-

sions into the final result of part (a) gives

x dx− y dy = 0.

To find the orthogonal trajectories, we must solve this differential equation. To this end,

note that this equation is separable and thus∫
x dx =

∫
y dy ⇒ x2

2
=
y2

2
+ C ⇒ x2 − y2 = k ,

where k := 2C. Therefore, the orthogonal trajectories are hyperbolas.

33. We use notations and results of Problem 32, that is, for a family of curves given by F (x, y) = k,

the orthogonal trajectories satisfy the differential equation

∂F (x, y)

∂y
dx− ∂F (x, y)

∂x
dy = 0. (2.16)

(a) In this problem, F (x, y) = 2x2 + y2 and the equation (2.16) becomes

∂(2x2 + y2)

∂y
dx− ∂(2x2 + y2)

∂x
dy = 0 ⇒ 2y dx− 4x dy = 0. (2.17)

Separating variables and integrating yield

2y dx = 4x dy ⇒ dx

x
=

2dy

y
⇒

∫
dx

x
=

∫
2dy

y

⇒ ln |x| = 2 ln |y| + c1 ⇒ eln |x| = e2 ln |y|+c1

⇒ |x| = ec1 |y|2 = c2y
2 ⇒ x = ±c2y2 = cy2,
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where c as any nonzero constant.

Separating variables, we divided the equation (2.17) by xy. As a result, we lost two

constant solutions x ≡ 0 and y ≡ 0 (see the discussion on pages 44–45 of Section 2.2

of the text). Thus the orthogonal trajectories for the family 2x2 + y2 = k are x = cy2,

c �= 0, x ≡ 0, and y ≡ 0. (Note that x ≡ 0 can be obtained from x = cy2 by taking c = 0

while y ≡ 0 cannot.)

(b) First we rewrite the equation defining the family of curves in the form F (x, y) = k by

dividing it by x4. This yields yx−4 = k. We use (2.17) to set up an equation for the

orthogonal trajectories:

∂F

∂x
= −4yx−5 ,

∂F

∂y
= x−4 ⇒ x−4 dx− (−4yx−5

)
dy = 0 .

Solving this separable equation yields

x−4 dx = −4yx−5 dy = 0 ⇒ x dx = −4y dy

⇒
∫
x dx =

∫
(−4y)dy ⇒ x2

2
= −2y2 + c1 ⇒ x2 + 4y2 = c.

Thus, the family of orthogonal trajectories is x2 + 4y2 = c.

(c) Taking logarithm of both sides of the equation, we obtain

ln y = kx ⇒ ln y

x
= k,

and so F (x, y) = (ln y)/x, ∂F/∂x = −(ln y)/x2, ∂F/∂y = 1/(xy). The equation (2.17)

becomes
1

xy
dx−

(
− ln y

x2

)
dy = 0 ⇒ 1

xy
dx = − ln y

x2
dy.

Separating variables and integrating, we obtain

x dx = −y ln y dy ⇒
∫
x dx = −

∫
y ln y dy

⇒ x2

2
= −y

2

2
ln y +

∫
y2

2
· 1

y
dy = −y

2

2
ln y +

y2

4
+ c1

⇒ x2

2
+
y2

2
ln y − y2

4
= c1 ⇒ 2x2 + 2y2 ln y − y2 = c,

where c := 4c1, and we have used integration by parts to find
∫
y ln y dy.
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(d) We divide the equation, y2 = kx, by x and get y2/x = k. Thus, F (x, y) = y2/x and

∂F

∂x
= −y

2

x2
,

∂F

∂y
=

2y

x

⇒ 2y

x
dx−

(
−y

2

x2

)
dy = 0 ⇒ 2y

x
dx =

(
−y

2

x2

)
dy

⇒ 2x dx = −y dy ⇒ x2 = −y
2

2
+ c1 ⇒ 2x2 + y2 = c.

35. Applying Leibniz’s theorem, we switch the order of differentiation (with respect to y) and

integration. This yields

g′ = N(x, y) −
x∫

x0

(
∂

∂y
M(t, y)

)
dt.

Therefore, g′ is differentiable (even continuously) with respect to x as a difference of two

(continuously) differentiable functions, N(x, y) and an integral with variable upper bound of

a continuous function M ′
y(t, y). Taking partial derivatives of both sides with respect to x and

using fundamental theorem of calculus, we obtain

∂ (g′)
∂x

=
∂

∂x

N(x, y) −
x∫

x0

(
∂

∂y
M(t, y)

)
dt


=

∂

∂x
N(x, y) − ∂

∂x

 x∫
x0

(
∂

∂y
M(t, y)

)
dt

 =
∂

∂x
N(x, y) − ∂

∂y
M(x, y) = 0

due to (5). Thus ∂ (g′) /∂x ≡ 0 which implies that g′ does not depend on x (a consequence of

mean value theorem).

EXERCISES 2.5: Special Integrating Factors, page 71

1. Here M(x, y) = 2y3 + 2y2 and N(x, y) = 3y2x+ 2xy. Computing

∂M

∂y
= 6y2 + 4y and

∂N

∂x
= 3y2 + 2y ,

we conclude that this equation is not exact. Note that these functions, as well as M itself,

depend on y only. Then, clearly, so does the expression (∂N/∂x − ∂M/∂y)/M , and the
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equation has an integrating factor depending on y alone. Also, since

∂M/∂y − ∂N/∂x

N
=

(6y2 + 4y) − (3y2 + 2y)

3y2x+ 2xy
=

3y2 + 2y

x(3y2 + 2y)
=

1

x
,

the equation has an integrating factor depending on x.

Writing the equation in the form

dx

dy
= −3y2x+ 2xy

2y3 + y2
= −xy(3y + 2)

2y2(y + 1)
= − y(3y + 2)

2y2(y + 1)
x

we conclude that it is separable and linear with x as the dependent variable.

3. This equation is not separable because of the factor (y2 + 2xy). It is not linear because of the

factor y2. To see if it is exact, we compute My(x, y) and Nx(x, y), and see that

My(x, y)2y + 2x �= −2x = Nx(x, y).

Therefore, the equation is not exact. To see if we can find an integrating factor of the form

µ(x), we compute
∂M

∂y
− ∂N

∂x

N
=

2y + 4x

−x2
,

which is not a function of x alone. To see if we can find an integrating factor of the form µ(y),

we compute
∂N

∂x
− ∂M

∂y

M
=

−4x− 2y

y2 + 2xy
=

−2(2x+ y)

y(y + 2x)
=

−2

y
.

Thus the equation has an integrating factor that is a function of y alone.

5. In this problem, M(x, y) = 2y2x− y and N(x, y) = x. Therefore,

∂M

∂y
= 4yx− 1 and

∂N

∂x
= 1 ⇒ ∂N

∂x
− ∂M

∂y
= 2 − 4yx .

The equation is not exact, because ∂M/∂y �= ∂N/∂x, but it has an integrating factor depend-

ing just on y since

∂N/∂x − ∂M/∂y

M
=

2 − 4yx

2y2x− y
=

−2(2yx− 1)

y(2yx− 1)
=

−2

y
.
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Isolating dy/dx, we obtain
dy

dx
=
y − 2y2x

x
=
y

x
− 2y2 .

The right-hand side cannot be factorized as p(x)q(y), and so the equation is not separable.

Also, it is not linear with y as the dependent variable (because of 2y2 term). By taking the

reciprocals we also conclude that it is not linear with the dependent variable x.

7. The equation (3x2 + y) dx+ (x2y − x) dy = 0 is not separable or linear. To see if it is exact,

we compute
∂M

∂y
= 1 �= 2xy − 1 =

∂N

∂x
.

Thus, the equation is not exact. To see if we can find an integrating factor, we compute

∂M/∂y − ∂N/∂x

N
=

2 − 2xy

x2y − x
=

−2(xy − 1)

x(xy − 1)
=

−2

x
.

From this we see that the integrating factor will be

µ(x) = exp

(∫ −2

x
dx

)
= exp (−2 ln |x|) = x−2.

To solve the equation, we multiply it by the integrating factor x−2 to obtain

(3 + yx−2) dx+ (y − x−1) dy = 0.

This is now exact. Thus, we want to find F (x, y). To do this, we integrate M(x, y) = 3+yx−2

with respect to x to get

F (x, y) =

∫ (
3 + yx−2

)
dx = 3x− yx−1 + g(y)

⇒ Fy(x, y) = −x−1 + g′(y) = N(x, y) = y − x−1

⇒ g′(y) = y ⇒ g(y) =
y2

2
.

Therefore,

F (x, y) = 3x− yx−1 +
y2

2
.

And so we see that an implicit solution is

y2

2
− y

x
+ 3x = C.
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Since µ(x) = x−2 we must check to see if the solution x ≡ 0 was either gained or lost. The

function x ≡ 0 is a solution to the original equation, but is not given by the above implicit

solution for any choice of C. Hence,

y2

2
− y

x
+ 3x = C and x ≡ 0

are solutions.

9. We compute partial derivatives of M(x, y) = 2y2 + 2y + 4x2 and N(x, y) = 2xy + x.

∂M

∂y
=

∂

∂y

(
2y2 + 2y + 4x2

)
= 4y + 2,

∂N

∂x
=

∂

∂x
(2xy + x) = 2y + 1.

Although the equation is not exact (∂M/∂y �= ∂N/∂x), the quotient

∂M/∂y − ∂N/∂x

N
=

(4y + 2) − (2y + 1)

2xy + x
=

2y + 1

x(2y + 1)
=

1

x

depends on x only, and so the equation has an integrating factor, which can be found by

applying formula (8) on page 70 of the text. Namely,

µ(x) = exp

(∫
1

x
dx

)
= exp (ln |x|) = |x|.

Note that if µ is an integrating factor, then −µ is an integrating factor as well. This observation

allows us to take µ(x) = x. Multiplying given differential equation by x yields an exact

equation (
2y2 + 2y + 4x2

)
x dx+ x2 (2y + 1) dy = 0.

Therefore,

F (x, y) =

∫
x2(2y + 1) dy = x2

(
y2 + y

)
+ h(x)

⇒ ∂F

∂x
= 2x

(
y2 + y

)
+ h′(x) =

(
2y2 + 2y + 4x2

)
x

⇒ h′(x) = 4x3 ⇒ h(x) =

∫
4x3dx = x4

⇒ F (x, y) = x2
(
y2 + y

)
+ x4 = x2y2 + x2y + x4,

and x2y2 + x2y + x4 = c is a general solution.
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11. In this differential equation, M(x, y) = y2 + 2xy, N(x, y) = −x2. Therefore,

∂M

∂y
= 2y + 2x,

∂N

∂x
= −2x,

and so (∂N/∂x − ∂M/∂y)/M = (−4x− 2y)/(y2 + 2xy) = −2/y is a function of y. Then

µ(y) = exp

[∫ (
−2

y

)
dy

]
= exp (−2 ln |y|) = y−2 .

Multiplying the differential equation by µ(y) and solving the obtained exact equation, we get

y−2
(
y2 + 2xy

)
dx− y−2x2dy = 0

⇒ F (x, y) =

∫ (−y−2x2
)
dy = y−1x2 + h(x)

⇒ ∂F

∂x
=

∂

∂x

[
y−1x2 + h(x)

]
= 2y−1x+ h′(x) = y−2

(
y2 + 2xy

)
= 1 + 2xy−1

⇒ h′(x) = 1 ⇒ h(x) = x ⇒ F (x, y) = y−1x2 + x.

Since we multiplied given equation by µ(y) = y−2 (in fact, divided by y2) to get an exact

equation, we could lose the solution y ≡ 0, and this, indeed, happened: y ≡ 0 is, clearly, a

solution to the original equation. Thus a general solution is

y−1x2 + x = c and y ≡ 0.

13. We will multiply the equation by the factor xnym and try to make it exact. Thus, we have

(
2xnym+2 − 6xn+1ym+1

)
dx+

(
3xn+1ym+1 − 4xn+2ym

)
dy = 0.

We want My(x, y) = Nx(x, y). Since

My(x, y) = 2(m+ 2)xnym+1 − 6(m+ 1)xn+1ym ,

Nx(x, y) = 3(n+ 1)xnym+1 − 4(n+ 2)xn+1ym ,

we need

2(m+ 2) = 3(n+ 1) and 6(m+ 1) = 4(n+ 2).
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Solving these equations simultaneously, we obtain n = 1 and m = 1. So,

µ(x, y) = xy.

With these choices for n and m we obtain the exact equation

(2xy3 − 6x2y2) dx+ (3x2y2 − 4x3y) dy = 0.

Solving this equation, we have

F (x, y) =

∫
(2xy3 − 6x2y2) dx = x2y3 − 2x3y2 + g(y)

⇒ Fy(x, y) = 3x2y2 − 4x3y + g′(y) = N(x, y) = 3x2y2 − 4x3y.

Therefore, g′(y) = 0. Since the constant of integration can be incorporated into the constant

C of the solution, we can pick g(y) ≡ 0. Thus, we have

F (x, y) = x2y3 − 2x3y2

and the solution becomes

x2y3 − 2x3y2 = C.

Since we have multiplied the original equation by xy we could have added the extraneous

solutions y ≡ 0 or x ≡ 0. But, since y ≡ 0 implies that dy/dx ≡ 0 or x ≡ 0 implies that

dx/dy ≡ 0, y ≡ 0 and x ≡ 0 are solutions of the original equation as well as the transformed

equation.

15. Assume that, for a differential equation

M(x, y)dx+N(x, y)dy = 0, (2.18)

the expression
∂N/∂x − ∂M/∂y

xM − yN
= H(xy) (2.19)

is a function of xy only. Denoting

µ(z) = exp

(∫
H(z)dz

)
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and multiplying (2.18) by µ(xy), we get a differential equation

µ(xy)M(x, y)dx+ µ(xy)N(x, y)dy = 0. (2.20)

Let us check it for exactness. First we note that

µ′(z) =

[
exp

(∫
H(z)dz

)]′
= exp

(∫
H(z)dz

)[∫
H(z)dz

]′
= µ(z)H(z).

Next, using this fact, we compute partial derivatives of the coefficients in (2.20).

∂

∂y
{µ(xy)M(x, y)} = µ′(xy)

∂(xy)

∂y
M(x, y) + µ(xy)

∂M(x, y)

∂y

= µ(xy)H(xy) xM(x, y) + µ(xy)
∂M(x, y)

∂y

= µ(xy)

[
H(xy) xM(x, y) +

∂M(x, y)

∂y

]
,

∂

∂x
{µ(xy)N(x, y)} = µ′(xy)

∂(xy)

∂x
N(x, y) + µ(xy)

∂N(x, y)

∂x

= µ(xy)H(xy) yN(x, y) + µ(xy)
∂N(x, y)

∂x

= µ(xy)

[
H(xy) yN(x, y) +

∂N(x, y)

∂x

]
.

But (2.19) implies that

∂N

∂x
− ∂M

∂y
= (xM − yN)H(xy) ⇔ yNH(xy) +

∂N

∂x
= xMH(xy) +

∂M

∂y
,

and, therefore,
∂[µ(xy)M(x, y)]

∂y
=
∂[µ(xy)N(x, y)]

∂x
.

This means that the equation (2.20) is exact.

17. (a) Expressing the family y = x − 1 + ke−x in the form (y − x + 1)ex = k, we have (with

notation of Problem 32) F (x, y) = (y − x+ 1)ex. We compute

∂F

∂x
=

∂

∂x
[(y − x+ 1)ex] =

∂(y − x+ 1)

∂x
ex + (y − x+ 1)

d(ex)

dx
= −ex + (y − x+ 1)ex = (y − x)ex,
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∂F

∂y
=

∂

∂y
[(y − x+ 1)ex] =

∂(y − x+ 1)

∂y
ex = ex.

Now we can use the result of Problem 32 to derive an equation for the orthogonal

trajectories (i.e., velocity potentials) of the given family of curves:

∂F

∂y
dx− ∂F

∂x
dy = 0 ⇒ ex dx− (y − x)ex dy = 0 ⇒ dx+ (x− y)dy = 0.

(b) In the differential equation dx+ (x− y)dy = 0, M = 1 and N = x− y. Therefore,

∂N/∂x − ∂M/∂y

M
=
∂(x− y)/∂x− ∂(1)/∂y

(1)
= 1,

and an integrating factor µ(y) is given by µ(y) = exp
[∫

(1)dy
]

= ey. Multiplying the

equation from part (a) by µ(y) yields an exact equation, and we look for its solutions of

the form G(x, y) = c.

eydx+ (x− y)eydy = 0

⇒ G(x, y) =

∫
eydx = xey + g(y)

⇒ ∂G

∂y
= xey + g′(y) = (x− y)ey ⇒ g′(y) = −yey

⇒ g(y) =

∫
(−yey)dy = −

(
yey −

∫
eydy

)
= −yey + ey.

Thus, the velocity potentials are given by

G(x, y) = xey − yey + ey = c or x = y − 1 + ce−y .

EXERCISES 2.6: Substitutions and Transformations, page 78

1. We can write the equation in the form

dy

dx
= (y − 4x− 1)2 = [(y − 4x) − 1]2 = G(y − 4x),

where G(t) = (t− 1)2. Thus, it is of the form dy/dx = G(ax+ by).

3. In this equation, the variables are x and t. Its coefficients, t+ x+ 2 and 3t− x− 6, are linear

functions of x and t. Therefore, given equation is an equation with linear coefficients.
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5. The given differential equation is not homogeneous due to the e−2x terms. The equation

(ye−2x + y3) dx − e−2xdy = 0 is a Bernoulli equation because it can be written in the form

dy/dx+ P (x)y = Q(x)yn as follows:

dy

dx
− y = e2xy3.

The differential equation does not have linear coefficients nor is it of the form y′ = G(ax+by).

7. Here, the variables are y and θ. Writing

dy

dθ
= −y

3 − θy2

2θ2y
= −(y/θ)3 − (y/θ)2

2(y/θ)
,

we see that the right-hand side is a function of y/θ alone. Hence, the equation is homogeneous.

9. First, we write the equation in the form

dy

dx
=

−3x2 + y2

xy − x3y−1
=
y3 − 3x2y

xy2 − x3
=

(y/x)3 − 3(y/x)

(y/x)2 − 1
.

Therefore, it is homogeneous, and we we make a substitution y/x = u or y = xu. Then

y′ = u+ xu′, and the equation becomes

u+ x
du

dx
=
u3 − 3u

u2 − 1
.

Separating variables and integrating yield

du

dx
=
u3 − 3u

u2 − 1
− u = − 2u

u2 − 1
⇒ u2 − 1

u
du = −2

x
dx

⇒
∫
u2 − 1

u
du = −

∫
2

x
dx ⇒

∫ (
u− 1

u

)
du = −2

∫
dx

x

⇒ 1

2
u2 − ln |u| = −2 ln |x| + C1 ⇒ u2 − ln

(
u2
)

+ ln(x4) = C.

Substituting back y/x for u and simplifying, we finally get(y
x

)2

− ln

(
y2

x2

)
+ ln(x4) = C ⇒ y2

x2
+ ln

(
x6

y2

)
= C,

which can also be written as

ln

(
y2

x6

)
− y2

x2
= K.
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11. From
dx

dy
=
xy − y2

x2
=
y

x
−
(y
x

)2

we conclude that given equation is homogeneous. Let u = y/x. Then y = xu and y′ = u+xu′.

Substitution yields

u+ x
du

dx
= u− u2 ⇒ x

du

dx
= −u2 ⇒ −du

u2
=
dx

x

⇒ −
∫
du

u2
=

∫
dx

x
⇒ 1

u
= ln |x| + C

⇒ x

y
= ln |x| + C ⇒ y =

x

ln |x| + C
.

Note that, solving this equation, we have performed two divisions: by x2 and u2. In doing

this, we lost two solutions, x ≡ 0 and u ≡ 0. (The latter gives y ≡ 0.) Therefore, a general

solution to the given equation is

y =
x

ln |x| + C
, x ≡ 0, and y ≡ 0.

13. Since we can express f(t, x) in the form G(x/t), that is, (dividing numerator and denominator

by t2)

x2 + t
√
t2 + x2

tx
=

(x/t)2 +
√

(x/t)2

(x/t)
,

the equation is homogeneous. Substituting v = x/t and dx/dt = v+ tdv/dt into the equation

yields

v + t
dv

dt
= v +

√
1 + v2

v
⇒ t

dv

dt
=

√
1 + v2

v
.

This transformed equation is separable. Thus we have

v√
1 + v2

dv =
1

t
dt ⇒

√
1 + v2 = ln |t| + C,

where we have integrated with the integration on the left hand side being accomplished by

the substitution u = 1 + v2. Substituting x/t for v in this equation gives the solution to the

original equation which is √
1 +

x2

t2
= ln |t| + C.
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15. This equation is homogeneous because

dy

dx
=
x2 − y2

3xy
=

1 − (y/x)2

3(y/x)
.

Thus, we substitute u = y/x (y = xu and so y′ = u+ xu′) to get

u+ x
du

dx
=

1 − u2

3u
⇒ x

du

dx
=

1 − 4u2

3u
⇒ 3u du

1 − 4u2
=
dx

x

⇒
∫

3u du

1 − 4u2
=

∫
dx

x
⇒ −3

8
ln
∣∣1 − 4u2

∣∣ = ln |x| + C1

⇒ −3 ln

∣∣∣∣1 − 4
(y
x

)2
∣∣∣∣ = 8 ln |x| + C2

⇒ 3 ln(x2) − 3 ln
∣∣x2 − 4y2

∣∣ = 8 ln |x| + C2 ,

which, after some algebra, gives (x2 − 4y2)
3
x2 = C.

17. With the substitutions z = x+ y and dz/dx = 1 + dy/dx or dy/dx = dz/dx− 1 this equation

becomes the separable equation

dz

dx
− 1 =

√
z − 1 ⇒ dz

dx
=

√
z

⇒ z−1/2 dz = dx ⇒ 2z1/2 = x+ C .

Substituting x+ y for z in this solution gives the solution of the original equation

2
√
x+ y = x+ C

which, on solving for y, yields

y =

(
x

2
+
C

2

)2

− x.

Thus, we have

y =
(x+ C)2

4
− x.

19. The right-hand side of this equation has the form G(x − y) with G(t) = (t + 5)2. Thus we

substitute

t = x− y ⇒ y = x− t ⇒ y′ = 1 − t′,
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separate variables, and integrate.

1 − dt

dx
= (t+ 5)2

⇒ dt

dx
= 1 − (t+ 5)2 = (1 − t− 5)(1 + t+ 5) = −(t+ 4)(t+ 6)

⇒ dt

(t+ 4)(t+ 6)
= −dx ⇒

∫
dt

(t+ 4)(t+ 6)
= −

∫
dx

⇒ 1

2

∫ (
1

t+ 4
− 1

t+ 6

)
dt = −

∫
dx ⇒ ln

∣∣∣∣ t+ 4

t+ 6

∣∣∣∣ = −2x+ C1

⇒ ln

∣∣∣∣x− y + 4

x− y + 6

∣∣∣∣ = −2x+ C1 ⇒ x− y + 6

x− y + 4
= C2e

2x

⇒ 1 +
2

x− y + 4
= C2e

2x ⇒ y = x+ 4 +
2

Ce2x + 1
.

Also, the solution

t+ 4 ≡ 0 ⇒ y = x+ 4

has been lost in separation variables.

21. This is a Bernoulli equation with n = 2. So, we make a substitution u = y1−n = y−1. We

have y = u−1, y′ = −u−2u′, and the equation becomes

− 1

u2

du

dx
+

1

ux
=
x2

u2
⇒ du

dx
− 1

x
u = −x2.

The last equation is a linear equation with P (x) = −1/x. Following the procedure of solving

linear equations, we find an integrating factor µ(x) = 1/x and multiply the equation by µ(x)

to get

1

x

du

dx
− 1

x2
u = −x ⇒ d

dx

(
1

x
u

)
= −x

⇒ 1

x
u =

∫
(−x)dx = −1

2
x2 + C1 ⇒ u = −1

2
x3 + C1x

⇒ y =
1

−x3/2 + C1x
=

2

Cx− x3
.

Also, y ≡ 0 is a solution which was lost when we multiplied the equation by u2 (in terms of

y, divided by y2) to obtain a linear equation.
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23. This is a Bernoulli equation with n = 2. Dividing it by y2 and rewriting gives

y−2 dy

dx
− 2x−1y−1 = −x2.

Making the substitution v = y−1 and hence dv/dx = −y−2dy/dx, the above equation becomes

dv

dx
+ 2

v

x
= x2.

This is a linear equation in v and x. The integrating factor µ(x) is given by

µ(x) = exp

(∫
2

x
dx

)
= exp (2 ln |x|) = x2.

Multiplying the linear equation by this integrating factor and solving, we have

x2 dv

dx
+ 2vx = x4 ⇒ Dx

(
x2v
)

= x4

⇒ x2v =

∫
x4 dx =

x5

5
+ C1 ⇒ v =

x3

5
+
C1

x2
.

Substituting y−1 for v in this solution gives a solution to the original equation. Therefore, we

find

y−1 =
x3

5
+
C1

x2
⇒ y =

(
x5 + 5C1

5x2

)−1

.

Letting C = 5C1 and simplifying yields

y =
5x2

x5 + C
.

Note: y ≡ 0 is also a solution to the original equation. It was lost in the first step when we

divided by y2.

25. In this Bernoulli equation, n = 3. Dividing the equation by x3, we obtain

x−3dx

dt
+

1

t
x−2 = −t.

Now we make a substitution u = x−2 to obtain a linear equation. Since u′ = −2x−3x′, the

equation becomes

−1

2

du

dt
+

1

t
u = −t ⇒ du

dt
− 2

t
u = 2t
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⇒ µ(t) = exp

(
−
∫

2

t
dt

)
= t−2

⇒ d (t−2u)

dt
=

2

t
⇒ t−2u =

∫
2

t
dt = 2 ln |t| + C

⇒ u = 2t2 ln |t| + Ct2 ⇒ x−2 = 2t2 ln |t| + Ct2 .

x ≡ 0 is also a solution, which we lost dividing the equation by x3.

27. This equation is a Bernoulli equation with n = 2, because it can be written in the form

dr

dθ
− 2

θ
r = r2θ−2.

Dividing by r2 and making the substitution u = r−1, we obtain a linear equation.

r−2 dr

dθ
− 2

θ
r−1 = θ−2 ⇒ −du

dθ
− 2

θ
u = θ−2

⇒ du

dθ
+

2

θ
u = −θ−2 ⇒ µ(θ) = exp

(∫
2

θ
dθ

)
= θ2

⇒ d (θ2u)

dθ
= −1 ⇒ θ2u = −θ + C ⇒ u =

−θ + C

θ2
.

Making back substitution (and adding the lost solution r ≡ 0), we obtain a general solution

r =
θ2

C − θ
and r ≡ 0.

29. Solving for h and k in the linear system{
−3h+ k − 1 = 0

h+ k + 3 = 0

gives h = −1 and k = −2. Thus, we make the substitutions x = u− 1 and y = v − 2, so that

dx = du and dy = dv, to obtain

(−3u+ v) du+ (u+ v) dv = 0.

This is the same transformed equation that we encountered in Example 4 on page 77 of the

text. There we found that its solution is

v2 + 2uv − 3u2 = C.
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Substituting x+ 1 for u and y + 2 for v gives the solution to the original equation

(y + 2)2 + 2(x+ 1)(y + 2) − 3(x+ 1)2 = C.

31. In this equation with linear coefficients, we make a substitution x = u+ h, y = v + k, where

h and k satisfy{
2h− k = 0

4h+ k = 3
⇒

{
k = 2h

4h+ 2h = 3
⇒ k = 1,

h = 1/2.

Thus x = u+ 1/2, y = v + 1. As dx = du and dy = dv, substitution yields

(2u− v)du+ (4u+ v)dv = 0 ⇒ du

dv
= −4u+ v

2u− v
= −4(u/v) + 1

2(u/v) − 1

⇒ z =
u

v
⇒ u = vz ⇒ du

dv
= z + v

dz

dv

⇒ z + v
dz

dv
= −4z + 1

2z − 1
⇒ v

dz

dv
= −4z + 1

2z − 1
− z = −(2z + 1)(z + 1)

2z − 1

⇒ 2z − 1

(2z + 1)(z + 1)
dz = −1

v
dv ⇒

∫
2z − 1

(2z + 1)(z + 1)
dz = −

∫
1

v
dv .

To find the integral in the left-hand side of the above equation, we use the partial fraction

decomposition
2z − 1

(2z + 1)(z + 1)
= − 4

2z + 1
+

3

z + 1
.

Therefore, the integration yields

−2 ln |2z + 1| + 3 ln |z + 1| = − ln |v| + C1 ⇒ |z + 1|3|v| = eC1 |2z + 1|2

⇒
(u
v

+ 1
)3

v = C2

(
2
u

v
+ 1
)2

⇒ (u+ v)3 = C2(2u+ v)2

⇒ (x− 1/2 + y − 1)3 = C2(2x− 1 + y − 1)2 ⇒ (2x+ 2y − 3)3 = C(2x+ y − 2)2 .

33. In Problem 1, we found that the given equation is of the form dy/dx = G(y − 4x) with

G(u) = (u− 1)2. Thus we make a substitution u = y − 4x to get

dy

dx
= (y − 4x− 1)2 ⇒ 4 +

du

dx
= (u− 1)2
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⇒ du

dx
= (u− 1)2 − 4 = (u− 3)(u+ 1) ⇒

∫
du

(u− 3)(u+ 1)
=

∫
dx .

To integrate the left-hand side, we use partial fractions:

1

(u− 3)(u+ 1)
=

1

4

(
1

u− 3
− 1

u+ 1

)
.

Thus

1

4
(ln |u− 3| − ln |u+ 1|) = x+ C1 ⇒ ln

∣∣∣∣u− 3

u+ 1

∣∣∣∣ = 4x+ C2

⇒ u− 3

u+ 1
= Ce4x ⇒ u =

Ce4x + 3

1 − Ce4x

⇒ y = 4x+
Ce4x + 3

1 − Ce4x
, (2.21)

where C �= 0 is an arbitrary constant. Separating variables, we lost the constant solutions

u ≡ 3 and u ≡ −1, that is, y = 4x + 3 and y = 4x − 1. While y = 4x + 3 can be obtained

from (2.21) by setting C = 0, the solution y = 4x− 1 is not included in (2.21). Therefore, a

general solution to the given equation is

y = 4x+
Ce4x + 3

1 − Ce4x
and y = 4x− 1.

35. This equation has linear coefficients. Thus we make a substitution t = u + h and x = v + k

with h and k satisfying {
h+ k + 2 = 0

3h− k − 6 = 0
⇒ h = 1,

k = −3.

As dt = du and dx = dv, the substitution yields

(u+ v)dv + (3u− v)du = 0 ⇒ du

dv
= − u+ v

3u− v
= − (u/v) + 1

3(u/v) − 1
.

With z = u/v, we have u = vz, u′ = z + vz′, and the equation becomes

z + v
dz

dv
= − z + 1

3z − 1
⇒ v

dz

dv
= −3z2 + 1

3z − 1

⇒ 3z − 1

3z2 + 1
dz = −1

v
dv ⇒

∫
3z − 1

3z2 + 1
dz = −

∫
1

v
dv
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⇒
∫

3zdz

3z2 + 1
−
∫

dz

3z2 + 1
= − ln |v| + C1

⇒ 1

2
ln
(
3z2 + 1

)− 1√
3

arctan
(
z
√

3
)

= − ln |v| + C1

⇒ ln
[
(3z2 + 1)v2

]− 2√
3

arctan
(
z
√

3
)

= C2.

Making back substitution, after some algebra we get

ln
[
3(t− 1)2 + (x+ 3)2

]
+

2√
3

arctan

[
x+ 3√
3(t− 1)

]
= C.

37. In Problem 5, we have written the equation in the form

dy

dx
− y = e2xy3 ⇒ y−3 dy

dx
− y−2 = e2x.

Making a substitution u = y−2 (and so u′ = −2y−3y′) in this Bernoulli equation, we get

du

dx
+ 2u = −2e2x ⇒ µ(x) = exp

(∫
2dx

)
= e2x

⇒ d (e2xu)

dx
= −2e2xe2x = −2e4x ⇒ e2xu =

∫ (−2e4x
)
dx = −1

2
e4x + C

⇒ u = −1

2
e2x + Ce−2x ⇒ y−2 = −1

2
e2x + Ce−2x .

The constant function y ≡ 0 is also a solution, which we lost dividing the equation by y3.

39. Since the equation is homogeneous, we make a substitution u = y/θ. Thus we get

dy

dθ
= −(y/θ)3 − (y/θ)2

2(y/θ)
⇒ u+ θ

du

dθ
= −u

3 − u2

2u
= −u

2 − u

2

⇒ θ
du

dθ
= −u

2 + u

2
⇒ 2du

u(u+ 1)
= −dθ

θ

⇒
∫

2du

u(u+ 1)
= −

∫
dθ

θ
⇒ ln

u2

(u+ 1)2
= − ln |θ| + C1

⇒ u2

(u+ 1)2
=
C

θ
, C �= 0.

Back substitution u = y/θ yields

y2

(y + θ)2
=
C

θ
⇒ θy2 = C(y + θ)2 , C �= 0.
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When C = 0, the above formula gives θ ≡ 0 or y ≡ 0, which were lost in separating variables.

Also, we lost another solution, u+ 1 ≡ 0 or y = −θ. Thus, the answer is

θy2 = C(y + θ)2 and y = −θ,

where C is an arbitrary constant.

41. The right-hand side of (8) from Example 2 of the text can be written as

y − x− 1 + (x− y + 2)−1 = −(x− y + 2) + 1 + (x− y + 2)−1 = G(x− y + 2)

with G(v) = −v+v−1 +1. With v = x−y+2, we have y′ = 1−v′, and the equation becomes

1 − dv

dx
= −v + v−1 + 1 ⇒ dv

dx
=
v2 − 1

v
⇒ v

v2 − 1
dv = dx

⇒ ln |v2 − 1| = 2x+ C1 ⇒ v2 − 1 = Ce2x, C �= 0.

Dividing by v2−1, we lost constant solutions v = ±1, which can be obtained by taking C = 0

in the above formula. Therefore, a general solution to the given equation is

(x− y + 2)2 = Ce2x + 1,

where C is an arbitrary constant.

43. (a) If f(tx, ty) = f(x, y) for any t, then, substituting t = 1/x, we obtain

f(tx, ty) = f

(
1

x
· x, 1

x
· y
)

= f
(
1,
y

x

)
,

which shows that f(x, y) depends, in fact, on y/x alone.

(b) Since
dy

dx
= −M(x, y)

N(x, y)
=: f(x, y)

and the function f(x, y) satisfies

f(tx, ty) = −M(tx, ty)

N(tx, ty)
= −t

nM(x, y)

tnN(x, y)
= −M(x, y)

N(x, y)
= f(x, y),

we apply (a) to conclude that the equation M(x, y)dx+N(x, y)dy = 0 is homogeneous.
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45. To obtain (17), we divide given equations:

dy

dx
= −4x+ y

2x− y
=

4 + (y/x)

(y/x) − 2
.

Therefore, the equation is homogeneous, and the substitution u = y/x yields

u+ x
du

dx
=

4 + u

u− 2
⇒ x

du

dx
=

4 + u

u− 2
− u =

−u2 + 3u+ 4

u− 2

⇒ u− 2

u2 − 3u− 4
du = −1

x
dx ⇒

∫
u− 2

u2 − 3u− 4
du = −

∫
1

x
dx .

Using partial fractions, we get

u− 2

u2 − 3u− 4
=

2

5

1

u− 4
+

3

5

1

u+ 1
,

and so

2

5
ln |u− 4| + 3

5
ln |u+ 1| = − ln |x| + C1

⇒ (u− 4)2(u+ 1)3x5 = C

⇒
(y
x
− 4
)2 (y

x
+ 1
)3

x5 = C ⇒ (y − 4x)2(y + x)3 = C.

REVIEW PROBLEMS: page 81

1. Separation variables yields

y − 1

ey
dy = ex dx ⇒ (y − 1)e−y dy = ex dx

⇒
∫

(y − 1)e−y dy =

∫
ex dx

⇒ −(y − 1)e−y +

∫
e−y dy = ex + C ⇒ −(y − 1)e−y − e−y = ex + C

⇒ ex + ye−y = −C,

and we can replace −C by K.

3. The differential equation is an exact equation with M = 2xy−3x2 and N = x2−2y−3 because

My = 2x = Nx. To solve this problem we will follow the procedure for solving exact equations
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given in Section 2.4. First we integrate M(x, y) with respect to x to get

F (x, y) =

∫ (
2xy − 3x2

)
dx+ g(y)

⇒ F (x, y) = x2y − x3 + g(y). (2.22)

To determine g(y) take the partial derivative with respect to y of both sides and substitute

N(x, y) for ∂F (x, y)/∂y to obtain

N = x2 − 2y−3 = x2 + g′(y).

Solving for g′(y) yields

g′(y) = −2y−3.

Since the choice of the constant of integration is arbitrary we will take g(y) = y−2. Hence,

from equation (2.22) we have F (x, y) = x2y − x3 + y−2 and the solution to the differential

equation is given implicitly by x2y − x3 + y−2 = C.

5. In this problem,

M(x, y) = sin(xy) + xy cos(xy), N(x, y) = 1 + x2 cos(xy).

We check the equation for exactness:

∂M

∂y
= [x cos(xy)] + [x cos(xy) − xy sin(xy)x] = 2x cos(xy) − x2y sin(xy),

∂N

∂x
= 0 + [2x cos(xy) − x2 sin(xy)y] = 2x cos(xy) − x2y sin(xy).

Therefore, the equation is exact. So, we use the method discussed in Section 2.4 and obtain

F (x, y) =

∫
N(x, y)dy =

∫ [
1 + x2 cos(xy)

]
dy = y + x sin(xy) + h(x)

⇒ ∂F

∂x
= sin(xy) + x cos(xy)y + h′(x) = M(x, y) = sin(xy) + xy cos(xy)

⇒ h′(x) = 0 ⇒ h(x) ≡ 0,

and a general solution is given implicitly by y + x sin(xy) = c.
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7. This equation is separable. Separating variables and integrating, we get

t3y2 dt = −t4y−6 dy ⇒ dt

t
= −dy

y8

⇒ ln |t| + C1 =
1

7
y−7 ⇒ y = (7 ln |t| + C)−1/7 .

The function t ≡ 0 is also a solution. (We lost it when divided the equation by t4.)

9. The given differential equation can be written in the form

dy

dx
+

1

3x
y = −x

3
y−1 .

This is a Bernoulli equation with n = −1, P (x) = 1/(3x), and Q(x) = −x/3. To transform

this equation into a linear equation, we first multiply by y to obtain

y
dy

dx
+

1

3x
y2 = −1

3
x.

Next we make the substitution v = y2. Since v′ = 2yy′, the transformed equation is

1

2
v′ +

1

3x
v = −1

3
x,

⇒ v′ +
2

3x
v = −2

3
x. (2.23)

The above equation is linear, so we can solve it for v using the method for solving linear

equations discussed in Section 2.3. Following this procedure, the integrating factor µ(x) is

found to be

µ(x) = exp

(∫
2

3x
dx

)
= exp

(
2

3
ln |x|

)
= x2/3.

Multiplying equation (2.23) by x2/3 gives

x2/3v′ +
2

3x1/3
v = −2

3
x5/3 ⇒ (

x2/3v
)′

= −2

3
x5/3.

We now integrate both sides and solve for v to find

x2/3v =

∫ −2

3
x5/3 dx =

−1

4
x8/3 + C ⇒ v =

−1

4
x2 + Cx−2/3.

Substituting v = y2 gives the solution

y2 = −1

4
x2 + Cx−2/3 ⇒ (x2 + 4y2)x2/3 = 4C

or, cubing both sides, (x2 + 4y2)3x2 = C1, where C1 := (4C)3 is an arbitrary constant.
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11. The right-hand side of this equation is of the form G(t− x) with G(u) = 1 + cos2 u. Thus we

make a substitution

t− x = u ⇒ x = t− u ⇒ x′ = 1 − u′,

which yields

1 − du

dt
= 1 + cos2 u ⇒ du

dt
= − cos2 u

⇒ sec2 u du = −dt ⇒
∫

sec2 u du = −
∫
dt

⇒ tanu = −t+ C ⇒ tan(t− x) + t = C.

13. This is a linear equation with P (x) = −1/x. Following the method for solving linear equations

given on page 51 of the text, we find that an integrating factor µ(x) = 1/x, and so

d[(1/x)y]

dx
=

1

x
x2 sin 2x = x sin 2x

⇒ y

x
=

∫
x sin 2x dx = −1

2
x cos 2x+

1

2

∫
cos 2x dx = −1

2
x cos 2x+

1

4
sin 2x+ C

⇒ y = −x
2

2
cos 2x+

x

4
sin 2x+ Cx.

15. The right-hand side of the differential equation y′ = 2 −√
2x− y + 3 is a function of 2x− y

and so can be solved using the method for equations of the form y′ = G(ax+ by) on page 74

of the text. By letting z = 2x − y we can transform the equation into a separable one. To

solve, we differentiate z = 2x− y with respect to x to obtain

dz

dx
= 2 − dy

dx
⇒ dy

dx
= 2 − dz

dx
.

Substituting z = 2x− y and y′ = 2 − z′ into the differential equation yields

2 − dz

dx
= 2 −√

z + 3 or
dz

dx
=

√
z + 3 .

To solve this equation we divide by
√
z + 3, multiply by dx, and integrate to obtain∫

(z + 3)−1/2 dz =

∫
dx ⇒ 2(z + 3)1/2 = x+ C .

93



Chapter 2

Thus we get

z + 3 =
(x+ C)2

4
.

Finally, replacing z by 2x− y yields

2x− y + 3 =
(x+ C)2

4
.

Solving for y, we obtain

y = 2x+ 3 − (x+ C)2

4
.

17. This equation is a Bernoulli equation with n = 2. So, we divide it by y2 and substitute

u = y−1 to get

−du
dθ

+ 2u = 1 ⇒ du

dθ
− 2u = −1 ⇒ µ(θ) = exp

[∫
(−2)dθ

]
= e−2θ

⇒ d
(
e−2θu

)
dθ

= −e−2θ ⇒ e−2θu =

∫ (−e−2θ
)
dθ =

e−2θ

2
+ C1

⇒ y−1 =
1

2
+ C1e

2θ =
1 + Ce2θ

2
⇒ y =

2

1 + Ce2θ
.

This formula, together with y ≡ 0, gives a general solution to the given equation.

19. In the differential equation M(x, y) = x2 − 3y2 and N(x, y) = 2xy. The differential equation

is not exact because
∂M

∂y
= −6y �= 2x =

∂N

∂x
.

However, because (∂M/∂y − ∂N/∂x) /N = (−8y)/(2xy) = −4/x depends only on x, we can

determine µ(x) from equation (8) on page 70 of the text. This gives

µ(x) = exp

(∫ −4

x
dx

)
= x−4.

When we multiply the differential equation by µ(x) = x−4 we get the exact equation

(x−2 − 3x−4y2) dx+ 2x−3y dy = 0.

To find F (x, y) we integrate (x−2 − 3x−4y2) with respect to x:

F (x, y) =

∫ (
x−2 − 3x−4y2

)
dx = −x−1 + x−3y2 + g(y).
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Next we take the partial derivative of F with respect to y and substitute 2x−3y for ∂F/∂y:

2x−3y = 2x−3y + g′(y).

Thus g′(y) = 0 and since the choice of the constant of integration is not important, we will

take g(y) ≡ 0. Hence, we have F (x, y) = −x−1 + x−3y2 and the implicit solution to the

differential equation is

−x−1 + x−3y2 = C.

Solving for y2 yields y2 = x2 + Cx3.

Finally we check to see if any solutions were lost in the process. We multiplied by the

integrating factor µ(x) = x−4 so we check x ≡ 0. This is also a solution to the original

equation.

21. This equation has linear coefficients. Therefore, we are looking for a substitution x = u + h

and y = v + k with h and k satisfying{
−2h + k − 1 = 0

h+ k − 4 = 0
⇒ h = 1,

k = 3.

So, x = u+ 1 (dx = du) and y = v + 3 (dy = dv), and the equation becomes

(−2u+ v)du+ (u+ v)dv = 0 ⇒ dv

du
=

2u− v

u+ v
=

2 − (v/u)

1 + (v/u)
.

With z = v/u, we have v′ = z + uz′, and so

z + u
dz

du
=

2 − z

1 + z
⇒ u

dz

du
=

2 − z

1 + z
− z =

−z2 − 2z + 2

1 + z

⇒ z + 1

z2 + 2z − 2
dz = −du

u
⇒

∫
1 + z

z2 + 2z − 2
dz = −

∫
du

u

⇒ 1

2
ln
∣∣z2 + 2z − 2

∣∣ = − ln |u| + C1 ⇒ (
z2 + 2z − 2

)
u2 = C2.

Back substitution, z = v/u = (y − 3)/(x− 1), yields

v2 + 2uv − 2u2 = C2 ⇒ (y − 3)2 + 2(x− 1)(y − 3) − 2(x− 1)2 = C2

⇒ y2 − 8y − 2x2 − 2x+ 2xy = C.
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23. Given equation is homogeneous because

dy

dx
=
x− y

x+ y
=

1 − (y/x)

1 + (y/x)
.

Therefore, substituting u = y/x, we obtain a separable equation.

u+ x
du

dx
=

1 − u

1 + u
⇒ x

du

dx
=

−u2 − 2u+ 1

1 + u

⇒ u+ 1

u2 + 2u− 1
du = −dx

x
⇒

∫
1 + u

u2 + 2u− 1
du = −

∫
dx

x

⇒ 1

2
ln |u2 + 2u− 1| = − ln |x| + C1 ⇒ (

u2 + 2u− 1
)
x2 = C,

and, substituting back u = y/x, after some algebra we get a general solution y2+2xy−x2 = C.

25. In this differential form, M(x, y) = y(x− y − 2) and N(x, y) = x(y − x+ 4). Therefore,

∂M

∂y
= x− 2y − 2,

∂N

∂x
= y − 2x+ 4

⇒ ∂N/∂x − ∂M/∂y

M
=

(y − 2x+ 4) − (x− 2y − 2)

y(x− y − 2)
=

−3(x− y − 2)

y(x− y − 2)
=

−3

y
,

which is a function of y alone. Therefore, the equation has a special integrating factor µ(y).

We use formula (9) on page 70 of the text to find that µ(y) = y−3. Multiplying the equation

by µ(y) yields

y−2(x− y − 2) dx+ xy−3(y − x+ 4) dy = 0

⇒ F (x, y) =

∫
y−2(x− y − 2) dx =

y−2x2

2
− (y−1 + 2y−2

)
x+ g(y)

⇒ ∂F

∂y
= −y−3x2 − (−y−2 − 4y−3

)
x+ g′(y) = N(x, y) = xy−3 (y − x+ 4)

⇒ g′(x) = 0 ⇒ g(y) ≡ 0,

and so

F (x, y) =
y−2x2

2
− x
(
y−1 + 2y−2

)
= C1 ⇒ x2y−2 − 2xy−1 − 4xy−2 = C

is a general solution. In addition, y ≡ 0 is a solution that we lost when multiplied the equation

by µ(y) = y−3 (i.e., divided by y3).
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27. This equation has linear coefficients. Thus we make a substitution x = u+ h, y = v + k with

h and k satisfying {
3h− k − 5 = 0

h− k + 1 = 0
⇒ h = 3,

k = 4.

With this substitution,

(3u− v)du+ (u− v)dv = 0 ⇒ dv

du
= −3u− v

u− v
= −3 − (v/u)

1 − (v/u)

⇒ z =
v

u
, v = uz, v′ = z + uz′

⇒ z + u
dz

du
= −3 − z

1 − z
⇒ u

dz

du
= −3 − z

1 − z
− z = −z

2 − 3

z − 1

⇒ z − 1

z2 − 3
dz = −du

u
⇒

∫
z − 1

z2 − 3
dz = −

∫
du

u
.

We use partial fractions to find the integral in the left-hand side. Namely,

z − 1

z2 − 3
=

A

z −√
3

+
B

z +
√

3
, A =

1

2
− 1

2
√

3
, B =

1

2
+

1

2
√

3
.

Therefore, integration yields

A ln
∣∣∣z −√

3
∣∣∣+B ln

∣∣∣z +
√

3
∣∣∣ = − ln |u| + C1

⇒
(
z −

√
3
)1−1/

√
3 (
z +

√
3
)1+1/

√
3

u2 = C

⇒
(
v − u

√
3
)1−1/

√
3 (
v + u

√
3
)1+1/

√
3

= C

⇒ (
v2 − 3u2

)(v + u
√

3

v − u
√

3

)1/
√

3

= C

⇒ [
(y − 4)2 − 3(x− 3)2

] [(y − 4) + (x− 3)
√

3

(y − 4) − (x− 3)
√

3

]1/
√

3

= C.

29. Here M(x, y) = 4xy3 − 9y2 + 4xy2 and N(x, y) = 3x2y2 − 6xy + 2x2y. We compute

∂M

∂y
= 12xy2 − 18y + 8xy,

∂N

∂x
= 6xy2 − 6y + 4xy,

∂M/∂y − ∂N/∂x

N
=

(12xy2 − 18y + 8xy) − (6xy2 − 6y + 4xy)

3x2y2 − 6xy + 2x2y
=

2y(3xy − 6 + 2x)

xy(3xy − 6 + 2x)
=

2

x
,
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which is a function of x alone. Thus, the equation has a special integrating factor

µ(x) = exp

(∫
2

x
dx

)
= x2.

Multiplying the equation by µ(x), we find that

F (x, y) =

∫
x2
(
4xy3 − 9y2 + 4xy2

)
dx = x4y3 − 3x3y2 + x4y2 + g(y)

⇒ ∂F

∂y
= 3x4y2 − 6x3y + 2x4y + g′(y) = x2N(x, y) = x2

(
3x2y2 − 6xy + 2x2y

)
⇒ g′(y) = 0 ⇒ g(y) ≡ 0

⇒ F (x, y) = x4y3 − 3x3y2 + x4y2 = C

is a general solution.

31. In this problem,

∂M

∂y
= −1,

∂N

∂x
= 1, and so

∂M/∂y − ∂N/∂x

N
= −2

x
.

Therefore, the equation has a special integrating factor

µ(x) = exp

[∫ (−2

x

)
dx

]
= x−2 .

We multiply the given equation by µ(x) to get an exact equation.(
x− y

x2

)
dx+

1

x
dy = 0

⇒ F (x, y) =

∫ (
1

x

)
dy =

y

x
+ h(x)

⇒ ∂F

∂x
= − y

x2
+ h′(x) = x− y

x2
⇒ h′(x) = x ⇒ h(x) =

x2

2
,

and a general solution is given by

F (x, y) =
y

x
+
x2

2
= C and x ≡ 0.

(The latter has been lost in multiplication by µ(x).) Substitution the initial values, y = 3

when x = 1, yields
3

1
+

12

2
= C ⇒ C =

7

2
.
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Hence, the answer is
y

x
+
x2

2
=

7

2
⇒ y = −x

3

2
+

7x

2
.

33. Choosing x as the dependent variable, we transform the equation to

dx

dt
+ x = −(t+ 3).

This equation is linear, P (t) ≡ 1. So, µ(t) = exp
(∫

dt
)

= et and

d (etx)

dt
= −(t+ 3)et

⇒ etx = −
∫

(t+ 3)et dt = −(t+ 3)et +

∫
et dt = −(t+ 2)et + C

⇒ x = −(t+ 2) + Ce−t.

Using the initial condition, x(0) = 1, we find that

1 = x(0) = −(0 + 2) + Ce−0 ⇒ C = 3,

and so x = −t− 2 + 3e−t.

35. For M(x, y) = 2y2 + 4x2 and N(x, y) = −xy, we compute

∂M

∂y
= 4y,

∂N

∂x
= −y ⇒ ∂M/∂y − ∂N/∂x

N
=

4y − (−y)
−xy =

−5

x
,

which is a function of x only. Using (8) on page 70 of the text, we find an integrating factor

µ(x) = x−5 and multiply the equation by µ(x) to get an exact equation,

x−5
(
2y2 + 4x2

)
dx− x−4y dy = 0.

Hence,

F (x, y) =

∫ (−x−4y
)
dy = −x

−4y2

2
+ h(x)

⇒ ∂F

∂x
=

4x−5y2

2
+ h′(x) = x−5M(x, y) = 2x−5y2 + 4x−3

⇒ h′(x) = 4x−3 ⇒ h(x) = −2x−2
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⇒ F (x, y) = −x
−4y2

2
− 2x−2 = C.

We find C by substituting the initial condition, y(1) = −2:

−(1)−4(−2)2

2
− 2(1)−2 = C ⇒ C = −4 .

So, the solution is

−x
−4y2

2
− 2x−2 = −4

⇒ y2 + 4x2 = 8x4

⇒ y2 = 8x4 − 4x2 = 4x2
(
2x2 − 1

)
⇒ y = −2x

√
2x2 − 1 ,

where, taking the square root, we have chosen the negative sign because of the initial negative

value for y.

37. In this equation with linear coefficients we make a substitution x = u + h, y = v + k with h

and k such that{
2h− k = 0

h+ k = 3
⇒

{
k = 2h

h+ (2h) = 3
⇒ k = 2,

h = 1.

Therefore,

(2u− v)du+ (u+ v)dv = 0

⇒ dv

du
=
v − 2u

v + u
=

(v/u) − 2

(v/u) + 1

⇒ z = v/u, v = uz, v′ = z + uz′

⇒ z + u
dz

du
=
z − 2

z + 1
⇒ u

dz

du
= −z

2 + 2

z + 1

⇒ z + 1

z2 + 2
dz = −du

u
.

Integration yields∫
z + 1

z2 + 2
dz = −

∫
du

u
⇒

∫
z dz

z2 + 2
+

∫
dz

z2 + 2
= −

∫
du

u
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⇒ 1

2
ln
(
z2 + 2

)
+

1√
2

arctan

(
z√
2

)
= − ln |u| + C1

⇒ ln
[(
z2 + 2

)
u2
]
+
√

2 arctan

(
z√
2

)
= C

⇒ ln
(
v2 + 2u2

)
+
√

2 arctan

(
v

u
√

2

)
= C

⇒ ln
[
(y − 2)2 + 2(x− 1)2

]
+
√

2 arctan

[
y − 2

(x− 1)
√

2

]
= C.

The initial condition, y(0) = 2, gives C = ln 2, and so the answer is

ln
[
(y − 2)2 + 2(x− 1)2

]
+
√

2 arctan

[
y − 2

(x− 1)
√

2

]
= ln 2 .

39. Multiplying the equation by y, we get

y
dy

dx
− 2

x
y2 =

1

x
.

We substitute u = y2 and obtain

1

2

du

dx
− 2

x
u =

1

x
⇒ du

dx
− 4

x
u =

2

x
,

which is linear and has an integrating factor

µ(x) = exp

[∫ (
−4

x

)
dx

]
= x−4.

Hence,

d (x−4u)

dx
= 2x−5

⇒ x−4u =

∫ (
2x−5

)
dx = −x

−4

2
+ C

⇒ x−4y2 = −x
−4

2
+ C

⇒ y2 = −1

2
+ Cx4.

Substitution y(1) = 3 yields

32 = −1

2
+ C(1)4 or C =

19

2
.
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Therefore, the solution to the given initial value problem is

y2 = −1

2
+

19x4

2
or y =

√
19x4 − 1

2
.
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CHAPTER 3:Mathematical Models and Numerical
Methods Involving First Order Equations

EXERCISES 3.2: Compartmental Analysis, page 98

1. Let x(t) denote the mass of salt in the tank at time t with t = 0 denoting the moment when

the process started. Thus we have x(0) = 0.5 kg. We use the mathematical model described

by equation (1) on page 90 of the text to find x(t). Since the solution is entering the tank

with rate 8 L/min and contains 0.05 kg/L of salt,

input rate = 8 (L/min) · 0.05 (kg/L) = 0.4 (kg/min).

We can determine the concentration of salt in the tank by dividing x(t) by the volume of the

solution, which remains constant, 100 L, because the flow rate in is the same as the flow rate

out. Therefore, the concentration of salt at time t is x(t)/100 kg/L and

output rate =
x(t)

100
(kg/L) · 8 (L/min) =

2x(t)

25
(kg/min).

Then the equation (1) yields

dx

dt
= 0.4 − 2x

25
⇒ dx

dt
+

2x

25
= 0.4 , x(0) = 0.5 .

This equation is linear, has integrating factor µ(t) = exp
[∫

(2/25)dt
]

= e2t/25, and so

d
(
e2t/25x

)
dt

= 0.4e2t/25

⇒ e2t/25x = 0.4

(
25

2

)
e2t/25 + C = 5e2t/25 + C ⇒ x = 5 + Ce−2t/25.

Using the initial condition, we find C.

0.5 = x(0) = 5 + C ⇒ C = −4.5 ,
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and so the mass of salt in the tank after t minutes is

x(t) = 5 − 4.5e−2t/25.

If the concentration of salt in the tank is 0.02 kg/L, then the mass of salt is 0.02×100 = 2 kg,

and, to find this moment, we solve

5 − 4.5e−2t/25 = 2 ⇒ e−2t/25 =
2

3
⇒ t =

25 ln(3/2)

2
≈ 5.07 (min).

3. Let x(t) be the volume of nitric acid in the tank at time t. The tank initially held 200 L

of a 0.5% nitric acid solution; therefore, x(0) = 200 × 0.005 = 1. Since 6 L of 20% nitric

acid solution are flowing into the tank per minute, the rate at which nitric acid is entering

is 6 × 0.2 = 1.2 L/min. Because the rate of flow out of the tank is 8 L/min and the rate

of flow in is only 6 L/min, there is a net loss in the tank of 2 L of solution every minute.

Thus, at any time t, the tank will be holding 200 − 2t liters of solution. Combining this

with the fact that the volume of nitric acid in the tank at time t is x(t), we see that the

concentration of nitric acid in the tank at time t is x(t)/(200−2t). Here we are assuming that

the tank is kept well stirred. The rate at which nitric acid flows out of the tank is, therefore,

8 × [x(t)/(200 − 2t)] L/min. From all of these facts, we see that

input rate = 1.2 L/min,

output rate =
8x(t)

200 − 2t
L/min.

We know that
dx

dt
= input rate − output rate .

Thus we must solve the differential equation

dx

dt
= 1.2 − 4x(t)

100 − t
, x(0) = 1.

This is the linear equation

dx

dt
+

4

100 − t
x = 1.2 , x(0) = 1.
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An integrating factor for this equation has the form

µ(t) = exp

(∫
4

100 − t
dt

)
= e−4 ln(100−t) = (100 − t)−4.

Multiplying the linear equation by the integrating factor yields

(100 − t)−4dx

dt
+ 4x(100 − t)−5 = (1.2)(100 − t)−4

⇒ Dt

[
(100 − t)−4x

]
= (1.2)(100− t)−4

⇒ (100 − t)−4x = 1.2

∫
(100 − t)−4 dt =

1.2

3
(100 − t)−3 + C

⇒ x(t) = (0.4)(100 − t) + C(100 − t)4 .

To find the value of C, we use the initial condition x(0) = 1. Therefore,

x(0) = (0.4)(100) + C(100)4 = 1 ⇒ C =
−39

1004
= −3.9 × 10−7.

This means that at time t there is

x(t) = (0.4)(100 − t) − (3.9 × 10−7)(100 − t)4

liters of nitric acid in the tank. When the percentage of nitric acid in the tank is 10%, the

concentration of nitric acid is 0.1. Thus we want to solve the equation

x(t)

200 − 2t
= 0.1 .

Therefore, we divide the solution x(t) that we found above by 2(100− t) and solve for t. That

is, we solve

(0.2) − (1.95 × 10−7)(100 − t)3 = 0.1

⇒ t = −
[
0.1 · 107

1.95

]1/3

+ 100 ≈ 19.96 (min).

5. Let x(t) denote the volume of chlorine in the pool at time t. Then in the formula

rate of change = input rate − output rate
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we have

input rate = 5 (gal/min) · 0.001%

100%
= 5 · 10−5 (gal/min),

output rate = 5 (gal/min) · x(t) (gal)

10, 000 (gal)
= 5 · 10−4x(t) (gal/min),

and the equation for x(t) becomes

dx

dt
= 5 · 10−5 − 5 · 10−4x ⇒ dx

dt
+ 5 · 10−4x = 5 · 10−5.

This is a linear equation. Solving yields

x(t) = 0.1 + Ce5·10
−4t = 0.1 + Ce−0.0005t.

Using the initial condition,

x(0) = 10, 000 (gal) · 0.01%

100%
= 1 (gal),

we find the value of C:

1 = 0.1 + Ce−0.0005·0 ⇒ C = 0.9 .

Therefore, x(t) = 0.1 + 0.9e−0.0005t and the concentration of chlorine, say, c(t), in the pool at

time t is

c(t) =
x(t) (gal)

10, 000 (gal)
· 100% =

x(t)

100
% = 0.001 + 0.009e−0.0005t %.

After 1 hour (i.e., t = 60 min),

c(60) = 0.001 + 0.009e−0.0005·60 = 0.001 + 0.009e−0.03 ≈ 0.0097 %.

To answer the second question, we solve the equation

c(t) = 0.001 + 0.009e−0.0005t = 0.002 ⇒ t =
ln(1/9)

−0.0005
≈ 4394.45 (min) ≈ 73.24 (h).

7. Let x(t) denote the mass of salt in the first tank at time t. Assuming that the initial mass is

x(0) = x0, we use the mathematical model described by equation (1) on page 90 of the text to
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find x(t). We can determine the concentration of salt in the first tank by dividing x(t) by the

its volume, i.e., x(t)/60 kg/gal. Note that the volume of brine in this tank remains constant

because the flow rate in is the same as the flow rate out. Then

output rate1 = (3 gal/min) ·
(
x(t)

60
kg/gal

)
=
x(t)

20
kg/min.

Since the incoming liquid is pure water, we conclude that

input rate1 = 0.

Therefore, x(t) satisfies the initial value problem

dx

dt
= input rate1 − output rate1 = − x

20
, x(0) = x0 .

This equation is linear and separable. Solving and using the initial condition to evaluate the

arbitrary constant, we find

x(t) = x0e
−t/20 .

Now, let y(t) denote the mass of salt in the second tank at time t. Since initially this tank

contained only pure water, we have y(0) = 0. The function y(t) can be described by the same

mathematical model. We get

input rate2 = output rate1 =
x(t)

20
=
x0

20
e−t/20 kg/min.

Further since the volume of the second tank also remains constant, we have

output rate2 = (3 gal/min) ·
(
y(t)

60
kg/gal

)
=
y(t)

20
kg/min.

Therefore, y(t) satisfies the initial value problem

dy

dt
= input rate2 − output rate2 =

x0

20
e−t/20 − y(t)

20
, y(0) = 0 .

or
dy

dt
+
y(t)

20
=
x0

20
e−t/20 , y(0) = 0 .
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This is a linear equation in standard form. Using the method given on page 51 of the text we

find the general solution to be

y(t) =
x0

20
te−t/20 + Ce−t/20 .

The constant C can be found from the initial condition:

0 = y(0) =
x0

20
· 0 · e−0/20 + Ce−0/20 ⇒ C = 0.

Therefore, y(t) = (x0/20) te−t/20. To investigate y(t) for maximum value we calculate

dy

dt
=
x0

20
e−t/20 − y(t)

20
=
x0

20
e−t/20

(
1 − t

20

)
.

Thus
dy

dt
= 0 ⇔ 1 − t

20
= 0 ⇔ t = 20,

which is the point of global maximum (notice that dy/dt > 0 for t < 20 and dy/dt < 0 for

t > 20). In other words, at this moment the water in the second tank will taste saltiest, and

comparing concentrations, it will be

y(20)/60

x0/60
=
y(20)

x0

=
1

20
· 20 · e−20/20 = e−1

times as salty as the original brine.

9. Let p(t) be the population of splake in the lake at time t. We start counting the population

in 1980. Thus, we let t = 0 correspond to the year 1980. By the Malthusian law stated on

page 93 of the text, we have

p(t) = p0e
kt .

Since p0 = p(0) = 1000, we see that

p(t) = 1000ekt .

To find k we use the fact that the population of splake was 3000 in 1987. Therefore,

p(7) = 3000 = 1000ek·7 ⇒ 3 = ek·7 ⇒ k =
ln 3

7
.
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< < < • > > > > > • < < < < <

0 a/b

Figure 3–A: The phase line for p′ = (a− bp)p.

Putting this value for k into the equation for p(t) gives

p(t) = 1000e(t ln 3)/7 = 1000 · 3t/7 .

To estimate the population in 2010 we plug t = 2010 − 1980 = 30 into this formula to get

p(30) = 1000 · 330/7 ≈ 110, 868 splakes.

11. In this problem, the dependent variable is p, the independent variable is t, and the function

f(t, p) = (a−bp)p. Since f(t, p) = f(p), i.e., does not depend on t, the equation is autonomous.

To find equilibrium solutions, we solve

f(p) = 0 ⇒ (a− bp)p = 0 ⇒ p1 = 0, p2 =
a

b
.

Thus, p1(t) ≡ 0 and p2(t) ≡ a/b are equilibrium solutions. For p1 < p < p2, f(p) > 0, and

f(p) < 0 when p > p2. (Also, f(p) < 0 for p < p1.) Thus the phase line for the given equation

is as it is shown in Figure 3-A. From this picture, we conclude that the equilibrium p = p1 is

a source while p = p2 is a sink. Thus, regardless of an initial point p0 > 0, the solution to the

corresponding initial value problem will approach p2 = a/b as t→ ∞.

13. With year 1980 corresponding to t = 0, the data given can be written as

t0 = 0, p0 = p(t0) = 1000;

ta = 1987 − 1980 = 7, pa = p(ta) = 3000;

tb = 1994 − 1980 = 14, pb = p(tb) = 5000.

Since tb = 2ta, we can use formulas in Problem 12 to compute parameters p1 and A in the

logistic model (14) on page 94 of the text. We have:

p1 =
(3000)(5000)− 2(1000)(5000) + (1000)(3000)

(3000)2 − (1000)(5000)
(3000) = 6000;
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A =
1

(6000)7
ln

[
5000(3000− 1000)

1000(5000− 3000)

]
=

ln 5

42000
.

Thus the formula (15) on page 95 of the text becomes

p(t) =
p0p1

p0 + (p1 − p0)e−Ap1t
=

(1000)(6000)

(1000) + (6000 − 1000)e−(ln 5/42000)6000t
=

6000

1 + 51−t/7
. (3.1)

In the year 2010, t = 2010 − 1980 = 30, and the estimated population of splake is

p(30) =
6000

1 + 51−30/7
≈ 5970.

Taking the limit in (3.1), as t→ ∞, yields

lim
t→∞

p(t) = lim
t→∞

6000

1 + 51−t/7
=

6000

1 + lim
t→∞

51−t/7
= 6000.

Therefore, the predicted limiting population is 6000.

15. Counting time from the year 1970, we have the following data:

t0 = 0, p0 = p(t0) = 300;

ta = 1975 − 1970 = 5, pa = p(ta) = 1200;

tb = 1980 − 1970 = 10, pb = p(tb) = 1500.

Since tb = 2ta, we use the formulas in Problem 12 to find parameters in the logistic model.

p1 =

[
(1200)(1500)− 2(300)(1500) + (300)(1200)

(1200)2 − (300)(1500)

]
(1200) =

16800

11
;

A =
1

(16800/11)5
ln

[
(1500)(1200− 300)

(300)(1500− 1200)

]
=

11 ln(15)

84000
.

Therefore,

p(t) =
300(16800/11)

300 + [(16800/11)− 300]e− ln(15)t/5
=

16800

11 + 3 · 151−t/5
.

In the year 2010, t = 2010 − 1970 = 40, and so the estimated population of alligators is

p(40) =
16800

11 + 3 · 151−40/5
=

16800

11 + 3 · 15−7
≈ 1527.

Taking the limit of p(t), as t→ ∞, we get the predicted limiting population of

lim
t→∞

16800

11 + 3 · 151−t/5
=

16800

11
≈ 1527.
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16. By definition,

p′(t) = lim
h→0

p(t+ h) − p(t)

h
.

Replacing h by −h in the above equation, we obtain

p′(t) = lim
h→0

p(t− h) − p(t)

−h = lim
h→0

p(t) − p(t− h)

h
.

Adding the previous two equations together yields

2p′(t) = lim
h→0

[
p(t+ h) − p(t)

h
+
p(t) − p(t− h)

h

]
= lim

h→0

[
p(t+ h) − p(t− h)

h

]
.

Thus

p′(t) = lim
h→0

[
p(t+ h) − p(t− h)

2h

]
.

19. This problem can be regarded as a compartmental analysis problem for the population of

fish. If we let m(t) denote the mass in million tons of a certain species of fish, then the

mathematical model for this process is given by

dm

dt
= increase rate − decrease rate.

The increase rate of fish is given by 2m million tons/yr. The decrease rate of fish is given as

15 million tons/yr. Substituting these rates into the above equation we obtain

dm

dt
= 2m− 15, m(0) = 7 (million tons).

This equation is linear and separable. Using the initial condition, m(0) = 7 to evaluate the

arbitrary constant we obtain

m(t) = −1

2
e2t +

15

2
.

Knowing this equation we can now find when all the fish will be gone. To determine when all

the fish will be gone we set m(t) = 0 and solve for t. This gives

0 = −1

2
e2t +

15

2
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and, hence,

t =
1

2
ln(15) ≈ 1.354 (years).

To determine the fishing rate required to keep the fish mass constant we solve the general

problem
dm

dt
= 2m− r, m(0) = 7,

with r as the fishing rate. Thus we obtain

m(t) = Ke2t +
r

2
.

The initial mass was given to be 7 million tons. Substituting this into the above equation we

can find the arbitrary constant K:

m(0) = 7 = K +
r

2
⇒ K = 7 − r

2
.

Thus m(t) is given by

m(t) =
(
7 − r

2

)
e2t +

r

2
.

A fishing rate of r = 14 million tons/year will give a constant mass of fish by canceling out

the coefficient of the e2t term.

21. Let D = D(t), S(t), and V (t) denote the diameter, surface area, and volume of the snowball

at time t, respectively. From geometry, we know that V = πD3/6 and S = πD2. Since we are

given that V ′(t) is proportional to S(t), the equation describing the melting process is

dV

dt
= kS ⇒ d

dt

(π
6
D3
)

= k
(
πD2

)
⇒ π

2
D2 dD

dt
= kπD2 ⇒ dD

dt
= 2k = const.

Solving, we get D = 2kt + C. Initially, D(0) = 4, and we also know that D(30) = 3. These

data allow us to find k and C.

4 = D(0) = 2k · 0 + C ⇒ C = 4;

3 = D(30) = 2k · 30 + C = 2k · 30 + 4 ⇒ 2k = − 1

30
.
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Thus

D(t) = − t

30
+ 4 .

The diameter D(t) of the snowball will be 2 inches when

− t

30
+ 4 = 2 ⇒ t = 60 (min) = 1 (h),

and the snowball will disappear when

− t

30
+ 4 = 0 ⇒ t = 120 (min) = 2 (h).

23. If m(t) (with t measured in “days”) denotes the mass of a radioactive substance, the law of

decay says that
dm

dt
= km(t) ,

with the decay constant k depending on the substance. Solving this equation yields

m(t) = Cekt.

If the initial mass of the substance is m(0) = m0, then, similarly to the equation (11) on

page 93 of the text, we find that

m(t) = m0e
kt. (3.2)

In this problem, m0 = 50 g, and we know that m(3) = 10 g. These data yield

10 = m(3) = 50 · ek(3) ⇒ k = − ln 5

3
,

and so the decay is governed by the equation

m(t) = 50e−(ln 5)t/3 = (50)5−t/3.

After 4 days, the remaining amount will be m(4) = (50)5−4/3 g, which is

(50)5−4/3

50
· 100% = 5−4/3 · 100% ≈ 11.7%

of the original amount.
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25. Let M(t) denote the mass of carbon-14 present in the burnt wood of the campfire. Then since

carbon-14 decays at a rate proportional to its mass, we have

dM

dt
= −αM,

where α is the proportionality constant. This equation is linear and separable. Using the

initial condition, M(0) = M0 we obtain

M(t) = M0e
−αt.

Given the half-life of carbon-14 to be 5600 years, we solve for α since we have

1

2
M0 = M0e

−α(5600) ⇒ 1

2
= e−α(5600) ,

which yields

α =
ln(0.5)

−5600
≈ 0.000123776 .

Thus,

M(t) = M0e
−0.000123776t .

Now we are told that after t years 2% of the original amount of carbon-14 remains in the

campfire and we are asked to determine t. Thus

0.02M0 = M0e
−0.000123776t ⇒ 0.02 = e−0.000123776t

⇒ t =
ln 0.02

−0.000123776
≈ 31, 606 (years).

27. The element Hh decays according to the general law of a radioactive decay, which is described

by (3.2) (this time, with t measured in “years”). Since the initial mass of Hh is m0 = 1 kg

and the decay constant k = kHh = −2/yr, we get

Hh(t) = ekHht = e−2t. (3.3)

For It, the process is more complicated: it has an incoming mass from the decay of Hh and,

at the same, looses its mass decaying to Bu. (This process is very similar to “brine solution”
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problems.) Thus we use the general idea in getting a differential equation describing this

process:

rate of change = input rate − output rate. (3.4)

The “input rate” is the rate of mass coming from Hh’s decay, which is opposite to the rate of

decay of Hh (Hh looses the mass but It gains it), i.e.,

input rate = −dHh

dt
= 2e−2t, (3.5)

where we have used (3.3). The “output rate” is the rate with which It decays, which (again,

according to the general law of a radioactive decay) is proportional to its current mass. Since

the decay constant for It is k = kIt = −1/yr,

output rate = kItIt(t) = −It(t). (3.6)

Therefore, combining (3.4)–(3.6) we get the equation for It, that is,

dIt(t)

dt
= 2e−2t − It(t) ⇒ dIt(t)

dt
+ It(t) = 2e−2t.

This is a linear equation with P (t) ≡ 1 and an integrating factor µ(t) = exp
[∫

(1)dt
]

= et.

Multiplying the equation by µ(t) yields

d [etIt(t)]

dt
= 2e−t ⇒ etIt(t) = −2e−t + C ⇒ It(t) = −2e−2t + Ce−t.

Initially, there were no It, which means that It(0) = 0. With this initial condition we find

that

0 = It(0) = −2e−2(0) + Ce−(0) = −2 + C ⇒ C = 2,

and the mass of It remaining after t years is

It(t) = −2e−2t + 2e−t = 2
(
e−t − e−2t

)
. (3.7)

The element Bu only gains its mass from It, and the rate with which it does this is opposite

to the rate with which It looses its mass. Hence (3.6) yields

dBu(t)

dt
= It(t) = 2

(
e−t − e−2t

)
.
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Integrating, we obtain

Bu(t) = 2

∫ (
e−t − e−2t

)
dt = −2e−t + e−2t + C,

and the initial condition Bu(0) = 0 gives C = 1. Therefore,

Bu(t) = −2e−t + e−2t + 1.

EXERCISES 3.3: Heating and Cooling of Buildings, page 107

1. Let T (t) denote the temperature of coffee at time t (in minutes). According to the Newton’s

Law (1) on page 102 of the text,

dT

dt
= K[21 − T (t)],

where we have taken H(t) ≡ U(t) ≡ 0, M(t) ≡ 21◦ C, with the initial condition T (0) = 95◦ C.

Solving this initial value problem yields

dT

21 − T
= K dt ⇒ − ln |T − 21| = Kt+ C1 ⇒ T (t) = 21 + Ce−Kt ;

95 = T (0) = 21 + Ce−K(0) ⇒ C = 74 ⇒ T (t) = 21 + 74e−Kt .

To find K, we use the fact that after 5 min the temperature of coffee was 80◦ C. Thus

80 = T (5) = 21 + 74e−K(5) ⇒ K =
ln(74/59)

5
,

and so

T (t) = 21 + 74e− ln(74/59)t/5 = 21 + 74

(
74

59

)−t/5

.

Finally, we solve the equation T (t) = 50 to find the time appropriate for drinking coffee:

50 = 21 + 74

(
74

59

)−t/5

⇒
(

74

59

)−t/5

=
29

74
⇒ t =

5 ln(74/29)

ln(74/59)
≈ 20.7 (min).

3. This problem is similar to one of cooling a building. In this problem we have no additional

heating or cooling so we can say that the rate of change of the wine’s temperature, T (t) is

given by Newton’s law of cooling

dT

dt
= K[M(t) − T (t)],
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where M(t) = 32 is the temperature of ice. This equation is linear and is rewritten in the

standard form as
dT

dt
+KT (t) = 32K.

We find that the integrating factor is eKt. Multiplying both sides by eKt and integrating gives

eKtdT

dt
+ eKtKT (t) = 32KeKt ⇒ eKtT (t) =

∫
32KeKt dt

⇒ eKtT (t) = 32eKt + C ⇒ T (t) = 32 + Ce−Kt .

By setting t = 0 and using the initial temperature 70◦F, we find the constant C.

70 = 32 + C ⇒ C = 38 .

Knowing that it takes 15 minutes for the wine to chill to 60◦F, we can find the constant, K:

60 = 32 + 38e−K(15).

Solving for K yields

K =
−1

15
ln

(
60 − 32

38

)
≈ 0.02035 .

Therefore,

T (t) = 32 + 38e−0.02035t .

We can now determine how long it will take for the wine to reach 56◦F. Using our equation

for temperature T (t), we set

56 = 32 + 38e−0.02035t

and, solving for t, obtain

t =
−1

0.02035
ln

(
56 − 32

38

)
≈ 22.6 min.

5. This problem can be treated as one similar to that of a cooling building. If we assume the air

surrounding the body has not changed since the death, we can say that the rate of change of

the body’s temperature, T (t) is given by Newton’s law of cooling:

dT

dt
= K[M(t) − T (t)],
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where M(t) represents the surrounding temperature which we’ve assumed to be a constant

16◦C. This differential equation is linear and is solved using an integrating factor of eKt.

Rewriting the above equation in standard form, multiplying both sides by eKt and integrating

gives

dT

dt
+KT (t) = K(16) ⇒ eKtdT

dt
+ eKtKT (t) = 16KeKt

⇒ eKtT (t) = 16eKt + C ⇒ T (t) = 16 + Ce−Kt .

Let us take t = 0 as the time at which the person died. Then T (0) = 37◦C (normal body

temperature) and we get

37 = 16 + C ⇒ C = 21 .

Now we know that at sometime, say X hours after death, the body temperature was measured

to be 34.5◦C and that at X + 1 hours after death the body temperature was measured to be

33.7◦C. Therefore, we have

34.5 = 16 + 21e−KX and 33.7 = 16 + 21e−K(X+1) .

Solving the first equation for KX we arrive at

KX = − ln

(
34.5 − 16

21

)
= 0.12675 . (3.8)

Substituting this value into the second equation we, can solve for K as follows:

33.7 = 16 + 21e−0.12675−K

⇒ K = −
[
0.12675 + ln

(
33.7 − 16

21

)]
= 0.04421 .

This results in an equation for the body temperature of

T (t) = 16 + 21e−0.04421t .

From equation (3.8) we now find the number of hours X before 12 Noon when the person

died.

X =
0.12675

K
=

0.12675

0.04421
≈ 2.867 (hours).

Therefore, the time of death is 2.867 hours (2 hours and 52 min) before Noon or 9 : 08 a.m.

118



Exercises 3.3

7. The temperature function T (t) changes according to Newton’s law of cooling (1) on page 102

of the text. Similarly to Example 1 we conclude that, with H(t) ≡ U(t) ≡ 0 and the outside

temperature M(t) ≡ 35◦C, a general solution formula (4) on page 102 becomes

T (t) = 35 + Ce−Kt .

To find C, we use the initial condition,

T (0) = T (at noon) = 24◦C ,

and get

24 = T (0) = 35 + Ce−K(0) ⇒ C = 24 − 35 = −11 ⇒ T (t) = 35 − 11e−Kt .

The time constant for the building 1/K = 4 hr; so K = 1/4 and T (t) = 35 − 11e−t/4 .

At 2 : 00p.m. t = 2, and t = 6 at 6 : 00p.m. Substituting this values into the solution, we

obtain that the temperature

at 2 : 00 p.m. will be T (2) = 35 − 11e−2/4 ≈ 28.3◦C;

at 6 : 00 p.m. will be T (6) = 35 − 11e−6/4 ≈ 32.5◦C.

Finally, we solve the equation

T (t) = 35 − 11e−t/4 = 27

to find the time when the temperature inside the building reaches 27◦C.

35 − 11e−t/4 = 27 ⇒ 11e−t/4 = 8 ⇒ t = 4 ln

(
11

8

)
≈ 1.27 .

Thus, the temperature inside the building will be 27◦C at 1.27 hr after noon, that is, at

1 : 16 : 12p.m.

9. Since we are evaluating the temperature in a warehouse, we can assume that any heat gener-

ated by people or equipment in the warehouse will be negligible. Therefore, we have H(t) = 0.
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Also, we are assuming that there is no heating or air conditioning in the warehouse. There-

fore, we have that U(t). We are also given that the outside temperature has a sinusoidal

fluctuation. Thus, as in Example 2, page 103, we see that

M(t) = M0 −B cosωt ,

where M0 is the average outside temperature, B is a positive constant for the magnitude of

the temperature shift from this average, and ω = π/2 radians per hour. To find M0 and B,

we are given that at 2 : 00 a.m., M(t) reaches a low of 16◦C and at 2 : 00 p.m. it reaches a

high of 32◦C. This gives

M0 =
16 + 32

2
= 24◦C.

By letting t = 0 at 2 : 00 a.m. (so that low for the outside temperature corresponds to the

low for the negative cosine function), we can calculate the constant B. That is

16 = 24 − B cos 0 = 24 − B ⇒ B = 8.

Therefore, we see that

M(t) = 24 − 8 cosωt,

where ω = π/12. As in Example 2, using the fact that B0 = M0 +H0/K = M0 + 0/K = M0,

we see that

T (t) = 24 − 8F (t) + Ce−Kt ,

where

F (t) =
cosωt+ (ω/K) sinωt

1 + (ω/K)2
=

[
1 +
( ω
K

)2
]−1/2

cos(ωt− α).

In the last expression, α is chosen such that tanα = ω/K. By assuming that the exponential

term dies off, we obtain

T (t) = 24 − 8

[
1 +
( ω
K

)2
]−1/2

cos(ωt− α).

This function will reach a minimum when cos(ωt−α) = 1 and it will reach a maximum when

cos(ωt− α) = −1.
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For the case when the time constant for the building is 1, we see that 1/K = 1 which implies

that K = 1. Therefore, the temperature will reach a maximum of K

T = 24 + 8

[
1 +
( π

12

)2
]−1/2

≈ 31.7◦C.

It will reach a minimum of

T = 24 − 8

[
1 +
( π

12

)2
]−1/2

≈ 16.3◦C.

For the case when the time constant of the building is 5, we have

1

K
= 5 ⇒ K =

1

5
.

Then, the temperature will reach a maximum of

T = 24 + 8

[
1 +

(
5π

12

)2
]−1/2

≈ 28.9◦C,

and a minimum of

T = 24 − 8

[
1 +

(
5π

12

)2
]−1/2

≈ 19.1◦C.

11. As in Example 3, page 105 of the text, this problem involves a thermostat to regulate the

temperature in the van. Hence, we have

U(t) = KU [TD − T (t)] ,

where TD is the desired temperature 16◦C and KU is a proportionality constant. We will

assume that H(t) = 0 and that the outside temperature M(t) is a constant 35◦C. The time

constant for the van is 1/K = 2 hr, hence K = 0.5. Since the time constant for the van

with its air conditioning system is 1/K1 = 1/3 hr, then K1 = K + KU = 3. Therefore,

KU = 3 − 0.5 = 2.5. The temperature in the van is governed by the equation

dT

dt
= (0.5)(35 − T ) + (2.5)(16 − T ) = 57.5 − 3T.
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Solving this separable equation yields

T (t) = 19.17 + Ce−3t .

When t = 0 we are given T (0) = 55. Using this information to solve for C gives C = 35.83.

Hence, the van temperature is given by

T (t) = 19.17 + 35.83e−3t .

To find out when the temperature in the van will reach 27◦C, we let T (t) = 27 and solve for

t. Thus, we see that

27 = 19.17 + 35.83e−3t ⇒ e−3t =
7.83

35.83
≈ 0.2185

⇒ t ≈ ln(0.2185)

3
≈ 0.5070 (hr) or 30.4 min.

13. Since the time constant is 64, we have K = 1/64. The temperature in the tank increases at

the rate of 2◦F for every 1000 Btu. Furthermore, every hour of sunlight provides an input of

2000 Btu to the tank. Thus,

H(t) = 2 × 2 = 4◦F per hr.

We are given that T (0) = 110, and that the temperature M(t) outside the tank is a constant

80◦F. Hence the temperature in the tank is governed by

dT

dt
=

1

64
[80 − T (t)] + 4 = − 1

64
T (t) + 5.25 , T (0) = 110.

Solving this separable equation gives

T (t) = 336 + Ce−t/64 .

To find C, we use the initial condition to see that

T (0) = 110 = 336 + C ⇒ C = −226.

This yields the equation

T (t) = 336 − 226e−t/64 .
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After 12 hours of sunlight, the temperature will be

T (12) = 336 − 226e−12/64 ≈ 148.6◦F.

15. The equation dT/dt = k (M4 − T 4) is separable. Separation variables yields

dT

T 4 −M4
= −k dt ⇒

∫
dT

T 4 −M4
= −

∫
k dt = −kt+ C1. (3.9)

Since T 4 −M4 = (T 2 −M2) (T 2 +M2), we have

1

T 4 −M4
=

1

2M2

(M2 + T 2) + (M2 − T 2)

(T 2 −M2) (T 2 +M2)
=

1

2M2

[
1

T 2 −M2
− 1

T 2 +M2

]
,

and the integral in the left-hand side of (3.9) becomes∫
dT

T 4 −M4
=

1

2M2

[∫
dT

T 2 −M2
−
∫

dT

T 2 +M2

]
=

1

4M3

[
ln
T −M

T +M
− 2 arctan

(
T

M

)]
.

Thus a general solution to Stefan’s equation is given implicitly by

1

4M3

[
ln
T −M

T +M
− 2 arctan

(
T

M

)]
= −kt+ C1

or

T −M = C(T +M) exp

[
2 arctan

(
T

M

)
− 4M3kt

]
.

When T is close to M ,

M4 − T 4 = (M − T )(M + T )
(
M2 + T 2

) ≈ (M − T )(2M)
(
2M2

) ≈ 4M3(M − T ),

and so
dT

dt
≈ k · 4M3(M − T )4M3 = k1(M − T )

with k1 = 4M3k, which constitutes Newton’s law.

EXERCISES 3.4: Newtonian Mechanics, page 115

1. This problem is a particular case of Example 1 on page 110 of the text. Therefore, we can

use the general formula (6) on page 111 with m = 5, b = 50, and v0 = v(0) = 0. But let us

follow the general idea of Section 3.4, find an equation of the motion, and solve it.
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With given data, the force due to gravity is F1 = mg = 5g and the air resistance force is

F2 = −50v. Therefore, the velocity v(t) satisfies

m
dv

dt
= F1 + F2 = 5g − 50v ⇒ dv

dt
= g − 10v, v(0) = 0.

Separating variables yields

dv

10v − g
= −dt ⇒ 1

10
ln |10v − g| = −t+ C1

⇒ v(t) =
g

10
+ Ce−10t .

Substituting the initial condition, v(0) = 0, we get C = −g/10, and so

v(t) =
g

10

(
1 − e−10t

)
.

Integrating this equation yields

x(t) =

∫
v(t) dt =

∫
g

10

(
1 − e−10t

)
dt =

g

10

(
t+

1

10
e−10t

)
+ C,

and we find C using the initial condition x(0) = 0:

0 =
g

10

(
0 +

1

10
e−10(0)

)
+ C ⇒ C = − g

100

⇒ x(t) =
g

10
t+

g

100

(
e−10t − 1

)
= (0.981)t+ (0.0981)e−10t − 0.0981 (m).

When the object hits the ground, x(t) = 1000 m. Thus we solve

(0.981)t+ (0.0981)e−10t − 0.0981 = 1000,

which gives (t is nonnegative!) t ≈ 1019.468 ≈ 1019 sec.

3. For this problem, m = 500 kg, v0 = 0, g = 9.81 m/sec2, and b = 50 kg/sec. We also see that

the object has 1000 m to fall before it hits the ground. Plugging these variables into equation

(6) on page 111 of the text gives the equation

x(t) =
(500)(9.81)

50
t+

500

50

(
0 − (500)(9.81)

50

)(
1 − e−50t/500

)
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⇒ x(t) = 98.1t+ 981e−t/10 − 981.

To find out when the object will hit the ground, we solve x(t) = 1000 for t. Therefore, we

have

1000 = 98.1t+ 981e−t/10 − 981 ⇒ 98.1t+ 981e−t/10 = 1981.

In this equation, if we ignore the term 981e−t/10 we will find that t ≈ 20.2. But this means

that we have ignored the term similar to 981e−2 ≈ 132.8 which we see is to large to ignore.

Therefore, we must try to approximate t. We will use Newton’s method on the equation

f(t) = 98.1t+ 981e−t/10 − 1981 = 0.

(If we can find a root to this equation, we will have found the t we want.) Newton’s method

generates a sequence of approximations given by the formula

tn+1 = tn − f(tn)

f ′(tn)
.

Since f ′(t) = 98.1 − 98.1e−t/10 = 98.1
(
1 − e−t/10

)
, the recursive equation above becomes

tn+1 = tn − tn + 10e−tn/10 − (1981/98.1)

1 − e−tn/10
. (3.10)

To start the process, let t0 = 1981/98.1 ≈ 20.19368, which was the approximation we obtained

when we neglected the exponential term. Then, by equation (3.10) above we have

t1 = 20.19368 − 20.19368 + 10e−2.019368 − 20.19368

1 − e−2.019368

⇒ t1 ≈ 18.663121 .

To find t2 we plug this value for t1 into equation (3.10). This gives t2 ≈ 18.643753. Continuing

this process, we find that t3 ≈ 18.643749. Since t2 and t3 agree to four decimal places, an

approximation for the time it takes the object to strike the ground is t ≈ 18.6437 sec.

5. We proceed similarly to the solution of Problem 1 to get

F1 = 5g, F2 = −10g
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⇒ 5
dv

dt
= F1 + F2 = 5g − 10v

⇒ dv

dt
= g − 2v, v(0) = 50.

Solving this iniial value problem yields

v(t) =
g

2
+ Ce−2t;

50 = v(0) =
g

2
+ Ce−2(0) ⇒ C =

100 − g

2

⇒ v(t) =
g

2
+

100 − g

2
e−2t .

We now integrate v(t) to obtain the equation of the motion of the object:

x(t) =

∫
v(t) dt =

∫ (
g

2
+

100 − g

2
e−2t

)
dt =

g

2
t− 100 − g

4
e−2t + C,

where C is such that x(0) = 0. Computing

0 = x(0) =
g

2
(0) − 100 − g

4
e−2(0) + C ⇒ C =

100 − g

4
,

we answer the first question in this problem, that is,

x(t) =
g

2
t− 100 − g

4
e−2t +

100 − g

4
≈ 4.905t+ 22.5475 − 22.5475 e−2t.

Answering the second question, we solve the equation x(t) = 500 to find time t when the

object passes 500 m, and so strikes the ground.

4.905t+ 22.5475 − 22.5475 e−2t = 500 ⇒ t ≈ 97.34 (sec).

7. Since the air resistance force has different coefficients of proportionality for closed and for

opened chute, we need two differential equations describing the motion. Let x1(t), x1(0) = 0,

denote the distance the parachutist has fallen in t seconds, and let v1(t) = dx/dt denote her

velocity. With m = 75, b = b1 = 30 N-sec/m, and v0 = 0 the initial value problem (4) on

page 111 of the text becomes

75
dv1

dt
= 75g − 30v1 ⇒ dv1

dt
+

2

5
v1 = g, v1(0) = 0.
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This is a linear equation. Solving yields

d
(
e2t/5v1

)
= e2t/5g dt ⇒ v1(t) =

5g

2
+ C1e

−2t/5 ;

0 = v1(0) =
5g

2
+ C1e

0 =
5g

2
+ C1 ⇒ C1 = −5g

2

⇒ v1(t) =
5g

2

(
1 − e−2t/5

)
⇒ x1(t) =

t∫
0

v1(s)ds =
5g

2

(
s+

5

2
e−2s/5

)∣∣∣∣s=t

s=0

=
5g

2

(
t+

5

2
e−2t/5 − 5

2

)
.

To find the time t∗ when the chute opens, we solve

20 = v1 (t∗) ⇒ 20 =
5g

2

(
1 − e−2t∗/5

) ⇒ t∗ = −5

2
ln

(
1 − 8

g

)
≈ 4.225 (sec).

By this time the parachutist has fallen

x1 (t∗) =
5g

2

(
t∗ +

5

2
e−2t∗/5 − 5

2

)
≈ 5g

2

(
4.225 +

5

2
e−2·4.225/5 − 5

2

)
≈ 53.62 (m),

and so she is 2000−53.62 = 1946.38 m above the ground. Setting the second equation, we for

convenience reset the time t. Denoting by x2(t) the distance passed by the parachutist from

the moment when the chute opens, and by v2(t) := x′2(t) – her velocity, we have

75
dv2

dt
= 75g − 90v2, v2(0) = v1 (t∗) = 20, x2(0) = 0.

Solving, we get

v2(t) =
5g

6
+ C2e

−6t/5 ;

20 = v2(0) =
5g

6
+ C2 ⇒ C2 = 20 − 5g

6

⇒ v2(t) =
5g

6
+

(
20 − 5g

6

)
e−6t/5

⇒ x2(t) =

t∫
0

v2(s)ds =

[
5g

6
s− 5

6

(
20 − 5g

6

)
e−6s/5

]∣∣∣∣s=t

s=0

=
5g

6
t+

5

6

(
20 − 5g

6

)(
1 − e−6t/5

)
.
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With the chute open, the parachutist falls 1946.38 m. It takes t∗ seconds, where t∗ satisfies

x2 (t∗) = 1946.38. Solving yields

5g

6
t∗ +

5

6

(
20 − 5g

6

)(
1 − e−6t∗/5

)
= 1946.38 ⇒ t∗ ≈ 236.884 (sec).

Therefore, the parachutist will hit the ground after t∗ + t∗ ≈ 241.1 seconds.

9. This problem is similar to Example 1 on page 110 of the text with the addition of a buoyancy

force of magnitude (1/40)mg. If we let x(t) be the distance below the water at time t and

v(t) the velocity, then the total force acting on the object is

F = mg − bv − 1

40
mg.

We are given m = 100 kg, g = 9.81 m/sec2, and b = 10 kg/sec. Applying Newton’s Second

Law gives

100
dv

dt
= (100)(9.81)− 10v − 10

4
(9.81) ⇒ dv

dt
= 9.56 − (0.1)v .

Solving this equation by separation of variables, we have

v(t) = 95.65 + Ce−t/10.

Since v(0) = 0, we find C = −95.65 and, hence,

v(t) = 95.65 − 95.65e−t/10.

Integrating yields

x(t) = 95.65t− 956.5e−t/10 + C1 .

Using the fact that x(0) = 0, we find C1 = −956.5. Therefore, the equation of motion of the

object is

x(t) = 95.65t− 956.5e−t/10 − 956.5 .

To determine when the object is traveling at the velocity of 70 m/sec, we solve v(t) = 70.

That is,

70 = 95.65 − 95.65e−t/10 = 95.65
(
1 − e−t/10

)
⇒ t = −10 ln

(
1 − 70

95.65

)
≈ 13.2 sec.
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11. Let v(t) = V [x(t)]. Then, using the chain rule, we get

dv

dt
=
dV

dx

dx

dt
=
dV

dx
V

and so, for V (x), the initial value problem (4) on page 111 of the text becomes

m
dV

dx
V = mg − bV, V (0) = V [x(0)] = v(0) = v0.

This differential equation is separable. Solving yields

V

g − (b/m)V
dV = dx ⇒ m

b

[
g

g − (b/m)V
− 1

]
dV = dx

⇒
∫
m

b

[
g

g − (b/m)V
− 1

]
dV =

∫
dx

⇒ m

b

[
−mg

b
ln |g − (b/m)V | − V

]
= x+ C

⇒ mg ln |mg − bV | + bV = −b
2x

m
+ C1 .

Substituting the initial condition, V (0) = v0, we find that C1 = mg ln |mg − bv0| + bv0 and

hence

mg ln |mg − bV | + bV = −b
2x

m
+mg ln |mg − bv0| + bv0

⇒ ebV |mg − bV |mg = ebv0 |mg − bv0|mge−b2x/m .

13. There are two forces acting on the shell: a constant force due to the downward pull of gravity

and a force due to air resistance that acts in opposition to the motion of the shell. All of the

motion occurs along a vertical axis. On this axis, we choose the origin to be the point where

the shell was shot from and let x(t) denote the position upward of the shell at time t. The

forces acting on the object can be expressed in terms of this axis. The force due to gravity is

F1 = −mg,

where g is the acceleration due to gravity near Earth. Note we have a minus force because our

coordinate system was chosen with up as positive and gravity acts in a downward direction.

The force due to air resistance is

F2 = −(0.1)v2.

129



Chapter 3

The negative sign is present because air resistance acts in opposition to the motion of the

object. Therefore the net force acting on the shell is

F = F1 + F2 = −mg − (0.1)v2.

We now apply Newton’s second law to obtain

m
dv

dt
= − [mg + (0.1)v2

]
.

Because the initial velocity of the shell is 500 m/sec, a model for the velocity of the rising

shell is expressed as the initial-value problem

m
dv

dt
= − [mg + (0.1)v2

]
, v(t = 0) = 500, (3.11)

where g = 9.81. Separating variables, we get

dv

10mg + v2
= − dt

10m

and so∫
dv

10mg + v2
= −

∫
dt

10m
⇒ 1√

10mg
tan−1

(
v√

10mg

)
= − t

10m
+ C.

Setting m = 3, g = 9.81 and v = 500 when t = 0, we find

C =
1√

10(3)(9.81)
tan−1

(
500√

10(3)(9.81)

)
≈ 0.08956 .

Thus the equation of velocity v as a function of time t is

1√
10mg

tan−1

(
v√

10mg

)
= − t

10m
+ 0.08956 .

From physics we know that when the shell reaches its maximum height the shell’s velocity

will be zero; therefore tmax will be

tmax = −10(3)

[
1√

10(3)(9.81)
tan−1

(
0√

10(3)(9.81)

)
− 0.08956

]
= −(30)(−0.08956) ≈ 2.69 (seconds).
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Using equation (3.11) and noting that dv/dt = (dv/dx)(dx/dt) = (dv/dx)v, we can determine

the maximum height attained by the shell. With the above substitution, equation (3.11)

becomes

mv
dv

dx
= − (mg + 0.1v2

)
, v(0) = 500.

Using separation of variables and integration, we get

v dv

10mg + v2
= − dx

10m
⇒ 1

2
ln
(
10mg + v2

)
= − x

10m
+ C ⇒ 10mg + v2 = Ke−x/(5m) .

Setting v = 500 when x = 0, we find

K = e0
(
10(3)(9.81) + (500)2

)
= 250294.3 .

Thus the equation of velocity as a function of distance is

v2 + 10mg = (250294.3)e−x/(5m) .

The maximum height will occur when the shell’s velocity is zero, therefore xmax is

xmax = −5(3) ln

(
0 + 10(3)(9.81)

250294.3

)
≈ 101.19 (meters).

15. The total torque exerted on the flywheel is the sum of the torque exerted by the motor and

the retarding torque due to friction. Thus, by Newton’s second law for rotation, we have

I
dω

dt
= T − kω with ω(0) = ω0 ,

where I is the moment of inertia of the flywheel, ω(t) is the angular velocity, dω/dt is the

angular acceleration, T is the constant torque exerted by the motor, and k is a positive

constant of proportionality for the torque due to friction. Solving this separable equation

gives

ω(t) =
T

k
+ Ce−kt/I .

Using the initial condition ω(0) = ω0 we find C = (ω0 − T/k). Hence,

ω(t) =
T

k
+

(
ω0 − T

k

)
e−kt/I .
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17. Since the motor is turned off, its torque is T = 0, and the only torque acting on the flywheel

is the retarding one, −5
√
ω. Then Newton’s second law for rotational motion becomes

I
dω

dt
= −5

√
ω with ω(0) = ω0 = 225 (rad/sec) and I = 50

(
kg/m2) .

The general solution to this separable equation is√
ω(t) = − 5

2I
t+ C = −0.05t+ C.

Using the initial condition, we find√
ω(0) = −0.05 · 0 + C ⇒ C =

√
ω(0) =

√
225 = 15.

Thus

t =
1

0.05

[
15 −

√
ω(t)

]
= 20

[
15 −

√
ω(t)

]
.

At the moment t = tstop when the flywheel stops rotating we have ω (tstop) = 0 and so

tstop = 20(15 −
√

0) = 300 (sec).

19. There are three forces acting on the object: F1, the force due to gravity, F2, the air resistance

force, and F3, the friction force. Using Figure 3.11 (with 30◦ replaced by 45◦), we obtain

F1 = mg sin 45◦ = mg
√

2/2 ,

F2 = −3v,

F3 = −µN = −µmg cos 45◦ = −µmg
√

2/2 ,

and so the equation describing the motion is

m
dv

dt
=
mg

√
2

2
− µmg

√
2

2
− 3v ⇒ dv

dt
= 0.475g

√
2 − v

20

with the initial condition v(0) = 0. Solving yields

v(t) = 9.5g
√

2 + Ce−t/20;

0 = v(0) = 9.5g
√

2 + C ⇒ C = −9.5g
√

2
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⇒ v(t) = 9.5g
√

2
(
1 − e−t/20

)
.

Since x(0) = 0, integrating the above equation, we obtain

x(t) =

t∫
0

v(s)ds =

t∫
0

9.5g
√

2
(
1 − e−s/20

)
ds = 9.5g

√
2
(
s+ 20e−s/20

) ∣∣∣s=t

s=0

= 9.5g
√

2
(
t+ 20e−t/20 − 20

) ≈ 131.8t+ 2636e−t/20 − 2636.

The object reaches the end of the inclined plane when

x(t) = 131.8t+ 2636e−t/20 − 2636 = 10 ⇒ t ≈ 1.768 (sec).

21. In this problem there are two forces acting on a sailboat: A constant horizontal force due to

the wind and a force due to the water resistance that acts in opposition to the motion of the

sailboat. All of the motion occurs along a horizontal axis. On this axis, we choose the origin

to be the point where the hard blowing wind begins and x(t) denotes the distance the sailboat

travels in time t. The forces on the sailboat can be expressed in terms of this axis. The force

due to the wind is

F1 = 600 N.

The force due to water resistance is

F2 = −100v N.

Applying Newton’s second law we obtain

m
dv

dt
= 600 − 100v.

Since the initial velocity of the sailboat is 1 m/sec, a model for the velocity of the moving

sailboat is expressed as the initial-value problem

m
dv

dt
= 600 − 100v, v(0) = 1 .

Using separation of variables, we get, with m = 50 kg,

dv

6 − v
= 2dt ⇒ −6 ln(6 − v) = 2t+ C.
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Therefore, the velocity is given by v(t) = 6 −Ke−2t. Setting v = 1 when t = 0, we find that

1 = 6 −K ⇒ K = 5.

Thus the equation for velocity v(t) is v(t) = 6 − 5e−2t. The limiting velocity of the sailboat

under these conditions is found by letting time approach infinity:

lim
t→∞

v(t) = lim
t→∞

(
6 − 5e−2t

)
= 6 (m/sec).

To determine the equation of motion we will use the equation of velocity obtained previously

and substitute dx/dt for v(t) to obtain

dx

dt
= 6 − 5e−2t, x(0) = 0.

Integrating this equation we obtain

x(t) = 6t+
5

2
e−2t + C1.

Setting x = 0 when t = 0, we find

0 = 0 +
5

2
+ C1 ⇒ C1 = −5

2
.

Thus the equation of motion for the sailboat is given by

x(t) = 6t+
5

2
e−2t − 5

2
.

23. In this problem, there are two forces acting on a boat: the wind force F1 and the water

resistance force F2. Since the proportionality constant in the water resistance force is different

for the velocities below and above of a certain limit (5 m/sec for the boat A and 6 m/sec for

the boat B), for each boat we have two differential equations. (Compare with Problem 7.)

Let x
(A)
1 (t) denote the distance passed by the boat A for the time t, v

(A)
1 (t) := dx

(A)
1 (t)/dt.

Then the equation describing the motion of the boat A before it reaches the velocity 5 m/sec

is

m
dv

(A)
1

dt
= F1 + F2 = 650 − b1v

(A)
1 ⇒ dv

(A)
1

dt
=

65

6
− 4

3
v

(A)
1 . (3.12)
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Solving this linear equation and using the initial condition, v
(A)
1 (0) = 2, we get

v
(A)
1 (t) =

65

8
− 49

8
e−4t/3 ,

and so

x
(A)
1 (t) =

t∫
0

(
65

8
− 49

8
e−4s/3

)
ds =

65

8
t− 147

32

(
e−4t/3 − 1

)
.

The boat A will have the velocity 5 m/sec at t = t∗ satisfying

65

8
− 49

8
e−4t∗/3 = 5 ⇒ t∗ = −3 ln(25/49)

4
≈ 0.5 (sec),

and it will be

x
(A)
1 (t∗) =

65

8
t∗ − 147

32

(
e−4t∗/3 − 1

) ≈ 1.85 (m)

away from the starting point or, equivalently, 500−1.85 = 498.15 meters away from the finish.

Similarly to (3.12), resetting the time, we obtain an equation of the motion of the boat A

starting from the moment when its velocity reaches 5 m/sec. Denoting by x
(A)
2 (t) the distance

passed by the boat A and by v
(A)
2 (t) its velocity, we get x

(A)
2 (0) = 0, v

(A)
2 (0) = 5, and

m
dv

(A)
2

dt
= 650 − b2v

(A)
2

⇒ dv
(A)
2

dt
=

65

6
− v

(A)
2 ⇒ v

(A)
2 (t) =

65

6
− 35

6
e−t

⇒ x
(A)
2 (t) =

t∫
0

(
65

6
− 35

6
e−s

)
ds =

65

6
t+

35

6

(
e−t − 1

)
.

Solving the equation x
(A)
2 (t) = 498.15, we find the time (counting from the moment when the

boat A’s velocity has reached 5 m/sec) t∗ ≈ 46.5 sec, which is necessary to come to the end

of the first leg. Therefore, the total time for the boat A is t∗ + t∗ ≈ 0.5 + 46.5 = 47 sec.

Similarly, for the boat B, we find that

v
(B)
1 (t) =

65

8
− 49

8
e−5t/3 , x

(B)
1 (t) =

65

8
t+

147

40

(
e−5t/3 − 1

)
, t∗ = −3 ln(17/49)

5
≈ 0.635 ;

v
(B)
2 (t) =

65

5
− 35

5
e−5t/6 , x

(B)
2 (t) =

65

5
t+

42

5

(
e−5t/6 − 1

)
, t∗ ≈ 38.895 .

Thus, t∗ + t∗ < 40 sec, and so the boat B will be leading at the end of the first leg.
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25. (a) From Newton’s second law we have

m
dv

dt
=

−GMm

r2
.

Dividing both sides by m, the mass of the rocket, and letting g = GM/R2 we get

dv

dt
=

−gR2

r2
,

where g is the gravitational force of Earth, R is the radius of Earth and r is the distance

between Earth and the projectile.

(b) Using the equation found in part (a), letting dv/dt = (dv/dr)(dr/dt) and knowing that

dr/dt = v, we get

v
dv

dr
= −gR

2

r2
.

(c) The differential equation found in part (b) is separable and can be written in the form

v dv = −gR
2

r2
dr.

If the projectile leaves Earth with a velocity of v0 we have the initial value problem

v dv = −gR
2

r2
dr , v

∣∣∣
r=R

= v0 .

Integrating we get
v2

2
=
gR2

r
+K,

where K is an arbitrary constant. We can find the constant K by using the initial value

as follows:

K =
v2
0

2
− gR2

R
=
v2
0

2
− gR.

Substituting this formula for K and solving for the velocity we obtain

v2 =
2gR2

r
+ v2

0 − 2gR.

(d) In order for the velocity of the projectile to always remain positive, (2gR2/r) + v2
0 must

be greater than 2gR as r approaches infinity. This means

lim
r→∞

(
2gR2

r
+ v2

0

)
> 2gR ⇒ v2

0 > 2gR.

Therefore, v2
0 − 2gR > 0.
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(e) Using the equation ve =
√

2gR for the escape velocity and converting meters to kilometers

we have

ve =
√

2gR =

√
2 · 9.81 m/sec2 · (1 km/1000 m)(6370 km) ≈ 11.18 km/sec.

(f) Similarly to (e), we find

ve =
√

2(g/6)R =
√

2(9.81/6)(1/1000)(1738) = 2.38 (km/sec).

EXERCISES 3.5: Electrical Circuits, page 122

1. In this problem, R = 5 Ω, L = 0.05 H, and the voltage function is given by E(t) = 5 cos 120tV.

Substituting these data into a general solution (3) to the Kirchhoff’s equation (2) yields

I(t) = e−Rt/L

(∫
eRt/L E(t)

L
dt+K

)
= e−5t/0.05

(∫
e5t/0.05 5 cos 120t

0.05
dt+K

)
= e−100t

(
100

∫
e100t cos 120t dt+K

)
.

Using the integral tables, we evaluate the integral in the right-hand side and obtain

I(t) = e−100t

[
100

e100t (100 cos 120t+ 120 sin 120t)

(100)2 + (120)2
+K

]
=

cos 120t+ 1.2 sin 120t

2.44
+Ke−100t .

The initial condition, I(0) = 1, implies that

1 = I(0) =
cos(120(0)) + 1.2 sin(120(0))

2.44
+Ke−100(0) =

1

2.44
+K ⇒ K = 1− 1

2.44
=

1.44

2.44

and so

I(t) =
1.44e−100t + cos 120t+ 1.2 sin 120t

2.44
.

The subsequent inductor voltage is then determined by

EL(t) = L
dI

dt
= 0.05

d

dt

(
1.44e−100t + cos 120t+ 1.2 sin 120t

2.44

)
=

−7.2e−100t − 6 sin 120t+ 7.2 cos 120t

2.44
.
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3. In this RC circuit, R = 100 Ω, C = 10−12 F, the initial charge of the capacitor is Q = q(0) = 0

coulombs, and the applied constant voltage is V = 5 volts. Thus we can use a general equation

for the charge q(t) of the capacitor derived in Example 2. Substitution of given data yields

q(t) = CV + [Q− CV ]e−t/RC = 10−12(5)
(
1 − e−t/(100·10−12)

)
= 5 · 10−12

(
1 − e−1010t

)
and so

EC(t) =
q(t)

C
= 5
(
1 − e−1010t

)
.

Solving the equation EC(t) = 3, we get

5
(
1 − e−1010t

)
= 3 ⇒ e−1010t = 0.4 ⇒ t = − ln 0.4

1010
≈ 9.2 × 10−11 (sec).

Therefore, it will take about 9.2×10−11 seconds for the voltage to reach 3 volts at the receiving

gate.

5. Let V (t) denote the voltage across an element, and let I(t) be the current through this element.

Then for the power, say P = P (t), generated or dissipated by the element we have

P = I(t)V (t). (3.13)

We use formulas given in (a), (b), and (c) on page 119–120 of the text to find P for a resistor,

an inductor, and a capacitor.

(a) Resistor. In this case,

V (t) = ER(t) = RI(t),

and substitution into (3.13) yields

PR = I(t) [RI(t)] = I(t)2R.

(b) Inductor. We have

V (t) = EL(t) = L
dI(t)

dt

⇒ PL = I(t)

[
L
dI(t)

dt

]
=
L

2

[
2I(t)

dI(t)

dt

]
=
L

2

d [I(t)2]

dt
=
d [LI(t)2/2]

dt
.
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(c) Capacitor. Here, with q(t) denoting the electrical charge on the capacitor,

V (t) = EC(t) =
1

C
q(t) ⇒ q(t) = CEC(t) ⇒ I(t) =

dq(t)

dt
=
d [CEC(t)]

dt

and so

PC =
d [CEC(t)]

dt
EC(t) =

C

2

[
2EC(t)

dEC(t)

dt

]
=
C

2

d [EC(t)2]

dt
=
d [CEC(t)2/2]

dt
.

7. First, we find a formula for the current I(t). Given that R = 3 Ω, L = 10 H, and the voltage

function E(t) is a constant, say, V , the formula (3) on page 121 (which describes currents in

RL circuits) becomes

I(t) = e−3t/10

(∫
e3t/10 V

10
dt+K

)
= e−3t/10

(
V

3
e3t/10 +K

)
=
V

3
+Ke−3t/10 .

The initial condition, I(0) = 0 (there were no current in the electromagnet before the voltage

source was applied), yields

0 =
V

3
+Ke−3(0)/10 ⇒ K = −V

3
⇒ I(t) =

V

3

(
1 − e−3t/10

)
.

Next, we find the limiting value I∞ of I(t), that is,

I∞ = lim
t→∞

[
V

3

(
1 − e−3t/10

)]
=
V

3
(1 − 0) =

V

3
.

Therefore, we are looking for the moment t when I(t) = (0.9)I∞ = (0.9)V/3. Solving yields

0.9V

3
=
V

3

(
1 − e−3t/10

) ⇒ e−3t/10 = 0.1 ⇒ t = −10 ln 0.1

3
≈ 7.68 .

Thus it takes approximately 7.68 seconds for the electromagnet to reach 90% of its final value.

EXERCISES 3.6: Improved Euler’s Method, page 132

1. Given the step size h and considering equally spaced points we have

xn+1 = xn + nh, n = 0, 1, 2, . . . .
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Euler’s method is defined by equation (4) on page 125 of the text to be

yn+1 = yn + hf(xn, yn), n = 0, 1, 2, . . . ,

where f(x, y) = 5y. Starting with the given value of y0 = 1, we compute

y1 = y0 + h(5y0) = 1 + 5h.

We can then use this value to compute y2 to be

y2 = y1 + h(5y1) = (1 + 5h)y1 = (1 + 5h)2.

Proceeding in this manner, we can generalize to yn:

yn = (1 + 5h)n.

Referring back to our equation for xn and using the given values of x0 = 0 and x1 = 1 we find

1 = nh ⇒ n =
1

h
.

Substituting this back into the formula for yn we find the approximation to the initial value

problem

y′ = 5y, y(0) = 1

at x = 1 to be (1 + 5h)1/h.

3. In this initial value problem, f(x, y) = y, x0 = 0, and y0 = 1. Formula (8) on page 127 of the

text then becomes

yn+1 = yn +
h

2
(yn + yn+1) .

Solving this equation for yn+1 yields(
1 − h

2

)
yn+1 =

(
1 +

h

2

)
yn ⇒ yn+1 =

(
1 + h/2

1 − h/2

)
yn , n = 0, 1, . . . . (3.14)

If n ≥ 1, we can use (3.14) to express yn in terms of yn−1 and substitute this expression into

the right-hand side of (3.14). Continuing this process, we get

yn+1 =

(
1 + h/2

1 − h/2

)[(
1 + h/2

1 − h/2

)
yn−1

]
=

(
1 + h/2

1 − h/2

)2

yn−1 = · · · =

(
1 + h/2

1 − h/2

)n+1

y0 .
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In order to approximate the solution φ(x) = ex at the point x = 1 with N steps, we take

h = (x− x0)/N = 1/N , and so N = 1/h. Then the above formula becomes

yN =

(
1 + h/2

1 − h/2

)N

y0 =

(
1 + h/2

1 − h/2

)N

=

(
1 + h/2

1 − h/2

)1/h

and hence

e = φ(1) ≈ yN =

(
1 + h/2

1 − h/2

)1/h

.

Substituting h = 10−k, k = 0, 1, 2, 3, and 4, we fill in Table 3-A.

Table 3–A: Approximations

(
1 + h/2

1 + h/2

)1/h

to e ≈ 2.718281828 . . . .

hhh Approximation Error

1 3 0.281718172
10−1 2.720551414 0.002269586
10−2 2.718304481 0.000022653
10−3 2.718282055 0.000000227
10−4 2.718281831 0.000000003

These approximations are better then those in Tables 3.4 and 3.5 of the text.

5. In this problem, we have f(x, y) = 4y. Thus, we have

f(xn, yn) = 4yn and f (xn + h, yn + hf(xn, yn)) = 4 [yn + h(4yn)] = 4yn + 16hyn .

By equation (9) on page 128 of the text, we have

yn+1 = yn +
h

2
(4yn + 4yn + 16hyn) =

(
1 + 4h+ 8h2

)
yn . (3.15)

Since the initial condition y(0) = 1/3 implies that x0 = 0 and y0 = 1/3, equation (3.15) above

yields

y1 =
(
1 + 4h+ 8h2

)
y0 =

1

3

(
1 + 4h+ 8h2

)
,
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y2 =
(
1 + 4h+ 8h2

)
y1 =

(
1 + 4h+ 8h2

)(1

3

)(
1 + 4h+ 8h2

)
=

1

3

(
1 + 4h+ 8h2

)2
,

y3 =
(
1 + 4h+ 8h2

)
y2 =

(
1 + 4h+ 8h2

)(1

3

)(
1 + 4h+ 8h2

)2
=

1

3

(
1 + 4h + 8h2

)3
.

Continuing this way we see that

yn =
1

3

(
1 + 4h+ 8h2

)n
. (3.16)

(This can be proved by induction using equation (3.15) above.) We are looking for an ap-

proximation to our solution at the point x = 1/2. Therefore, we have

h =
1/2 − x0

n
=

1/2 − 0

n
=

1

2n
⇒ n =

1

2h
.

Substituting this value for n into equation (3.16) yields

yn =
1

3

(
1 + 4h+ 8h2

)1/(2h)
.

7. For this problem, f(x, y) = x−y2. We need to approximate the solution on the interval [1, 1.5]

using a step size of h = 0.1. Thus the number of steps needed is N = 5. The inputs to the

subroutine on page 129 are x0 = 1, y0 = 0, c = 1.5, and N = 5. For Step 3 of the subroutine

we have

F = f(x, y) = x− y2 ,

G = f (x+ h, y + hF ) = (x+ h) − (y + hF )2 = (x+ h) − [y + h(x− y2)
]2
.

Starting with x = x0 = 1 and y = y0 = 0 we get h = 0.1 (as specified) and

F = 1 − 02 = 1,

G = (1 + 0.1) − [0 + 0.1(1 − 02)
]2

= 1.1 − (0.1)2 = 1.09 .

Hence in Step 4 we compute

x = 1 + 0.1 = 1.1 ,

y = 0 + 0.05(1 + 1.09) = 0.1045 .
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Thus the approximate value of the solution at 1.1 is 0.1045. Next we repeat Step 3 with

x = 1.1 and y = 0.1045 to obtain

F = 1.1 + (0.1045)2 ≈ 1.0891,

G = (1.1 + 0.1) − [0.1045 + 0.1
(
1.1 − (0.1045)2

)]2 ≈ 1.1545 .

Hence in Step 4 we compute

x = 1.1 + 0.1 = 1.2 ,

y = 0.1045 + 0.05(1.0891 + 1.1545) ≈ 0.21668 .

Thus the approximate value of the solution at 1.2 is 0.21668. By continuing in this way, we

fill in Table 3-B. (The reader can also use the software provided free with the text.)

Table 3–B: Improved Euler’s method to approximate the solution of y′ = x−y2, y(1) = 0,

with h = 0.1 .

iii xxx yyy

0 1 0
1 1.1 0.10450
2 1.2 0.21668
3 1.3 0.33382
4 1.4 0.45300
5 1.5 0.57135

9. In this initial value problem, f(x, y) = x+ 3 cos(xy), x0 = 0, and y0 = 0. To approximate the

solution on [0, 2] with a step size h = 0.2, we need N = 10 steps. The functions F and G in

the improved Euler’s method subroutine are

F = f(x, y) = x+ 3 cos(xy);

G = f(x+ h, y + hF ) = x+ h+ 3 cos[(x+ h)(y + hF )]

= x+ 0.2 + 3 cos[(x+ 0.2)(y + 0.2 {x+ 3 cos(xy)})].

143



Chapter 3

Starting with x = x0 = 0 and y = y0 = 0, we compute

F = 0 + 3 cos(0 · 0) = 3 ;

G = 0 + 0.2 + 3 cos[(0 + 0.2)(0 + 0.2 {0 + 3 cos(0 · 0)})] ≈ 3.178426 .

Using these values, we find on Step 4 that

x = 0 + 0.2 = 0.2 ,

y = 0 + 0.1(3 + 3.178426) ≈ 0.617843 .

With these new values of x and y, we repeat the Step 3 and obtain

F = 0.2 + 3 cos(0.2 · 0.617843) ≈ 3.177125 ;

G = 0.2 + 0.2 + 3 cos[(0.2 + 0.2)(0.617843 + 0.2 {0.2 + 3 cos(0.2 · 0.617843)})] ≈ 3.030865 .

Step 4 then yields an approximation of the solution at x = 0.4:

x = 0.2 + 0.2 = 0.4 ,

y = 0.617843 + 0.1(3.177125 + 3.030865) ≈ 1.238642 .

By continuing in this way, we obtain Table 3-C.

Table 3–C: Improved Euler’s method approximations to the solution of y′ = x+3 cos(xy),

y(0) = 0, on [0, 2] with h = 0.2 .

iii xxx y ≈y ≈y ≈ iii xxx y ≈y ≈y ≈

0 0 0 6 1.2 1.884609
1 0.2 0.617843 7 1.4 1.724472
2 0.4 1.238642 8 1.6 1.561836
3 0.6 1.736531 9 1.8 1.417318
4 0.8 1.981106 10 2.0 1.297794
5 1.0 1.997052

144



Exercises 3.6

0

0.5

1

1.5

2

 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
 

y

x

Figure 3–B: Polygonal line approximation to the solution of y′ = x+ 3 cos(xy), y(0) = 0.

A polygonal line, approximating the graph of the solution to the given initial value problem,

which has vertices at points (x, y) from Table 3-C, is sketched in Figure 3-B.

13. We want to approximate the solution φ(x) to y′ = 1 − y + y3, y(0) = 0, at x = 1. (In other

words, we want to find an approximate value for φ(1).) To do this, we will use the algorithm

on page 130 of the text. (We assume that the reader has a programmable calculator or

microcomputer available and can transform the step-by-step outline on page 130 into an

executable program. Alternatively, the reader can use the software provided free with the

text.)

The inputs to the program are x0 = 0, y0 = 0, c = 1, ε = 0.003, and, say, M = 100. Notice

that by Step 6 of the improved Euler’s method with tolerance, the computations should

terminate when two successive approximations differ by less that 0.003. The initial value for

h in Step 1 of the improved Euler’s method subroutine is

h = (1 − 0)2−0 = 1.

For the given equation, we have f(x, y) = 1 − y + y3, and so the numbers F and G in Step 3
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of the improved Euler’s method subroutine are

F = f(x, y) = 1 − y + y3 ,

G = f(x+ h, y + hF ) = 1 − (y + hF ) + (y + hF )3 .

From Step 4 of the improved Euler’s method subroutine with x = 0, y = 0, and h = 1, we get

x = x+ h = 0 + 1 = 1,

y = y +
h

2
(F +G) = 0 +

1

2

[
1 + (1 − 1 + 13)

]
= 1.

Thus,

φ(1) ≈ y(1; 1) = 1.

The algorithm (Step 1 of the improved Euler’s method subroutine) next sets h = 2−1 = 0.5.

The inputs to the subroutine are x = 0, y = 0, c = 1, and N = 2. For Step 3 of the subroutine

we have

F = 1 − 0 + 0 = 1,

G = 1 − [0 + 0.5(1)] + [0 + 0.5(1)]3 = 0.625 .

Hence in Step 4 we compute

x = 0 + 0.5 = 0.5 ,

y = 0 + 0.25(1 + 0.625) = 0.40625 .

Thus the approximate value of the solution at 0.5 is 0.40625. Next we repeat Step 3 with

x = 0.5 and y = 0.40625 to obtain

F = 1 − 0.40625 + (0.40625)3 = 0.6607971 ,

G = 1 − [0.40625 + 0.5(0.6607971)] + [0.40625 + 0.5(0.6607971)]3 ≈ 0.6630946 .

In Step 4 we compute

x = 0.5 + 0.5 = 1,
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Table 3–D: Improved Euler’s method approximations to φ(1), where φ(x) is the solution

to y′ = 1 − y + y3, y(0) = 0.

hhh y(1;h) ≈ φ(1)y(1;h) ≈ φ(1)y(1;h) ≈ φ(1)

1 1.0
2−1 0.7372229
2−2 0.7194115
2−3 0.7169839

y = 0.40625 + 0.25(0.6607971 + 0.6630946) ≈ 0.7372229 .

Thus the approximate value of the solution at x = 1 is 0.7372229. Further outputs of the

algorithm are given in Table 3-D.

Since ∣∣y(1; 2−3) − y(1; 2−2)
∣∣ = |0.7169839− 0.7194115| < 0.003 ,

the algorithm stops (see Step 6 of the improved Euler’s method with tolerance) and prints

out that φ(1) is approximately 0.71698.

15. For this problem, f(x, y) = (x + y + 2)2. We want to approximate the solution, satisfying

y(0) = −2, on the interval [0, 1.4] to find the point, with two decimal places of accuracy, where

it crosses the x-axis, that is y = 0. Our approach is to use a step size of 0.005 and look for a

change in the sign of y. This requires 280 steps. For this procedure inputs to the improved

Euler’s method subroutine are x0 = 0, y0 = −2, c = 1.4, and N = 280. We will stop the

subroutine when we see a sign change in the value of y. (The subroutine is implemented on

the software package provided free with the text.)

For Step 3 of the subroutine we have

F = f(x, y) = (x+ y + 2)2 ,

G = f(x+ h, y + hF ) = (x+ h+ y + hF + 2)2 = [x+ y + 2 + h(1 + F )]2 .
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Starting with the inputs x = x0 = 0, y = y0 = −2, and h = 0.005 we obtain

F = (0 − 2 + 2)2 = 0,

G = [0 − 2 + 2 + 0.005(1 + 0)]2 = 0.000025 .

Thus, in Step 4 we compute

x = 0 + 0.005 = 0.005 ,

y = −2 + 0.005(0 + 0.000025)(1/2) ≈ −2.

Thus the approximate value of the solution at x = 0.005 is −2. We continue with Steps 3 and 4

of the improved Euler’s method subroutine until we arrive at x = 1.270 and y ≈ −0.04658269.

The next iteration, with x = 1.275, yields y ≈ 0.006295411. This tells us that y = 0 is occurs

somewhere between x = 1.270 and x = 1.275. Therefore, rounding off to two decimal places

yields x = 1.27.

17. In this initial value problem, f(x, y) = −20y, x0 = 0, and y0 = 1. By applying formula (4) on

page 125 of the text, we can find a general formula for yn in terms of h. Indeed,

yn = yn−1 + h(−20yn−1) = (1 − 20h)yn−1 = · · · = (1 − 20h)ny0 = (1 − 20h)n = [c(h)]n ,

where c(h) = 1 − 20h. For suggested values of h, we have

h = 0.1 ⇒ c(0.1) = −1 ⇒ xn = 0.1n, yn = (−1)n , n = 1, . . . , 10;

h = 0.025 ⇒ c(0.025) = 0.5 ⇒ xn = 0.025n, yn = (0.5)n , n = 1, . . . , 40;

h = 0.2 ⇒ c(0.2) = −3 ⇒ xn = 0.2n, yn = (−3)n , n = 1, . . . , 5.

These values are shown in Table 3-E.

Thus, for h = 0.1 we have alternating yn = ±1; for h = 0.2, yn’s have an increasing magnitude

and alternating sign; h = 0.025 is a good step size. From this example we conclude that, in

Euler’s method, one should be very careful in choosing a step size. Wrong choice can even

lead to a diverging process.
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Table 3–E: Euler’s method approximations to the solution of y′ = −20y, y(0) = 1, on

[0, 1] with h = 0.1, 0.2 , and 0.025.

xnxnxn
ynynyn

(h = 0.2)(h = 0.2)(h = 0.2)
ynynyn

(h = 0.1)(h = 0.1)(h = 0.1)
ynynyn

(h = 0.025)(h = 0.025)(h = 0.025)
0.1 −1 0.062500
0.2 −3 1 0.003906
0.3 −1 0.000244
0.4 9 1 0.000015
0.5 −1 0.000001
0.6 −27 1 0.000000
0.7 −1 0.000000
0.8 81 1 0.000000
0.9 −1 0.000000
1.0 −243 1 0.000000

19. In this problem, the variables are t and p. With suggested values of parameters, the initial

value problem (13) becomes

dp

dt
= 3p− pr , p(0) = 1.

Therefore, f(t, p) = 3p − pr and, with h = 0.25, functions F and G in improved Euler’s

method subroutine have the form

F = f(t, p) = 3p− pr ;

G = f(t+ 0.25, p+ 0.25F ) = 3[p+ 0.25F ] − [p + 0.25F ]r

= 3 [p + 0.25 (3p− pr)] − [p+ 0.25 (3p− pr)]r .

The results of computations are shown in Table 3-F.

These results indicate that the limiting populations for r = 1.5, r = 2, and r = 3 are p∞ = 9,

p∞ = 3, and p∞ =
√

3, respectively.

Since the right-hand side of the given logistic equation, f(t, p) = 3p− pr, does not depend on

t, we conclude that this equation is autonomous. Therefore, its equilibrium solutions (if any)
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Table 3–F: Improved Euler’s method approximations to the solution of p′ = 3p− pr,

p(0) = 1, on [0, 5] with h = 0.25 for r = 1.5, 2, and 3.

xnxnxn
ynynyn

(r = 1.5)(r = 1.5)(r = 1.5)
ynynyn

(r = 2)(r = 2)(r = 2)
ynynyn

(r = 3)(r = 3)(r = 3)
0.25 1.582860 1.531250 1.390625
0.5 2.351441 2.049597 1.553472
0.75 3.267498 2.440027 1.628847
1.0 4.253156 2.686754 1.669992
1.25 5.216751 2.829199 1.694056
1.5 6.083402 2.908038 1.708578
1.75 6.811626 2.950802 1.717479
2.0 7.392146 2.973767 1.722980
2.25 7.837090 2.986037 1.726396
2.5 8.168507 2.992574 1.728522
2.75 8.410362 2.996053 1.729847
3.0 8.584317 2.997903 1.730674
3.25 8.708165 2.998886 1.731191
3.5 8.795710 2.999408 1.731513
3.75 8.857285 2.999685 1.731715
4.0 8.900443 2.999833 1.731841
4.25 8.930619 2.999911 1.731920
4.5 8.951682 2.999953 1.731969
4.75 8.966366 2.999975 1.732000
5.0 8.976596 2.999987 1.732019

can be found by solving

f(p) = 3p− pr = 0 ⇔ p
(
3 − pr−1

)
= 0 ⇔ p = 0 or p = 31/(r−1).

The condition r > 1 implies that f(p) > 0 on
(
0, 31/(r−1)

)
and f(p) < 0 on

(
31/(r−1),∞).

Therefore, p = 31/(r−1) is a sink and, regardless of the initial value p(0) = p0 > 0, there holds

lim
t→∞

p(t) = 31/(r−1) .

21. We will use the improved Euler’s method with h = 2/3 to approximate the solution of the
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problem {[
75 − 20 cos

(
πt

12

)]
− T (t)

}
+ 0.1 + 1.5[70 − T (t)], T (0) = 65,

with K = 0.2 . Since h = 2/3, it will take 36 steps to go from t = 0 to t = 24. By simplifying

the above expression, we obtain

dT

dt
= (75K + 105.1) − 20K cos

(
πt

12

)
− (K + 1.5)T (t), T (0) = 65.

(Note that here t takes the place of x and T takes the place of y.) Therefore, with K = 0.2

the inputs to the subroutine are t0 = 0, T0 = 65, c = 24, and N = 36. For Step 3 of the

subroutine we have

F = f(t, T ) = (75K + 105.1) − 20K cos

(
πt

12

)
− (K + 1.5)T, (3.17)

G = f(t+ h, T + hF )

= (75K + 105.1) − 20K cos

(
π(t+ h)

12

)
− (K + 1.5){T + hF}. (3.18)

For Step 4 in the subroutine we have

t = t+ h,

T = T +
h

2
(F +G).

Now, starting with t = t0 = 0 and T = T0 = 65, and h = 2/3 (as specified) we have Step 3 of

the subroutine to be

F = [75(0.2) + 105.1] − 20(0.2) cos 0 − [(0.2) + 1.5](65) = 5.6 ,

G = [75(0.2) + 105.1]−20(0.2) cos

[
π(0.6667)

12

]
−[(0.2) + 1.5][65 + (0.6667)(5.6)] ≈ −0.6862 .

Hence in Step 4 we compute

t = 0 + 0.6667 = 0.6667

T = 65 + 0.3333(5.6 − 0.6862) ≈ 66.638 .
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Table 3–G: Improved Euler’s method to approximate the temperature in a building over

a 24-hour period (with K = 0.2).

Time tntntn TnTnTn

Midnight 0 65
12:40 a.m. 0.6667 66.63803
1:20 a.m. 1.3333 67.52906
2:00 a.m. 2.0000 68.07270
2:40 a.m. 2.6667 68.46956
3:20 a.m. 3.3333 68.81808
4:00 a.m. 4.0000 69.16392
8:00 a.m. 8.0000 71.48357

Noon 12.000 72.90891
4:00 p.m. 16.000 72.07140
8:00 p.m. 20.000 69.80953
Midnight 24.000 68.38519

Recalling that t0 is midnight, we see that these results imply that at 0.6667 hours after

midnight (or 12 : 40 a.m.) the temperature is approximately 66.638 . Continuing with this

process for n = 1, 2, . . . , 35 gives us the approximate temperatures in a building with K = 0.2

over a 24 hr period. These results are given in Table 3-G. (This is just a partial table.)

The next step is to redo the above work with K = 0.4. That is, we substitute K = 0.4 and

h = 2/3 ≈ 0.6667 into equations (3.17) and (3.18) above. This yields

F = 135.1 − 8 cos

(
πt

12

)
− 1.9T,

G = 135.1 − 8 cos

[
π(t+ 0.6667)

12

]
− 1.9(T + 0.6667F ),

and

T = T + (0.3333)(F +G).

Then, using these equations, we go through the process of first finding F , then using this

result to find G, and finally using both results to find T . (This process must be done for
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n = 0, 1, 2, . . . , 35.) Lastly, we redo this work with K = 0.6 and h = 2/3. By so doing, we

obtain the results given in the table in the answers of the text. (Note that the values for T0,

T6, T12, T18, T24, T30, and T36 are given in the answers.)

EXERCISES 3.7: Higher Order Numerical Methods: Taylor and Runge-Kutta, page 142

1. In this problem, f(x, y) = cos(x + y). Applying formula (4) on page 135 of the text we

compute

∂f(x, y)

∂x
=

∂

∂x
[cos(x+ y)] = − sin(x+ y)

∂

∂x
(x+ y) = − sin(x+ y);

∂f(x, y)

∂y
=

∂

∂y
[cos(x+ y)] = − sin(x+ y)

∂

∂y
(x+ y) = − sin(x+ y);

f2(x, y) =
∂f(x, y)

∂x
+

[
∂f(x, y)

∂y

]
f(x, y) = − sin(x+ y) + [− sin(x+ y)] cos(x+ y)

= − sin(x+ y)[1 + cos(x+ y)],

and so, with p = 2, (5) and (6) on page 135 yield

xn+1 = xn + h ,

yn+1 = yn + h cos (xn + yn) − h2

2
sin (xn + yn) [1 + cos (xn + yn)] .

3. Here we have f(x, y) = x− y and so

f2(x, y) =
∂(x− y)

∂x
+
∂(x− y)

∂y
(x− y) = 1 + (−1)(x− y) = 1 − x+ y.

To obtain f3(x, y) and then f4(x, y), we differentiate the equation y′′ = f2(x, y) twice. This

yields

y′′′(x) = [f2(x, y)]
′ = (1 − x+ y)′ = −1 + y′ = −1 + x− y =: f3(x, y);

y(4)(x) = [f3(x, y)]
′ = (−1 + x− y)′ = 1 − y′ = 1 − x+ y =: f4(x, y).
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Therefore, the recursive formulas of order 4 for the Taylor method are

xn+1 = xn + h,

yn+1 = yn + h (xn − yn) +
h2

2
(1 − xn + yn) +

h3

3!
(−1 + xn − yn) +

h4

4!
(1 − xn + yn)

= yn + h (xn − yn) +
h2

2
(1 − xn + yn) − h3

6
(1 − xn + yn) +

h4

24
(1 − xn + yn)

= yn + h + (1 − xn + yn)

(
−h +

h2

2
− h3

6
+
h4

24

)
= yn + h (xn − yn) + (1 − xn − yn)

(
h2

2
− h3

6
+
h4

24

)
.

5. For the Taylor method of order 2, we need to find (see equation (4) on page 135 of the text)

f2(x, y) =
∂f(x, y)

∂x
+

[
∂f(x, y)

∂y

]
f(x, y)

for f(x, y) = x+ 1 − y. Thus, we have

f2(x, y) = 1 + (−1)(x+ 1 − y) = y − x.

Therefore, by equations (5) and (6) on page 135 of the text, we see that the recursive formulas

with h = 0.25 become

xn+1 = xn + 0.25 ,

yn+1 = yn + 0.25 (xn + 1 − yn) +
(0.25)2

2
(yn − xn) .

By starting with x0 = 0 and y0 = 1 (the initial values for the problem), we find

y1 = 1 +
0.0625

2
≈ 1.03125 .

Plugging this value into the recursive formulas yields

y2 = 1.03125 + 0.25(0.25 + 1 − 1.03125) +

(
0.0625

2

)
(1.03125 − 0.25) ≈ 1.11035 .

By continuing in this way, we can fill in the first three columns in Table 3-H.
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For the Taylor method of order 4, we need to find f3 and f4. Thus, we have

f3(x, y) =
∂f2(x, y)

∂x
+

[
∂f2(x, y)

∂y

]
f(x, y) = −1 + 1 · (x+ 1 − y) = x− y,

f4(x, y) =
∂f3(x, y)

∂x
+

[
∂f3(x, y)

∂y

]
f(x, y) = 1 + (−1) · (x+ 1 − y) = y − x.

Hence, by equation (6) on page 135 of the text, we see that the recursive formula for yn+1 for

the Taylor method of order 4 with h = 0.25 is given by

yn+1 = yn + 0.25 (xn + 1 − yn) +
(0.25)2

2
(yn − xn) +

(0.25)3

6
(xn − yn) +

(0.25)4

24
(yn − xn) .

By starting with x0 = 0 and y0 = 1, we can fill in the fourth column of Table 3-H.

Table 3–H: Taylor approximations of order 2 and 4 for the equation y′ = x+ 1 − y.

nnn xnxnxn ynynyn (order 2) ynynyn (order 4)

0 0 1 1
1 0.25 1.03125 1.02881
2 0.50 1.11035 1.10654
3 0.75 1.22684 1.22238
4 1.00 1.37253 1.36789

Thus, the approximation (rounded to 4 decimal places) of the solution by the Taylor method

at the point x = 1 is given by φ2(1) = 1.3725 if we use order 2 and by φ4(1) = 1.3679 if we use

order 4. The actual solution is y = x+ e−x and so has the value y(1) = 1 + e−1 ≈ 1.3678794

at x = 1. Comparing these results, we see that

|y(1) − φ2(1)| = 0.00462 and |y(1) − φ4(1)| = 0.00002 .

7. We will use the 4th order Runge-Kutta subroutine described on page 138 of the text. Since

x0 = 0 and h = 0.25, we need N = 4 steps to approximate the solution at x = 1. With

f(x, y) = 2y − 6, we set x = x0 = 0, y = y0 = 1 and go to Step 3 to compute kj’s.

k1 = hf(x, y) = 0.25[2(1) − 6] = −1 ;
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k2 = hf(x+ h/2, y + k1/2) = 0.25[2(1 + (−1)/2) − 6] = −1.25 ;

k3 = hf(x+ h/2, y + k2/2) = 0.25[2(1 + (−1.25)/2) − 6] = −1.3125 ;

k4 = hf(x+ h, y + k3) = 0.25[2(1 + (−1.3125)) − 6] = −1.65625 .

Step 4 then yields

x = 0 + 0.25 = 0.25 ,

y = 1 +
1

6
(k1 + 2k2 + 2k3 + k4) = 1 +

1

6
(−1 − 2 · 1.25 − 2 · 1.3125 − 1.65625) ≈ −0.29688 .

Now we go back to Step 3 and recalculate kj ’s for new values of x and y.

k1 = 0.25[2(−0.29688) − 6] = −1.64844 ;

k2 = 0.25[2(−0.29688 + (−1.64844)/2) − 6] = −2.06055 ;

k3 = 0.25[2(−0.29688 + (−2.06055)/2) − 6] = −2.16358 ;

k4 = 0.25[2(−0.29688 + (−2.16358)) − 6] = −2.73022 ;

x = 0.25 + 0.25 = 0.5 ,

y = −0.29688 +
1

6
(−1.64844 − 2 · 2.06055 − 2 · 2.16358 − 2.73022) ≈ −2.43470 .

We repeat the cycle two more times:

k1 = 0.25[2(−2.43470) − 6] = −2.71735 ;

k2 = 0.25[2(−2.43470 + (−2.71735)/2) − 6] = −3.39670 ;

k3 = 0.25[2(−2.43470 + (−3.39670)/2) − 6] = −3.56652 ;

k4 = 0.25[2(−2.43470 + (−3.56652)) − 6] = −4.50060 ;

x = 0.5 + 0.25 = 0.75 ,

y = −2.43470 +
1

6
(−2.71735 − 2 · 3.39670− 2 · 3.56652 − 4.50060) ≈ −5.95876

and

k1 = 0.25[2(−5.95876) − 6] = −4.47938 ;

k2 = 0.25[2(−5.95876 + (−4.47938)/2) − 6] = −5.59922 ;
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k3 = 0.25[2(−5.95876 + (−5.59922)/2) − 6] = −5.87918 ;

k4 = 0.25[2(−5.95876 + (−5.87918)) − 6] = −7.41895 ;

x = 0.75 + 0.25 = 1.00 ,

y = −5.95876 +
1

6
(−4.47938 − 2 · 5.59922 − 2 · 5.87918 − 7.41895) ≈ −11.7679 .

Thus φ(1) ≈ −11.7679 . The actual solution, φ(x) = 3 − 2e2x, evaluated at x = 1, gives

φ(1) = 3 − 2e2(1) = 3 − 2e2 ≈ −11.7781 .

9. For this problem we will use the 4th order Runge-Kutta subroutine with f(x, y) = x+ 1− y.

Using the step size of h = 0.25, the number of steps needed is N = 4 to approximate the

solution at x = 1. For Step 3 we have

k1 = hf(x, y) = 0.25(x+ 1 − y),

k2 = hf

(
x+

h

2
, y +

k1

2

)
= 0.25(0.875x+ 1 − 0.875y),

k3 = hf

(
x+

h

2
, y +

k2

2

)
= 0.25(0.890625x+ 1 − 0.890625y),

k4 = hf (x+ h, y + k3) = 0.25(0.77734375x+ 1 − 0.77734375y).

Hence, in Step 4 we have

x = x+ 0.25 ,

y = y +
1

6
(k1 + 2k2 + 2k3 + k4) .

Using the initial conditions x0 = 0 and y0 = 1, c = 1, and N = 4 for Step 3 we obtain

k1 = 0.25(0 + 1 − 1) = 0,

k2 = 0.25(0.875(0) + 1 − 0.875(1)) = 0.03125,

k3 = 0.25(0.890625(0) + 1 − 0.890625(1)) ≈ 0.0273438,

k4 = 0.25(0.77734375(0) + 1 − 0.77734375(1)) ≈ 0.0556641.

Thus, Step 4 gives

x = 0 + 0.25 = 0.25 ,
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y ≈ 1 +
1

6
[0 + 2(0.03125) + 2(0.0273438) + 0.0556641] ≈ 1.02881 .

Thus the approximate value of the solution at 0.25 is 1.02881. By repeating Steps 3 and 4 of

the algorithm we fill in the following Table 3-I.

Table 3–I: 4th order Runge-Kutta subroutine approximations for y′ = x+ 1− y at x = 1

with h = 0.25 .

xxx 0 0.25 0.50 0.75 1.0

yyy 1 1.02881 1.10654 1.22238 1.36789

Thus, our approximation at x = 1 is approximately 1.36789. Comparing this with Problem 5,

we see we have obtained accuracy to four decimal places as we did with the Taylor method

of order four, but without having to compute any partial derivatives.

11. In this problem, f(x, y) = 2x−4 − y2. To find the root of the solution within two decimal

places of accuracy, we choose a step size h = 0.005 in 4th order Runge-Kutta subroutine. It

will require (2 − 1)/0.005 = 200 steps to approximate the solution on [1, 2]. With the initial

input x = x0 = 1, y = y0 = −0.414, we get

k1 = hf(x, y) = 0.005[2(1)−4 − (−0.414)2] = 0.009143;

k2 = hf(x+ h/2, y + k1/2) = 0.005[2(1 + 0.005/2)−4 − (−0.414 + 0.009143/2)2] = 0.009062;

k3 = hf(x+ h/2, y + k2/2) = 0.005[2(1 + 0.005/2)−4 − (−0.414 + 0.009062/2)2] = 0.009062;

k4 = hf(x+ h, y + k3) = 0.005[2(1 + 0.005)−4 − (−0.414 + 0.009062)2] = 0.008983;

⇓
x = 1 + 0.005 = 1.005,

y = −0.414 +
1

6
(0.009143 + 2 · 0.009062 + 2 · 0.009062 + 0.008983) ≈ −0.404937;

...
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On the 82nd step we get

x = 1.405 + 0.005 = 1.410 ,

y = −0.004425 +
1

6
(0.002566 + 2 · 0.002548 + 2 · 0.002548 + 0.002530) ≈ −0.001876 ,

and the next step gives

k1 = 0.005[2(1.410)−4 − (−0.001876)2] = 0.002530 ;

k2 = 0.005[2(1.410 + 0.005/2)−4 − (−0.001876 + 0.002530/2)2] = 0.002512 ;

k3 = 0.005[2(1.410 + 0.005/2)−4 − (−0.001876 + 0.002512/2)2] = 0.002512 ;

k4 = 0.005[2(1.410 + 0.005)−4 − (−0.001876 + 0.002512)2] = 0.002494 ;

⇓
x = 1.410 + 0.005 = 1.415 ,

y = −0.414 +
1

6
(0.002530 + 2 · 0.002512 + 2 · 0.002512 + 0.002494) ≈ 0.000636 .

Since y(1.41) < 0 and y(1.415) > 0 we conclude that the root of the solution is on the interval

(1.41, 1.415).

As a check, we apply the 4th order Runge-Kutta subroutine to approximate the solution

to the given initial value problem on [1, 1.5] with a step size h = 0.001, which requires

N = (1.5 − 1)/0.001 = 500 steps. This yields y(1.413) ≈ −0.000367, y(1.414) ≈ 0.000134,

and so, within two decimal places of accuracy, x ≈ 1.41 .

13. For this problem f(x, y) = y2−2exy+e2x+ex. We want to find the vertical asymptote located

in the interval [0, 2] within two decimal places of accuracy using the Forth Order Runge-Kutta

subroutine. One approach is to use a step size of 0.005 and look for y to approach infinity.

This would require 400 steps. We will stop the subroutine when the value of y (“blows up”)

becomes very large. For Step 3 we have

k1 = hf(x, y) = 0.005
(
y2 − 2exy + e2x + ex

)
,

k2 = hf

(
x+

h

2
, y +

k1

2

)
= 0.005

[(
y +

k1

2

)2

− 2e(x+h/2)

(
y +

k1

2

)
+ e2(x+h/2) + e(x+h/2)

]
,
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k3 = hf

(
x+

h

2
, y +

k2

2

)
= 0.005

[(
y +

k2

2

)2

− 2e(x+h/2)

(
y +

k2

2

)
+ e2(x+h/2) + e(x+h/2)

]
,

k4 = hf(x+ h, y + k3) = 0.005
[
(y + k3)

2 − 2e(x+h)(y + k3) + e2(x+h) + e(x+h)
]
.

Hence in Step 4 we have

x = x+ 0.005 ,

y = y +
1

6
(k1 + 2k2 + 2k3 + k4) .

Using the initial conditions x0 = 0, y0 = 3, c = 2, and N = 400 on Step 3 we obtain

k1 = 0.005
(
32 − 2e0(3) + e2(0) + e0

)
= 0.025 ,

k2 = 0.005
[
(3 + 0.0125)2 − 2e(0+0.0025)(3 + 0.0125) + e2(0+0.0025) + e(0+0.0025)

]≈ 0.02522 ,

k3 = 0.005
[
(3 + 0.01261)2 − 2e(0+0.0025)(3 + 0.01261) + e2(0+0.0025) + e(0+0.0025)

]≈ 0.02522 ,

k4 = 0.005
[
(3 + 0.02522)2 − 2e(0+0.0025)(3 + 0.02522) + e2(0+0.0025) + e(0+0.0025)

]≈ 0.02543 .

Thus, Step 4 yields

x = 0 + 0.005 = 0.005

and

y ≈ 3 +
1

6
(0.025 + 2(0.02522) + 2(0.02522) + 0.02543) ≈ 3.02522 .

Thus the approximate value at x = 0.005 is 3.02522. By repeating Steps 3 and 4 of the

subroutine we find that, at x = 0.505, y = 2.0201 · 1013. The next iteration gives a floating

point overflow. This would lead one to think the asymptote occurs at x = 0.51 .

As a check lets apply the 4th order Runge-Kutta subroutine with the initial conditions x0 = 0,

y0 = 3, c = 1, and N = 400. This gives a finer step size of h = 0.0025. With these inputs, we

find y(0.5025) ≈ 4.0402 · 1013.

Repeating the subroutine one more time with a step size of 0.00125, we obtain the value

y(0.50125) ≈ 8.0804 · 1013. Therefore we conclude that the vertical asymptote occurs at

x = 0.50 and not at 0.51 as was earlier thought.
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Figure 3–C: Polygonal line approximation to the solution of y′ = cos(5y) − x, y(0) = 0,

on [0, 3].

15. Here f(x, y) = cos(5y) − x, x0 = 0, and y0 = 0. With a step size h = 0.1 we take N = 30 in

order to approximate the solution on [0, 3]. We set x = x0 = 0, y = y0 = 0 and compute

k1 = hf(x, y) = 0.1[cos(5 · 0) − 0] = 0.1 ;

k2 = hf(x+ h/2, y + k1/2) = 0.1[cos(5(0 + 0.1/2)) − (0 + 0.1/2)] = 0.091891 ;

k3 = hf(x+ h/2, y + k2/2) = 0.1[cos(5(0 + 0.091891/2))− (0 + 0.1/2)] = 0.092373 ;

k4 = hf(x+ h, y + k3) = 0.1[cos(5(0 + 0.092373))− (0 + 0.1)] = 0.079522 ;

⇓
x = 0 + 0.1 = 0.1 ,

y = 0 +
1

6
(0.1 + 2 · 0.091891 + 2 · 0.092373 + 0.079522) ≈ 0.091342 ;

...

The results of computations are shown in Table 3-J.

Using these value, we sketch a polygonal line approximating the graph of the solution on [0, 3].

See Figure 3-C.
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Table 3–J: 4th order Runge-Kutta approximations to the solution of y′ = cos(5y) − x,

y(0) = 0, on [0, 3] with h = 0.1 .

xnxnxn ynynyn xnxnxn ynynyn

0 0 1.5 −0.02668
0.1 0.09134 1.6 −0.85748
0.2 0.15663 1.7 −0.17029
0.3 0.19458 1.8 −0.30618
0.4 0.21165 1.9 −0.53517
0.5 0.21462 2.0 −0.81879
0.6 0.20844 2.1 −1.02887
0.7 0.19629 2.2 −1.17307
0.8 0.18006 2.3 −1.30020
0.9 0.16079 2.4 −1.45351
1.0 0.13890 2.5 −1.69491
1.1 0.11439 2.6 −2.03696
1.2 0.08686 2.7 −2.30917
1.3 0.05544 2.8 −2.50088
1.4 0.01855 2.9 −2.69767

3.0 −2.99510

17. Taylor method of order 2 has recursive formulas given by equations (5) and (6) on page 135

of the text: that is

xj+1 = xj + h and yj+1 = yj + hf(xj , yj) +
h2

2!
f2 (xj , yj) .

With f(x, y) = y, we have

f2(x, y) = y′′ =
∂f(x, y)

∂x
+

[
∂f(x, y)

∂y

]
f(x, y) = 0 + 1 · (y) = y.

Therefore, since h = 1/n, the recursive formula for yj+1 is given by the equation

yj+1 = yj +
1

n
yj +

1

2n2
yj =

(
1 +

1

n
+

1

2n2

)
yj .

We are starting the process at x0 = 0 and y0 = 1, and we are taking steps of size 1/n until we

reach x = 1. This means that we will take n steps. Thus, yn will be an approximation for the
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solution to the differential equation at x = 1. Since the actual solution is y = ex, this means

that yn ≈ e. To find the equation we are looking for, we see that

y1 =

(
1 +

1

n
+

1

2n2

)
y0 =

(
1 +

1

n
+

1

2n2

)
,

y2 =

(
1 +

1

n
+

1

2n2

)
y1 =

(
1 +

1

n
+

1

2n2

)2

,

y3 =

(
1 +

1

n
+

1

2n2

)
y2 =

(
1 +

1

n
+

1

2n2

)3

,

y4 =

(
1 +

1

n
+

1

2n2

)
y3 =

(
1 +

1

n
+

1

2n2

)4

,

...

yn =

(
1 +

1

n
+

1

2n2

)
yn−1 =

(
1 +

1

n
+

1

2n2

)n

.

(This can be proved rigorously by mathematical induction.) As we observed above, yn ≈ e,

and so we have

e ≈
(

1 +
1

n
+

1

2n2

)n

.

19. In this initial value problem, the independent variable is u, the dependent variable is v, u0 = 2,

v0 = 0.1, and

f(u, v) = u
(u

2
+ 1
)
v3 +

(
u+

5

2

)
v2 .

We will use the classical 4th order Runge-Kutta algorithm with tolerance given on page 139 of

the text but, since the stopping criteria should be based on the relative error, we will replace

the condition |z − v| < ε in Step 6 by |(z − v)/v| < ε (see Step 6′ on page 138).

We start with m = 0, N = 2m = 1, and a step size h = (3 − 2)/N = 1. Setting u = u0 = 2,

v = v0 = 0.1, on Step 4 we compute

k1 = hf(u, v) = (1)

[
2

(
2

2
+ 1

)
(0.1)3 +

(
2 +

5

2

)
(0.1)2

]
= 0.049;

k2 = hf (u+ h/2, v + k1/2) = (1)

[
(2 + 1/2)

(
2 + 1/2

2
+ 1

)
(0.1 + 0.049/2)3

+

(
(2 + 1/2) +

5

2

)
(0.1 + 0.049/2)2

]
= 0.088356 ;
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k3 = hf(u+ h/2, v + k2/2) = (1)

[
(2 + 1/2)

(
2 + 1/2

2
+ 1

)
(0.1 + 0.088356/2)3

+

(
(2 + 1/2) +

5

2

)
(0.1 + 0.088356/2)2

]
= 0.120795 ;

k4 = hf(u+ h, v + k3) = (1)

[
(2 + 1)

(
2 + 1

2
+ 1

)
(0.1 + 0.120795)3

+

(
(2 + 1) +

5

2

)
(0.1 + 0.120795)2

]
= 0.348857 .

So,

u = u+ h = 2 + 1 = 3 ,

v = v +
1

6
(0.049 + 2 · 0.088356 + 2 · 0.120795 + 0.348857) ≈ 0.236027 .

Because the relative error between two successive approximations, v(3; 20) = 0.236027 and

v = 0.1 is ε = |(0.236027 − 0.1)/0.236027| ≈ 0.576320 > 0.0001, we go back to Step 2 and

set m = 1, take N = 2m = 2 on Step 3, compute h = 1/N = 0.5, and use the 4th order

Runge-Kutta subroutine on page 138 of the text to find v(3; 0.5). This takes two steps and

yields

k1 = (0.5)

[
2

(
2

2
+ 1

)
(0.1)3 +

(
2 +

5

2

)
(0.1)2

]
= 0.0245;

k2 = (0.5)

[
(2 + 0.5/2)

(
2 + 0.5/2

2
+ 1

)
(0.1 + 0.0245/2)3

+

(
(2 + 0.5/2) +

5

2

)
(0.1 + 0.0245/2)2

]
= 0.033306 ;

k3 = (0.5)

[
(2 + 0.5/2)

(
2 + 0.5/2

2
+ 1

)
(0.1 + 0.033306/2)3

+

(
(2 + 0.5/2) +

5

2

)
(0.1 + 0.033306/2)2

]
= 0.036114 ;

k4 = (0.5)

[
(2 + 0.5)

(
2 + 0.5

2
+ 1

)
(0.1 + 0.036114)3

+

(
(2 + 0.5) +

5

2

)
(0.1 + 0.036114)2

]
= 0.053410 .
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This gives

u = 2 + 0.5 = 2.5 ,

v = 0.1 +
1

6
(0.0245 + 2 · 0.033306 + 2 · 0.036114 + 0.053410) ≈ 0.136125 .

We compute kj ’s again and find an approximate value of v(3).

k1 = (0.5)

[
2.5

(
2.5

2
+ 1

)
(0.136125)3 +

(
2.5 +

5

2

)
(0.136125)2

]
= 0.053419;

k2 = (0.5)

[
(2.5 + 0.5/2)

(
2.5 + 0.5/2

2
+ 1

)
(0.136125 + 0.053419/2)3

+

(
(2.5 + 0.5/2) +

5

2

)
(0.136125 + 0.053419/2)2

]
= 0.083702 ;

k3 = (0.5)

[
(2.5 + 0.5/2)

(
2.5 + 0.5/2

2
+ 1

)
(0.136125 + 0.083702/2)3

+

(
(2.5 + 0.5/2) +

5

2

)
(0.136125 + 0.083702/2)2

]
= 0.101558 ;

k4 = (0.5)

[
(2.5 + 0.5)

(
2.5 + 0.5

2
+ 1

)
(0.136125 + 0.101558)3

+

(
(2.5 + 0.5) +

5

2

)
(0.136125 + 0.101558)2

]
= 0.205709 .

Therefore, at u = 2.5 + 0.5 = 3.0,

v = 0.136125 +
1

6
(0.053419 + 2 · 0.083702 + 2 · 0.101558 + 0.205709) ≈ 0.241066 .

This time the relative error is

ε =

∣∣∣∣v(3; 2−1) − v(3; 20)

v(3; 2−1)

∣∣∣∣ = 0.241066− 0.236027

0.241066
≈ 0.020903 > 0.0001 .

Thus we set m = 2, N = 2m = 4, h = 1/N = 0.25, repeat computations with this new step,

and find that v(3; 2−2) ≈ 0.241854 and

ε =

∣∣∣∣v(3; 2−2) − v(3; 2−1)

v(3; 2−1)

∣∣∣∣ = 0.241854 − 0.241066

0.241854
≈ 0.003258 > 0.0001 .
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We continue increasing m and get

m = 3, h = 0.125 , v(3; 2−3) = 0.241924 , ε =

∣∣∣∣0.241924 − 0.241854

0.241924

∣∣∣∣ ≈ 0.00029 > 10−4 ;

m = 4, h = 0.0625 , v(3; 2−4) = 0.241929 , ε =

∣∣∣∣0.241929 − 0.241924

0.241929

∣∣∣∣ ≈ 0.00002 < 10−4 .

Therefore, within an accuracy of 0.0001, v(3) ≈ 0.24193 .
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EXERCISES 4.1: Introduction: The Mass-Spring Oscillator, page 159

1. With b = 0 and Fext = 0, equation (3) on page 155 becomes

my′′ + ky = 0.

Substitution y = sinωt, where ω =
√
k/m, yields

m(sinωt)′′ + k(sinωt) = −mω2 sinωt+ k sinωt

= sinωt
(−mω2 + k

)
= sinωt (−m(k/m) + k) = 0.

Thus y = sinωt is indeed a solution.

3. Differentiating y(t), we find

y = 2 sin 3t+ cos 3t

⇒ y′ = 6 cos 3t− 3 sin 3t

⇒ y′′ = −18 sin 3t− 9 cos 3t.

Substituting y, y′, and y′′ into the given equation, we get

2y′′ + 18y = 2(−18 sin 3t− 9 cos 3t) + 18(2 sin 3t+ cos 3t)

= [2(−18) + 18(2)] sin 3t+ [2(−9) + 18(1)] cos 3t = 0.

Next, we check that the initial conditions are satisfied.

y(0) = (2 sin 3t+ cos 3t)
∣∣
t=0

= 2 sin 0 + cos 0 = 1,

y′(0) = (6 cos 3t− 3 sin 3t)
∣∣
t=0

= 6 cos 0 − 3 sin 0 = 6.
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Writing y(t) in the form

y(t) =
√

5

(
2√
5

sin 3t+
1√
5

cos 3t

)
=

√
5 sin(3t+ γ),

where γ = arctan(1/2), we conclude that |y(t)| =
√

5| sin(3t + γ)|, and so max |y(t)| =
√

5

(since max | sin(3t+ γ)| = 1).

5. We differentiate y(t) twice and obtain

y(t) = e−2t sin(
√

2t)

y′(t) = e−2t[(−2) sin(
√

2t) +
√

2 cos(
√

2t)]

y′′(t) = e−2t
[
(−2)2 sin(

√
2t) + (−2)

√
2 cos(

√
2t) + (−2)

√
2 cos(

√
2t) − (

√
2)2 sin(

√
2t)
]

= e−2t
[
2 sin(

√
2t) − 4

√
2 cos(

√
2t)
]
.

Substituting these functions into the differential equation, we get

my′′ + by′ + ky = y′′ + 4y′ + 6y = e−2t
[
2 sin(

√
2t) − 4

√
2 cos(

√
2t)
]

+4e−2t[(−2) sin(
√

2t) +
√

2 cos(
√

2t)] + 6e−2t sin(
√

2t)

= e−2t
[
(2 − 8 + 6) sin(

√
2t) + (−4

√
2 + 4

√
2) cos(

√
2t)
]

= 0.

Therefore, y = e−2t sin(
√

2t) is a solution. As t → +∞, e−2t → 0 while sin(
√

2t) remains

bounded. Therefore, lim
t→+∞

y(t) = 0.

7. For y = A cos 5t+B sin 5t,

y′ = −5A sin 5t+ 5B cos 5t, y′′ = −25A cos 5t− 25B sin 5t.

Inserting y, y′, and y′′ into the given equation and matching coefficients yield

y′′ + 2y′ + 4y = 3 sin 5t

⇒ (−25A cos 5t− 25B sin 5t) + 2(−5A sin 5t+ 5B cos 5t) + 4(A cos 5t+B sin 5t)

= (−21A+ 10B) cos 5t+ (−10A− 21B) sin 5t = 3 sin 5t

⇒ −21A+ 10B = 0,

−10A− 21B = 3
⇒ A = −30/541,

B = −63/541.

Thus, y = −(30/541) cos 5t−(63/541) sin 5t is a synchronous solution to y′′+2y′+4y = 3 sin 5t.
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9. We differentiate y = A cos 2t+B sin 2t twice to get

y′ = −2A sin 2t+ 2B cos 2t and y′′ = −4A cos 2t− 4B sin 2t,

substitute y, y′, and y′′ into the given equation, and compare coefficients. This yields

y′′ + 2y′ + 4y = (−4A cos 2t− 4B sin 2t) + 2(−2A sin 2t+ 2B cos 2t) + 4(A cos 2t+B sin 2t)

= 4B cos 2t− 4A sin 2t = 3 cos 2t+ 4 sin 2t

⇒ 4B = 3,

−4A = 4
⇒ A = −1,

B = 3/4
⇒ y = − cos 2t+ (3/4) sin 2t.

EXERCISES 4.2: Homogeneous Linear Equations; The General Solution, page 167

1. The auxiliary equation for this problem is r2 + 5r + 6 = (r + 2)(r + 3) = 0, which has the

roots r = −2 and r = −3. Thus {e−2t, e−3t} is a set of two linearly independent solutions for

this differential equation. Therefore, a general solution is given by

y(t) = c1e
−2t + c2e

−3t,

where c1 and c2 are arbitrary constants.

3. The auxiliary equation, r2 +8r+16 = (r+4)2 = 0, has a double root r = −4. Therefore, e−4t

and te−4t are two linearly independent solutions for this differential equation, and a general

solution is given by

y(t) = c1e
−4t + c2te

−4t,

where c1 and c2 are arbitrary constants.

5. The auxiliary equation for this problem is r2 + r− 1 = 0. By the quadratic formula, we have

r =
−1 ±√

1 + 4

2
=

−1 ±√
5

2
.

Therefore, a general solution is

z(t) = c1e
(−1−√

5)t/2 + c2e
(−1+

√
5)t/2.
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7. Solving the auxiliary equation, 2r2 + 7r − 4 = 0, yields r = 1/2,−4. Thus a general solution

is given by

u(t) = c1e
t/2 + c2e

−4t,

where c1 and c2 are arbitrary constants.

9. The auxiliary equation for this problem is r2 − r − 11 = 0, which has roots

r =
1 ±√

1 + 4 · 11

2
=

1 ± 3
√

5

2
.

Thus, a general solution to the given equation is

y(t) = c1e
(1+3

√
5)t/2 + c2e

(1−3
√

5)t/2.

11. Solving the auxiliary equation, 4r2 + 20r + 25 = (2r + 5)2 = 0, we conclude that r = −5/2 is

its double root. Therefore, a general solution to the given differential equation is

w(t) = c1e
−5t/2 + c2te

−5t/2.

13. The auxiliary equation for this problem is r2 + 2r − 8 = 0, which has roots r = −4, 2. Thus,

a general solution is given by

y(t) = c1e
−4t + c2e

2t ,

where c1, c2 are arbitrary constants. To satisfy the initial conditions, y(0) = 3, y′(0) = −12,

we find the derivative y′(t) = −4c1e
−4t + 2c2e

2t and solve the system

y(0) = c1e
−4·0 + c2e

2·0 = c1 + c2 = 3,

y′(0) = −4c1e
−4·0 + 2c2e

2·0 = −4c1 + 2c2 = −12
⇒ c1 = 3,

c2 = 0.

Therefore, the solution to the given initial value problem is

y(t) = (3)e−4t + (0)e2t = 3e−4t .

15. The auxiliary equation for this equation is r2 + 2r + 1 = (r + 1)2 = 0. We see that r = −1

is a repeated root. Thus, two linearly independent solutions are y1(t) = e−t and y2(t) = te−t.

This means that a general solution is given by y(t) = c1e
−t + c2te

−t.
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To find the constants c1 and c2, we substitute the initial conditions into the general solution

and its derivative, y′(t) = −c1e−t + c2 (e−t − te−t), and obtain

y(0) = 1 = c1e
0 + c2 · 0 = c1 ,

y′(0) = −3 = −c1e0 + c2 (e0 − 0) = −c1 + c2 .

So, c1 = 1 and c2 = −2. Therefore, the solution that satisfies the initial conditions is given by

y(t) = e−t − 2te−t.

17. The auxiliary equation for this problem, r2 − 2r − 2 = 0, has roots r = 1 ± √
3. Thus,

a general solution is given by z(t) = c1e
(1+

√
3)t + c2e

(1−√
3)t. Differentiating, we find that

z′(t) = c1(1 +
√

3)e(1+
√

3)t + c2(1 −√
3)e(1−

√
3)t. Substitution of z(t) and z′(t) into the initial

conditions yields the system

z(0) = c1 + c2 = 0,

z′(0) = c1(1 +
√

3) + c2(1 −√
3) =

√
3(c1 − c2) = 3

⇒ c1 =
√

3/2,

c2 = −√
3/2.

Thus, the solution satisfying the given initial conditions is

z(t) =

√
3

2
e(1+

√
3)t −

√
3

2
e(1−

√
3)t =

√
3

2

(
e(1+

√
3)t − e(1−

√
3)t
)
.

19. Here, the auxiliary equation is r2 − 4r − 5 = (r − 5)(r + 1) = 0, which has roots r = 5, −1.

Consequently, a general solution to the differential equation is y(t) = c1e
5t + c2e

−t, where

c1 and c2 are arbitrary constants. To find the solution that satisfies the initial conditions,

y(−1) = 3 and y′(−1) = 9, we first differentiate the solution found above, then plug in y and

y′ into the initial conditions. This gives

y(−1) = 3 = c1e
−5 + c2e

y′(−1) = 9 = 5c1e
−5 − c2e.

Solving this system yields c1 = 2e5, c2 = e−1. Thus y(t) = 2e5(t+1) + e−(t+1) is the desired

solution.
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21. (a) With y(t) = ert, y′(t) = rert, the equation becomes

arert + bert = (ar + b)ert = 0.

Since the function ert is never zero on (−∞,∞), to satisfy the above equation we must

have

ar + b = 0.

(b) Solving the characteristic equation, ar+b = 0, obtained in part (a), we get r = −b/a. So

y(t) = ert = e−bt/a, and a general solution is given by y = ce−bt/a, where c is an arbitrary

constant.

23. We form the characteristic equation, 5r + 4 = 0, and find its root r = −4/5. Therefore,

y(t) = ce−4t/5 is a general solution to the given equation.

25. The characteristic equation, 6r− 13 = 0, has the root r = 13/6. Therefore, a general solution

is given by w(t) = ce13t/6.

27. Assuming that y1(t) = e−t cos 2t and y2(t) = e−t sin 2t are linearly dependent on (0, 1), we

conclude that, for some constant c and all t ∈ (0, 1),

y1(t) = cy2(t) ⇒ e−t cos 2t = ce−t sin 2t ⇒ cos 2t = c sin 2t.

Choosing, say, t = π/4, we get cos(π/2) = c sin(π/2) or c = 0. This implies that

cos 2t ≡ 0 · sin 2t ≡ 0, t ∈ (0, 1),

which is a contradiction. Thus, y1(t) and y2(t) are linearly independent on (0, 1) (and so on

(−∞,∞); see Problem 33(a) below).

29. These functions are linearly independent, because the equality y1(t) ≡ cy2(t) would imply

that, for some constant c,

te2t ≡ ce2t ⇒ t ≡ c

on (0, 1).
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31. Using the trigonometric identity 1 + tan2 t ≡ sec2 t, we conclude that

y1(t) = tan2 t− sec2 t ≡ −1 ⇒ y2(t) ≡ 3 ≡ (−3)y1(t),

and so y1(t) and y2(t) are linearly dependent on (0, 1) (even on (−∞,∞)).

33. (a) True. Since y1(t) and y2(t) are linearly dependent on [a, b], there exists a constant c such

that y1(t) = cy2(t) (or y2(t) = cy1(t)) for all t in [a, b]. In particular, this equality is

satisfied on any smaller interval [c, d], and so y1(t) and y2(t) are linearly dependent on

[c, d].

(b) False. As an example, consider y1(t) = t and y2(t) = |t| on [−1, 1]. For t in [0, 1],

y2(t) = t = y1(t), and so y2(t) ≡ c1y1(t) with constant c1 = 1. For t in [−1, 0], we have

y2(t) = −t = −y1(t), and so y2(t) ≡ c2y1(t) with constant c2 = −1. Therefore, these two

functions are linearly dependent on [0, 1] and on [−1, 0]. Since c1 �= c2, there is no such

a constant c that y1(t) ≡ cy2(t) on [−1, 1]. So, y1(t) and y2(t) are linearly independent

on [−1, 1].

35. (a) No, because, for t ≥ 0, y2(t) = |t3| = t3 = y1(t).

(b) No, because, for t ≤ 0, y2(t) = |t3| = −t3 = −y1(t).

(c) Yes, because there is no constant c such that y2(t) = cy1(t) is satisfied for all t (for

positive t we have c = 1, and c = −1 for negative t).

(d) While y′1(t) = 3t2 on (−∞,∞), for the derivative of y2(t) we consider three different

cases: t < 0, t = 0, and t > 0. For t < 0, y2(t) = −t3, y′2(t) = −3t2, and so

W [y1, y2](t) =

∣∣∣∣∣ t3 −t3
3t2 −3t2

∣∣∣∣∣ = t3(−3t2) − 3t2(−t3) = 0.

Similarly, for t > 0, y2(t) = t3, y′2(t) = 3t2, and

W [y1, y2](t) =

∣∣∣∣∣ t3 t3

3t2 3t2

∣∣∣∣∣ = t3 · 3t2 − 3t2 · t3 = 0.
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For t = 0, y′1(0) = 3·02 = 0 and y′2(0) = 0. The latter follows from the fact that one-sided

derivatives of y2(t), 3t2 and −3t2, are both zero at t = 0. Also, y1(0) = y2(0) = 0. Hence

W [y1, y2](0) =

∣∣∣∣∣ 0 0

0 0

∣∣∣∣∣ = 0,

and so W [y1, y2](t) ≡ 0 on (−∞,∞). This result does not contradict part (b) in Prob-

lem 34 because these functions are not a pair of solutions to a homogeneous linear

equation with constant coefficients.

37. If y1(t) and y2(t) are solutions to the equation ay′′ + by′ + c = 0, then, by Abel’s formula,

W [y1, y2](t) = Ce−bt/a, where C is a constant depending on y1 and y2. Thus, if C �= 0, then

W [y1, y2](t) �= 0 for any t in (−∞,∞), because the exponential function, e−bt/a, is never zero.

For C = 0, W [y1, y2](t) ≡ 0 on (−∞,∞).

39. (a) A linear combination of y1(t) = 1, y2(t) = t, and y3(t) = t2,

C1 · 1 + C2 · t+ C3 · t2 = C1 + C2t+ C3t
2 ,

is a polynomial of degree at most two and so can have at most two real roots, unless it is

a zero polynomial, i.e., has all zero coefficients. Therefore, the above linear combination

vanishes on (−∞,∞) if and only if C1 = C2 = C3 = 0, and y1(t), y2(t), and y3(t) are

linearly independent on (−∞,∞).

(b) Since

5y1(t) + 3y2(t) + 15y3(t) = −15 + 15 sin2 t+ 15 cos2 t = 15(−1 + sin2 t+ cos2 t) ≡ 0

on (−∞,∞) (the Pythagorean identity), given functions are linearly dependent.

(c) These functions are linearly independent. Indeed, since the function et does not vanish

on (−∞,∞),

C1y1 + C2y2 + C3y3 = C1e
t + C2te

t + C3t
2et =

(
C1 + C2t+ C3t

2
)
et = 0

if and only if C1 + C2t + C3t
2 = 0. But functions 1, t, and t2 are linearly independent

on (−∞,∞) (see (a)) and so their linear combination is identically zero if and only if

C1 = C2 = C3 = 0.

174



Exercises 4.2

(d) By the definition of cosh t,

y3(t) = cosh t =
et + e−t

2
=

1

2
et +

1

2
e−t =

1

2
y1(t) +

1

2
y2(t) ,

and given functions are linearly dependent on (−∞,∞).

41. The auxiliary equation for this problem is r3 + r2 − 6r + 4 = 0. Factoring yields

r3 + r2 − 6r + 4 =
(
r3 − r2

)
+
(
2r2 − 2r

)
+ (−4r + 4)

= r2(r − 1) + 2r(r − 1) − 4(r − 1) = (r − 1)(r2 + 2r − 4).

Thus the roots of the auxiliary equation are

r = 1 and r =
−2 ±√(−2)2 − 4(1)(−4)

2
= −1 ±

√
5 .

Therefore, the functions et, e(−1−√
5)t, and e(−1+

√
5)t are solutions to the given equation, and

they are linearly independent on (−∞,∞) (see Problem 40). Hence, a general solution to

y′′′ + y′′ − 6y′ + 4y = 0 is given by

y(t) = c1e
t + c2e

(−1−√
5)t + c3e

(−1+
√

5)t .

42. The auxiliary equation associated with this differential equation is r3 − 6r2 − r + 6 = 0. We

see, by inspection, that r = 1 is a root. Dividing the cubic polynomial r3 − 6r2 − r + 6 by

r − 1, we find that

r3 − 6r2 − r + 6 = (r − 1)(r2 − 5r − 6) = (r − 1)(r + 1)(r − 6).

Hence r = −1, 1, 6 are the roots to the auxiliary equation, and a general solution is

y(t) = c1e
−t + c2e

t + c3e
6t.

43. Factoring the auxiliary polynomial yields

r3 + 2r2 − 4r − 8 = (r3 + 2r2) − (4r + 8)

= r2(r + 2) − 4(r + 2) = (r + 2) (r2 − 4) = (r + 2)(r + 2)(r − 2).
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Therefore, the auxiliary equation has a double root −2 and a root 2. The functions e−2t,

te−2t, and e2t form a linearly independent solution set. Therefore, a general solution in this

problem is

z(t) = c1e
−2t + c2te

−2t + c3e
2t.

45. By inspection, we see that r = 2 is a root of the auxiliary equation, r3 + 3r2 − 4r − 12 = 0.

Dividing the polynomial r3 + 3r2 − 4r − 12 by r − 2 yields

r3 + 3r2 − 4r − 12 = (r − 2)
(
r2 + 5r + 6

)
= (r − 2)(r + 2)(r + 3).

Hence, two other roots of the auxiliary equation are r = −2 and r = −3. The functions e−3t,

e−2t, and e2t are three linearly independent solutions to the given equation, and a general

solution is given by

y(t) = c1e
−3t + c2e

−2t + c3e
2t.

47. First we find a general solution to the equation y′′′ − y′ = 0. Its characteristic equation,

r3 − r = 0, has roots r = 0, −1, and 1, and so a general solution is given by

y(t) = c1e
(0)t + c2e

(−1)t + c3e
(1)t = c1 + c2e

−t + c3e
t .

Differentiating y(t) twice yields

y′(t) = −c2e−t + c3e
t , y′′(t) = c2e

−t + c3e
t .

Now we substitute y, y′, and y′′ into the initial conditions and find c1, c2, and c3.

y(0) = c1 + c2 + c3 = 2,

y′(0) = −c2 + c3 = 3,

y′′(0) = c2 + c3 = −1

⇒
c1 = 3,

c2 = −2,

c3 = 1.

Therefore, the solution to the given initial value problem is

y(t) = 3 − 2e−t + et .
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49. (a) To find the roots of the auxiliary equation, p(r) := 3r3 + 18r2 + 13r − 19 = 0, one can

use Newton’s method or intermediate value theorem. We note that

p(−5) = −9 < 0, p(−4) = 25 > 0,

p(−2) = 3 > 0, p(−1) = −17 < 0,

p(0) = −19 < 0, p(1) = 15 > 0.

Therefore, the roots of p(r) belong to the intervals [−5,−4], [−2,−1], and [0, 1], and

we can take r = −5, r = −2, and r = 0 as initial quesses. Approximation yields

r1 ≈ −4.832, r2 ≈ −1.869, and r3 ≈ 0.701. So, a general solution is given by

y(t) = c1e
r1t + c2e

r2t + c3e
r3t = c1e

−4.832t + c2e
−1.869t + c3e

0.701t .

(b) The auxiliary equation, r4 − 5r2 + 5 = 0, is of quadratic type. The substitution s = r2

yields

s2 − 5s+ 5 = 0 ⇒ s =
5 ±√

5

2
⇒ r = ±√

s = ±
√

5 ±√
5

2
.

Therefore,

r1 =

√
5 −√

5

2
≈ 1.176 , r2 =

√
5 +

√
5

2
≈ 1.902 , r3 = −r1 , and r4 = −r2

are the roots of the auxiliary equation, and a general solution to y(ıv) − 5y′′ + 5y = 0 is

given by y(t) = c1e
r1t + c2e

−r1t + c3e
r2t + c4e

−r2t.

(c) We can use numerical tools to find the roots of the auxiliary fifth degree polynomial

equation r5 − 3r4 − 5r3 + 15r2 + 4r− 12 = 0. Alternatively, one can involve the rational

root theorem and examine the divisors of the free coefficient, −12. These divisors are

±1, ±2, ±3, ±4, ±6, and ±12. By inspection, r = ±1, ±2, and 3 satisfy the equation.

Thus, a general solution is y(t) = c1e
−t + c2e

t + c3e
−2t + c4e

2t + c5e
3t.

EXERCISES 4.3: Auxiliary Equations with Complex Roots, page 177

1. The auxiliary equation in this problem is r2 + 9 = 0, which has roots r = ±3i. We see that

α = 0 and β = 3. Thus, a general solution to the differential equation is given by

y(t) = c1e
(0)t cos 3t+ c2e

(0)t sin 3t = c1 cos 3t+ c2 sin 3t.
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3. The auxiliary equation, r2 − 6r + 10 = 0, has roots r =
(
6 ±√

62 − 40
)
/2 = 3 ± i. So α = 3,

β = 1, and

z(t) = c1e
3t cos t+ c2e

3t sin t

is a general solution.

5. This differential equation has the auxiliary equation r2+4r+6 = 0. The roots of this auxiliary

equation are r =
(−4 ±√

16 − 24
)
/2 = −2 ±√

2 i. We see that α = −2 and β =
√

2. Thus,

a general solution to the differential equation is given by

w(t) = c1e
−2t cos

√
2t+ c2e

−2t sin
√

2t.

7. The auxiliary equation for this problem is given by

4r2 − 4r + 26 = 0 ⇒ 2r2 − 2r + 13 = 0 ⇒ r =
2 ±√

4 − 104

4
=

1

2
± 5

2
i.

Therefore, α = 1/2 and β = 5/2. Thus, a general solution is given by

y(t) = c1e
t/2 cos

(
5t

2

)
+ c2e

t/2 sin

(
5t

2

)
.

9. The associated auxiliary equation, r2 − 8r + 7 = 0, has two real roots, r = 1, 7. Thus the

answer is

y(t) = c1e
t + c2e

7t .

11. The auxiliary equation for this problem is r2 + 10r + 25 = (r + 5)2 = 0. We see that r = −5

is a repeated root. Thus two linearly independent solutions are z1(t) = e−5t and z2(t) = te−5t.

This means that a general solution is given by

z(t) = c1e
−5t + c2te

−5t ,

where c1 and c2 are arbitrary constants.

13. Solving the auxiliary equation yields complex roots

r2 + 2r + 5 = 0 ⇒ r =
−2 ±√22 − 4(1)(5)

2
= −1 ± 2i.
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So, α = −1, β = 2, and a general solution is given by

y(t) = c1e
−t cos 2t+ c2e

−t sin 2t.

15. First, we find the roots of the auxiliary equation.

r2 + 10r + 41 = 0 ⇒ r =
−10 ±√102 − 4(1)(41)

2
= −5 ± 4i.

These are complex numbers with α = −5 and β = 4. Hence, a general solution to the given

differential equation is

y(t) = c1e
−5t cos 4t+ c2e

−5t sin 4t.

17. The auxiliary equation in this problem, r2 − r + 7 = 0, has the roots

r =
1 ±√12 − 4(1)(7)

2
=

1 ±√−27

2
=

1

2
± 3

√
3

2
i.

Therefore, a general solution is

y(t) = c1e
t/2 cos

(
3
√

3

2
t

)
+ c2e

t/2 sin

(
3
√

3

2
t

)
.

19. The auxiliary equation, r3 +r2 +3r−5 = 0, is a cubic equation. Since any cubic equation has

a real root, first we examine the divisors of the free coefficient, 5, to find integer real roots (if

any). By inspection, r = 1 satisfies the equation. Dividing r3 + r2 + 3r − 5 by r − 1 yields

r3 + r2 + 3r − 5 = (r − 1)(r2 + 2r + 5).

Therefore, the other two roots of the auxiliary equation are the roots of the quadratic equation

r2 +2r+5 = 0, which are r = −1± 2i. A general solution to the given equation is then given

by

y(t) = c1e
t + c2e

−t cos 2t+ c3e
−t sin 2t.

21. The auxiliary equation for this problem is r2 + 2r + 2 = 0, which has the roots

r =
−2 ±√

4 − 8

2
= −1 ± i.
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So, a general solution is given by

y(t) = c1e
−t cos t+ c2e

−t sin t ,

where c1 and c2 are arbitrary constants. To find the solution that satisfies the initial conditions,

y(0) = 2 and y′(0) = 1, we first differentiate the solution found above, then plug in given

initial conditions. This yields y′(t) = c1e
−t(− cos t− sin t) + c2e

−t(cos t− sin t) and

y(0) = c1 = 2,

y′(0) = −c1 + c2 = 1 .

Thus c1 = 2, c2 = 3, and the solution is given by

y(t) = 2e−t cos t+ 3e−t sin t .

23. The auxiliary equation for this problem is r2 − 4r + 2 = 0. The roots of this equation are

r =
4 ±√

16 − 8

2
= 2 ±

√
2 ,

which are real numbers. A general solution is given by w(t) = c1e
(2+

√
2)t + c2e

(2−√
2)t, where

c1 and c2 are arbitrary constants. To find the solution that satisfies the initial conditions,

w(0) = 0 and w′(0) = 1, we first differentiate the solution found above, then plug in our

initial conditions. This gives

w(0) = c1 + c2 = 0,

w′(0) =
(
2 +

√
2
)
c1 +

(
2 −

√
2
)
c2 = 1 .

Solving this system of equations yields c1 = 1/(2
√

2) and c2 = −1/(2
√

2). Thus

w(t) =
1

2
√

2
e(2+

√
2)t − 1

2
√

2
e(2−

√
2)t =

√
2

4

(
e(2+

√
2)t − e(2−

√
2)t
)

is the desired solution.
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25. The auxiliary equation, r2 − 2r + 2 = 0, has the roots r = 1 ± i. Thus, a general solution is

y(t) = c1e
t cos t+ c2e

t sin t ,

where c1 and c2 are arbitrary constants. To find the solution that satisfies the initial conditions,

y(π) = eπ and y′(π) = 0, we find y′(t) = c1e
t(cos t − sin t) + c2e

t(sin t + cos t) and solve the

system

eπ = y(π) = −c1eπ,

0 = y′(π) = −c1eπ − c2e
π .

This yields c1 = −1, c2 = −c1 = 1. So, the answer is

y(t) = −et cos t+ et sin t = et(sin t− cos t) .

27. To solve the auxiliary equation, r3 − 4r2 + 7r− 6 = 0, which is of the third order, we find its

real root first. Examining the divisors of −6, that is, ±1, ±2, ±3, and ±6, we find that r = 2

satisfies the equation. Next, we divide r3 − 4r2 + 7r − 6 by r − 2 and obtain

r3 − 4r2 + 7r − 6 = (r − 2)
(
r2 − 2r + 3

)
.

Therefore, the other two roots of the auxiliary equation are

r =
2 ±√

4 − 12

2
= 1 ±

√
2i ,

and a general solution to the given differential equation is given by

y(t) = c1e
2t + c2e

t cos
√

2t+ c3e
t sin

√
2t .

Next, we find the derivatives,

y′(t) = 2c1e
2t + c2e

t
(
cos

√
2t−

√
2 sin

√
2t
)

+ c3e
t
(
sin

√
2t+

√
2 cos

√
2t
)
,

y′′(t) = 4c1e
2t + c2e

t
(
− cos

√
2t− 2

√
2 sin

√
2t
)

+ c3e
t
(
− sin

√
2t+ 2

√
2 cos

√
2t
)
,
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and substitute y, y′, and y′′ into the initial conditions. This yields

c1 + c2 = 1,

2c1 + c2 +
√

2c3 = 0,

4c1 − c2 + 2
√

2c3 = 0

⇒
c1 = 1,

c2 = 0,

c3 = −√
2 .

With these values of the constants c1, c2, and c3, the solution becomes

y(t) = e2t −
√

2et sin
√

2t .

29. (a) As it was stated in Section 4.2, third order linear homogeneous differential equations

with constant coefficients can be handled in the same way as second order equations.

Therefore, we look for the roots of the auxiliary equation r3 − r2 + r + 3 = 0. By

the rational root theorem, the only possible rational roots are r = ±1 and ±3. By

checking these values, we find that one of the roots of the auxiliary equation is r = −1.

Factorization yields

r3 − r2 + r + 3 = (r + 1)(r2 − 2r + 3).

Using the quadratic formula, we find that the other two roots are

r =
2 ±√

4 − 12

2
= 1 ±

√
2 i.

A general solution is, therefore,

y(t) = c1e
−t + c2e

t cos
√

2t+ c3e
t sin

√
2t .

(b) By inspection, r = 2 is a root of the auxiliary equation, r3 + 2r2 + 5r − 26 = 0. Since

r3 + 2r2 + 5r − 26 = (r − 2)
(
r2 + 4r + 13

)
,

the other two roots are the roots of r2 + 4r + 13 = 0, that is, r = −2 ± 3i. Therefore, a

general solution to the given equation is

y(t) = c1e
2t + c2e

−2t cos 3t+ c3e
−2t sin 3t .
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(c) The fourth order auxiliary equation r4 + 13r2 + 36 = 0 can be reduced to a quadratic

equation by making a substitution s = r2. This yields

s2 + 13r + 36 = 0 ⇒ s =
−13 ±√

169 − 144

2
=

−13 ± 5

2
.

Thus, s = (−13+5)/2 = −4 or s = (−13−5)/2 = −9, and the solutions to the auxiliary

equation are r = ±√−4 = ±2i and r = ±√−9 = ±3i. A general solution, therefore,

has the form

y(t) = c1 cos 2t+ c2 sin 2t+ c3 cos 3t+ c4 sin 3t .

31. (a) Comparing the equation y′′ + 16y = 0 with the mass-spring model (16) in Example 4,

we conclude that the damping coefficient b = 0 and the stiffness constant k = 16 > 0.

Thus, solutions should have an oscillatory behavior.

Indeed, the auxiliary equation, r2 + 16 = 0, has roots r = ±4i, and a general solution is

given by

y(t) = c1 cos 4t+ c2 sin 4t .

Evaluating y′(t) and substituting the initial conditions, we get

y(0) = c1 = 2,

y′(0) = 4c2 = 0
⇒ c1 = 2,

c2 = 0
⇒ y(t) = 2 cos 4t .

(b) Positive damping b = 100 and stiffness k = 1 imply that the displacement y(t) tends to

zero, as t→ ∞.

To confirm this prediction, we solve the given initial value problem explicitly. The roots

of the associated equation are

r =
−100 ±√

1002 − 4

2
= −50 ±

√
2499 .

Thus the roots r1 = −50 −√
2499 and r2 = −50 +

√
2499 are both negative. A general

solution is given by

y(t) = c1e
r1t + c2e

r2t ⇒ y′(t) = c1r1e
r1t + c2r2e

r2t .
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Solving the initial value problem yields

y(0) = 1 = c1 + c2 ,

y′(0) = 0 = c1r1 + c2r2
⇒ c1 = r2/(r2 − r1),

c2 = r1/(r1 − r2),

and so the desired solution is

y(t) =
−50 +

√
2499

2
√

2499
e(−50−√

2499)t +
50 +

√
2499

2
√

2499
e(−50+

√
2499)t .

Since both powers in exponential functions tend to −∞ as t→ ∞, y(t) → 0.

(c) The corresponding mass-spring model has negative damping b = −6 and positive stiffness

k = 8. Thus the magnitude |y(t)| of the displacement y(t) will increase without bound,

as t→ ∞. Moreover, because of the positive initial displacement and initial zero velocity,

the mass will move in the negative direction. Thus, our guess is that y(t) → −∞ as

t→ ∞.

Now we find the actual solution. Since the roots of the auxiliary equation are r = 2 and

r = 4, a general solution to the given equation is y(t) = c1e
2t + c2e

4t. Next, we find c1

and c2 satisfying the initial conditions.

y(0) = 1 = c1 + c2 ,

y′(0) = 0 = 2c1 + 4c2
⇒ c1 = 2,

c2 = −1.

Thus, the desired solution is

y(t) = 2e2t − e4t ,

and it approaches −∞ as t→ ∞.

(d) In this problem, the stiffness k = −3 is negative. In the mass-spring model, this means

that the spring forces the mass to move in the same direction as the sign of the displace-

ment is. Initially, the displacement y(0) = −2 is negative, and the mass has no initial

velocity. Thus the mass, when released, will move in the negative direction, and the

spring will enforce this movement. So, we expect that y(t) → −∞ as t→ ∞.

To find the actual solution, we solve the auxiliary equation r2 + 2r − 3 = 0 and obtain

r = −3, 1. Therefore, a general solution is given by y(t) = c1e
−3t + c2e

t. We find c1 and
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c2 from the initial conditions.

y(0) = −2 = c1 + c2 ,

y′(0) = 0 = −3c1 + c2
⇒ c1 = −1/2,

c2 = −3/2.

Thus, the solution to the initial value problem is

y(t) = −e
−3t

2
− 3et

2
,

and, as t→ ∞, it approaches −∞.

(e) As in the previous problem, we have negative stiffness k = −6. But this time the initial

displacement, y(0) = 1, as well as the initial velocity, y′(0) = 1, is positive. So, the

mass will start moving in the positive direction, and will continue doing this (due to the

negative stiffness) with increasing velocity. Thus our prediction is that y(t) → ∞ when

t→ ∞.

Indeed, the roots of the characteristic equation in this problem are r = −2 and 3, and

so a general solution has the form y(t) = c1e
−2t + c2e

3t. To satisfy the initial conditions,

we solve the system

y(0) = 1 = c1 + c2 ,

y′(0) = 1 = −2c1 + 3c2
⇒ c1 = 2/5,

c2 = 3/5.

Thus, the solution to the initial value problem is

y(t) =
2e−2t

5
+

3e3t

5
,

and it approaches ∞ as t→ ∞.

33. From Example 3 we see that, in the study of a vibrating spring with damping, we have the

initial value problem

my′′(t) + by′(t) + ky(t) = 0; y(0) = y0 , y′(0) = v0 ,

where m is the mass of the spring system, b is the damping constant, k is the spring constant,

y(0) is the initial displacement, y′(0) is the initial velocity, and y(t) is the displacement of the

mass from the equilibrium at time t.
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(a) We want to determine the equation of motion for a spring system with m = 10 kg,

b = 60 kg/sec, k = 250 kg/sec2, y(0) = 0.3 m, and y′(0) = −0.1 m/sec. That is, we seek

the solution to the initial value problem

10y′′(t) + 60y′(t) + 250y(t) = 0; y(0) = 0.3 , y′(0) = −0.1 .

The auxiliary equation for the above differential equation is

10r2 + 60r + 250 = 0 ⇒ r2 + 6r + 25 = 0,

which has the roots

r =
−6 ±√

36 − 100

2
=

−6 ± 8i

2
= −3 ± 4i.

Hence α = −3 and β = 4, and the displacement y(t) has the form

y(t) = c1e
−3t cos 4t+ c2e

−3t sin 4t.

We find c1 and c2 by using the initial conditions. We first differentiate y(t) to get

y′(t) = (−3c1 + 4c2)e
−3t cos 4t+ (−4c1 − 3c2)e

−3t sin 4t.

Substituting y and y′ into the initial conditions, we obtain the system

y(0) = 0.3 = c1 ,

y′(0) = −0.1 = −3c1 + 4c2 .

Solving, we find that c1 = 0.3 and c2 = 0.2. Therefore the equation of motion is given

by

y(t) = 0.3e−3t cos 4t+ 0.2e−3t sin 4t (m).

(b) From Problem 32 we know that the frequency of oscillation is given by β/(2π). In part

(a) we found that β = 4. Therefore the frequency of oscillation is 4/(2π) = 2/π.

(c) We see a decrease in the frequency of oscillation. We also have the introduction of the

factor e−3t, which causes the solution to decay to zero. This is a result of energy loss due

to the damping.
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35. The equation of the motion of a swinging door is similar to that for mass-spring model (with

the mass m replaced by the moment of inertia I and the displacement y(t) replaced by the

angle θ that the door is open). So, from the discussion following Example 3 we conclude that

the door will not continually swing back and forth (that is, the solution θ(t) will not oscillate)

if b ≥ √
4Ik = 2

√
Ik.

37. (a) The auxiliary equation for this problem is r4 + 2r2 + 1 = (r2 + 1)2 = 0. This equation

has the roots r1 = r2 = −i, r3 = r4 = i. Thus, cos t and sin t are solutions and, since the

roots are repeated, we get two more solutions by multiplying cos t and sin t by t, that is,

t cos t and t sin t are also solutions. This gives a general solution

y(t) = c1 cos t+ c2 sin t+ c3t cos t+ c4t sin t.

(b) The auxiliary equation in this problem is

r4 + 4r3 + 12r2 + 16r + 16 = (r2 + 2r + 4)2 = 0.

The roots of the quadratic equation r2 + 2r + 4 = 0 are

r =
−2 ±√

4 − 16

2
= −1 ±

√
3i.

Hence the roots of the auxiliary equation are r1 = r2 = −1−√
3i and r3 = r4 = −1+

√
3i.

Thus two linearly independent solutions are e−t cos(
√

3t) and e−t sin(
√

3t), and we get

two more linearly independent by multiplying them by t. This gives a general solution

of the form

y(t) = (c1 + c2t)e
−t cos(

√
3t) + (c3 + c4t)e

−t sin(
√

3t).

39. (a) Comparing given equation with the Cauchy-Euler equation (21) in general form, we

conclude that a = 3, b = 11, and c = −3. Thus, the substitution x = et leads to the

equation (22) in Problem 38 with these values of parameters. That is,

a
d2y

dt2
+ (b− a)

dy

dt
+ cy = 0 ⇒ 3

d2y

dt2
+ 8

dy

dt
− 3y = 0.
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(b) The auxiliary equation to the differential equation obtained in (a) is 3r2 + 8r − 3 = 0,

which has the roots

r =
−8 ±√64 − 4(3)(−3)

6
=

−8 ± 10

6
⇒ r = −3,

1

3
.

This yields a general solution y(t) = c1e
t/3 + c2e

−3t.

(c) Since x = et, we can express y(t) as a function of x by writing

y = c1e
t/3 + c2e

−3t = c1
(
et
)1/3

+ c2
(
et
)−3

= c1x
1/3 + c2x

−3 .

41. This equation is a Cauchy-Euler equation. The substitution x = et leads to the equation (22)

with a = 1, b = 2, and c = −6. Thus we have

a
d2y

dt2
+ (b− a)

dy

dt
+ cy = 0 ⇒ d2y

dt2
+
dy

dt
− 6y = 0.

The auxiliary equation, r2 + r − 6 = 0, has the roots r = −3 and r = 2. Therefore, a general

solution can be written as

y = c1e
−3t + c2e

2t = c1
(
et
)−3

+ c2
(
et
)2

= c1x
−3 + c2x

2 .

43. The substitution x = et yields the equation

d2y

dt2
+ (9 − 1)

dy

dt
+ 17y = 0 ⇒ d2y

dt2
+ 8

dy

dt
+ 17y = 0.

Solving the characteristic equation, r2 + 8r + 17 = 0, we get

r =
−8 ±√

64 − 68

2
= −4 ± i.

Thus, the roots are complex with α = −4, β = 1, and a general solution, as a function of t, is

given by y(t) = c1e
−4t cos t + c2e

−4t sin t. Now we make the back substitution. Since x = et,

we have t = ln x and so

y =
(
et
)−4

(c1 cos t+ c2 sin t) = x−4 [c1 cos(ln x) + c2 sin(ln x)] .
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EXERCISES 4.4: Nonhomogeneous Equations: The Method of Undetermined

Coefficients, page 186

1. We cannot use the method of undetermined coefficients to find a particular solution because

of the t−1 term, which is not a polynomial.

3. Rewriting the right-hand side in the form 3t = e(ln 3)t = ert, where r = ln 3, we conclude that

the method of undetermined coefficients can be applied.

5. Since sec θ = 1/ cos θ, we cannot use the method of undetermined coefficients.

7. Given equation is not an equation with constant coefficients. Thus the method of undeter-

mined coefficients cannot be applied.

9. The roots of the auxiliary equation, r2 + 3 = 0, are r = ±√
3i. Since they are different from

zero, we look for a particular solution of the form yp(t) ≡ A. Substitution into the original

equation yields

(A)′′ + 3A = −9 ⇒ 3A = −9 ⇒ A = −3.

Thus, yp(t) ≡ −3 is a particular solution to the given nonhomogeneous equation.

11. The auxiliary equation in this problem, 2r2 +1 = 0, has complex roots. Therefore, e2t is not a

solution to the corresponding homogeneous equation, and a particular solution to the original

nonhomogeneous equation has the form zp(t) = Ae2t. Substituting this expression into the

equation, we find the constant A.

2
(
Ae2t

)′′
+ Ae2t = 2

(
4Ae2t

)
+ Ae2t = 9Ae2t = 9e2t ⇒ A = 1.

Hence, zp(t) = e2t.

12. This equation is a linear first order differential equation with constant coefficients. The

corresponding homogeneous equation, 2x′+x = 0, can be solved by the methods of Chapter 2.

Alternatively, one can use the result of Problem 21 in Section 4.2. Either approach yields
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xh(t) = Ce−t/2. So, the homogeneous equation does not have a polynomial solution (other

than x(t) ≡ 0), and we look for a particular solution to the nonhomogeneous equation of the

form xp(t) = A2t
2 + A1t+ A0. Substitution into the original differential equation yields

2x′p(t) + xp(t) = 2 (2A2t+ A1) + A2t
2 + A1t+ A0 = A2t

2 + (4A2 + A1) t+ (2A1 + A0) = 3t2.

By equating coefficients we obtain

A2 = 3,

4A2 + A1 = 0 ⇒ A1 = −12,

2A1 + A0 = 0 ⇒ A0 = 24.

Therefore, a particular solution is xp(t) = 3t2 − 12t+ 24.

13. The right-hand side of the original nonhomogeneous equation suggest us the form

yp(t) = ts(A cos 3t+B sin 3t)

for a particular solution. Since the roots of the auxiliary equation, r2−r+9 = 0, are different

from 3i, neither cos 3t nor sin 3t is a solution to the corresponding homogeneous equation.

Therefore, we can choose s = 0, and so

yp(t) = A cos 3t+B sin 3t,

y′p(t) = −3A sin 3t+ 3B cos 3t,

y′′p(t) = −9A cos 3t− 9B sin 3t.

Substituting these expressions into the original equation and equating the corresponding co-

efficients, we conclude that

(−9A cos 3t− 9B sin 3t) − (−3A sin 3t+ 3B cos 3t) + 9 (A cos 3t+B sin 3t) = 3 sin 3t

⇒ −3B cos 3t+ 3A sin 3t = 3 sin 3t ⇒ A = 1, B = 0.

Hence, the answer is yp(t) = cos 3t.
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15. For this problem, the corresponding homogeneous equation is y′′ − 5y′ + 6y = 0, which has

the associated auxiliary equation r2 − 5r + 6 = 0. The roots of this equation are r = 3 and

r = 2. Therefore, neither y = ex nor y = xex satisfies the homogeneous equation, and in the

expression yp(x) = xs(Ax+B)ex for a particular solution we can take s = 0. So

yp(x) = (Ax+B)ex

⇒ y′p(x) = (Ax+B + A)ex

⇒ y′′p(x) = (Ax+B + 2A)ex

⇒ (Ax+B + 2A)ex − 5(Ax+B + A)ex + 6(Ax+B)ex = xex

⇒ (2Ax− 3A+ 2B)ex = xex ⇒ 2A = 1,

−3A+ 2B = 0
⇒ A = 1/2,

B = 3/4 ,

and yp(x) = (x/2 + 3/4)ex.

16. The corresponding homogeneous equation has the auxiliary equation r2 − 1 = 0, whose roots

are r = ±1. Thus, in the expression θp(t) = (A1t + A0) cos t + (B1t + B0) sin t none of the

terms is a solution to the homogeneous equation. We find

θp(t) = (A1t+ A0) cos t+ (B1t+B0) sin t

⇒ θ′p(t) = A1 cos t− (A1t+ A0) sin t+B1 sin t+ (B1t+B0) cos t

= (B1t+ A1 +B0) cos t+ (−A1t− A0 +B1) sin t

⇒ θ′′p(t) = B1 cos t− (B1t+B0 + A1) sin t− A1 sin t+ (−A1t− A0 +B1) cos t

= (−A1t− A0 +B1) cos t+ (−B1t− B0 − 2A1) sin t.

Substituting these expressions into the original differential equation, we get

θ′′p − θp = (−A1t− A0 + 2B1) cos t+ (−B1t− B0 − 2A1) sin t

− (A1t+ A0) cos t− (B1t+B0) sin t

= −2A1t cos t+ (−2A0 + 2B1) cos t− 2B1t sin t+ (−2A1 − 2B0) sin t

= t sin t.
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Equating the coefficients, we see that

−2A1 = 0 ⇒ A1 = 0,

−2A0 + 2B1 = 0 ⇒ B1 = A0 ,

−2B1 = 1 ⇒ B1 = −1

2
and so A0 = −1

2
,

−2A1 − 2B0 = 0 ⇒ B0 = 0.

Therefore, a particular solution of the nonhomogeneous equation θ′′ − θ = t sin t is given by

θp(t) = −t sin t+ cos t

2
.

17. The right-hand side of the original equation suggests that a particular solution should be of

the form yp(t) = Atset. Since r = 1 is a double root of the corresponding auxiliary equation,

r2 − 2r + 1 = (r − 1)2 = 0, we take s = 2. Hence

yp(t) = At2et ⇒ y′p(t) = A
(
t2 + 2t

)
et ⇒ y′′p(t) = A

(
t2 + 4t+ 2

)
et .

Substituting these expressions into the original equation, we find the constant A.

A
(
t2 + 4t+ 2

)
et − 2A

(
t2 + 2t

)
et + At2et = 8et ⇒ 2Aet = 8et ⇒ A = 4.

Thus, yp(t) = 4t2et.

19. According to the right-hand side of the given equation, a particular solution has the form

yp(t) = ts(A1t+A0)e
−3t. To choose s, we solve the auxiliary equation, 4r2 + 11r− 3 = 0, and

find that r = −3 is its simple root. Therefore, we take s = 1, and so

yp(t) = t (A1t+ A0) e
−3t =

(
A1t

2 + A0t
)
e−3t .

Differentiating yields

y′p(t) =
[−3A1t

2 + (2A1 − 3A0) t+ A0

]
e−3t,

y′′p(t) =
[
9A1t

2 + (9A0 − 12A1) t+ 2A1 − 6A0

]
e−3t.
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Substituting y, y′, and y′′ into the original equation, after some algebra we get

[−26A1t+ (8A1 − 13A0)]e
−3t = −2te−3t ⇒ −26A1 = −2,

8A1 − 13A0 = 0
⇒ A1 = 1/13,

A0 = 8/169.

Therefore,

yp(t) =

(
t

13
+

8

169

)
te−3t .

21. The nonhomogeneous term of the original equation is te2t. Therefore, a particular solution

has the form xp(t) = ts (A1t+ A0) e
2t. The corresponding homogeneous differential equation

has the auxiliary equation r2 − 4r + 4 = (r − 2)2 = 0. Since r = 2 is its double root, s is

chosen to be 2. Thus a particular solution to the nonhomogeneous equation has the form

xp(t) = t2 (A1t+ A0) e
2t =

(
A1t

3 + A0t
2
)
e2t.

We compute

x′p =
(
3A1t

2 + 2A0t
)
e2t + 2

(
A1t

3 + A0t
2
)
e2t,

x′′p = (6A1t+ 2A0) e
2t + 4

(
3A1t

2 + 2A0t
)
e2t + 4

(
A1t

3 + A0t
2
)
e2t.

Substituting these expressions into the original differential equation yields

x′′p − 4x′p + 4xp = (6A1t+ 2A0) e
2t + 4

(
3A1t

2 + 2A0t
)
e2t + 4

(
A1t

3 + A0t
2
)
e2t

−4
(
3A1t

2 + 2A0t
)
e2t − 8

(
A1t

3 + A0t
2
)
e2t + 4

(
A1t

3 + A0t
2
)
e2t

= (6A1t+ 2A0) e
2t = te2t.

Equating coefficients yields A0 = 0 and A1 = 1/6. Therefore xp(t) = t3e2t/6 is a particular

solution to the given nonhomogeneous equation.

23. The right-hand side of this equation suggests that yp(θ) = θs(A2θ
2 + A1θ + A0). We choose

s = 1 because r = 0 is a simple root of the auxiliary equation, r2 − 7r = 0. Therefore,

yp(θ) = θ(A2θ
2 + A1θ + A0) = A2θ

3 + A1θ
2 + A0θ

⇒ y′p(θ) = 3A2θ
2 + 2A1θ + A0 ⇒ y′′p(θ) = 6A2θ + 2A1 .
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So,

y′′p−7y′p = (6A2θ + 2A1)−7
(
3A2θ

2 + 2A1θ + A0

)
= −21A2θ

2+(6A2−14A1)θ+2A1−7A0 = θ2.

Comparing the corresponding coefficients, we find A2, A1, and A0.

−21A2 = 1,

6A2 − 14A1 = 0,

2A1 − 7A0 = 0

⇒
A2 = −1/21,

A1 = 3A2/7 = −1/49,

A0 = 2A1/7 = −2/343.

Hence

yp(θ) = − 1

21
θ3 − 1

49
θ2 − 2

343
θ.

25. We look for a particular solution of the form yp(t) = ts(A cos 3t+B sin 3t)e2t. Since r = 2+3i

is not a root of the auxiliary equation, which is r2 + 2r + 4 = 0, we can take s = 0. Thus,

yp(t) = (A cos 3t+B sin 3t)e2t

⇒ y′p(t) = [(2A+ 3B) cos 3t+ (−3A + 2B) sin 3t)]e2t

⇒ y′′p(t) = [(−5A+ 12B) cos 3t+ (−12A− 5B) sin 3t)]e2t .

Next, we substitute yp, y
′
p, and y′′p into the original equation and compare the corresponding

coefficients.

y′′p + 2y′p + 4yp = [(3A+ 18B) cos 3t+ (−18A + 3B) sin 3t]e2t = 111e2t cos 3t

⇒ 3A+ 18B = 111,

−18A+ 3B = 0.

This system has the solution A = 1, B = 6. So,

yp(t) = (cos 3t+ 6 sin 3t)e2t .

27. The right-hand side of this equation suggests that

yp(t) = ts
(
A3t

3 + A2t
2 + A1t+ A0

)
cos 3t+ ts

(
B3t

3 +B2t
2 +B1t+B0

)
sin 3t.
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To choose s, we find the roots of the characteristic equation, which is r2 + 9 = 0. Since

r = ±3i are its simple roots, we take s = 1. Thus

yp(t) = t
(
A3t

3 + A2t
2 + A1t+ A0

)
cos 3t+ t

(
B3t

3 +B2t
2 +B1t+B0

)
sin 3t.

29. The characteristic equation r2 − 6r + 9 = (r − 3)2 = 0 has a double root r = 3. Therefore, a

particular solution is of the form

yp(t) = t2
(
A6t

6 + A5t
5 + A4t

4 + A3t
3 + A2t

2 + A1t+ A0

)
e3t .

31. From the form of the right-hand side, we conclude that a particular solution should be of the

form

yp(t) = ts
[(
A3t

3 + A2t
2 + A1t+ A0

)
cos t+

(
B3t

3 +B2t
2 +B1t+B0

)
sin t
]
e−t.

Since r = −1 ± i are simple roots of the characteristic equation, r2 + 2r + 2 = 0, we should

take s = 1. Therefore,

yp(t) = t
[(
A3t

3 + A2t
2 + A1t+ A0

)
cos t+

(
B3t

3 +B2t
2 +B1t+B0

)
sin t
]
e−t.

33. The right-hand side of the equation suggests that yp(t) = ts(A cos t+B sin t). By inspection,

we see that r = i is not a root of the corresponding auxiliary equation, r3 − r2 + 1 = 0. Thus,

with s = 0,

yp(t) = A cos t+B sin t,

y′p(t) = −A sin t+B cos t,

y′′p(t) = −A cos t− B sin t,

y′′′p (t) = A sin t− B cos t,

and substitution into the original equation yields

(A sin t−B cos t) − (−A cos t− B sin t) + (A cos t+B sin t) = sin t

⇒ (2A−B) cos t+ (A+ 2B) sin t = sin t

⇒ 2A− B = 0,

A + 2B = 1
⇒ A = 1/5,

B = 2/5
⇒ yp(t) =

1

5
cos t+

2

5
sin t.
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35. We look for a particular solution of the form yp(t) = ts(A1t+A0)e
t, and choose s = 1 because

the auxiliary equation, r3 + r2 − 2 = (r − 1)(r2 + 2r + 2) = 0 has r = 1 as a simple root.

Hence,

yp(t) = t(A1t+ A0)e
t = (A1t

2 + A0t)e
t

⇒ y′p(t) =
[
A1t

2 + (2A1 + A0)t+ A0

]
et

⇒ y′′p(t) =
[
A1t

2 + (4A1 + A0)t+ (2A1 + 2A0)
]
et

⇒ y′′′p (t) =
[
A1t

2 + (6A1 + A0)t+ (6A1 + 3A0)
]
et

⇒ y′′′ + y′′ − 2y = [10A1t+ (8A1 + 5A0)] e
t = tet .

Equating the corresponding coefficients, we find that

10A1 = 1,

8A1 + 5A0 = 0
⇒ A1 = 1/10,

A0 = −8A1/5 = −4/25
⇒ yp(t) =

(
1

10
t2 − 4

25
t

)
et.

EXERCISES 4.5: The Superposition Principle and Undetermined Coefficients

Revisited, page 192

1. Let g1(t) := sin t and g2(t) := e2t. Then y1(t) = cos t is a solution to

y′′ − y′ + y = g1(t)

and y2(t) = e2t/3 is a solution to

y′′ − y′ + y = g2(t).

(a) The right-hand side of the given equation is 5 sin t = 5g1(t). Therefore, the function

y(t) = 5y1(t) = 5 cos t is a solution to y′′ − y′ + y = 5 sin t.

(b) We can express sin t−3e2t = g1(t)−3g2(t). So, by the superposition principle the desired

solution is y(t) = y1(t) − 3y2(t) = cos t− e2t.

(c) Since 4 sin t+ 18e2t = 4g1(t) + 18g2(t), the function

y(t) = 4y1(t) + 18y2(t) = 4 cos t+ 6e2t

is a solution to the given equation.
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3. The corresponding homogeneous equation, y′′ − y = 0, has the associated auxiliary equation

r2 − 1 = (r − 1)(r + 1) = 0. This gives r = ±1 as the roots of this equation, and a general

solution to the homogeneous equation is yh(t) = c1e
t + c2e

−t. Combining this solution with

the particular solution, yp(t) = −t, we find that a general solution is given by

y(t) = yp(t) + yh(t) = −t+ c1e
t + c2e

−t .

5. The corresponding auxiliary equation, r2 − r − 2 = 0, has the roots r = −1, 2. Hence, a

general solution to the corresponding homogeneous equation is θh(t) = c1e
2t + c2e

−t. By the

superposition principle, a general solution to the original nonhomogeneous equation is

θ(t) = θp(t) + θh(t) = t− 1 + c1e
2t + c2e

−t.

7. First, we rewrite the equation in standard form, that is,

y′′ − 2y′ + y = 2ex .

The corresponding homogeneous equation, y′′ − 2y′ + y = 0, has the associated auxiliary

equation r2 − 2r + 1 = (r − 1)2 = 0. Thus r = 1 is its double root, and a general solution

to the homogeneous equation is yh(x) = c1xe
x + c2e

x. Combining this with the particular

solution, yp(x) = x2ex, we find that a general solution is given by

y(x) = yp(x) + yh(x) = x2ex + c1xe
x + c2e

x .

9. We can write the nonhomogeneous term as a difference

t2 + 4t− t2et sin t = (t2 + 4t) − (t2et sin t) = g1(t) − g2(t).

Both, g1(t) and g2(t), have a form suitable for the method of undetermined coefficients. There-

fore, we can apply this method to find particular solutions yp,1(t) and yp,2(t) to

3y′′ + 2y′ + 8y = g1(t) and 3y′′ + 2y′ + 8y = g2(t),

respectively. Then, by the superposition principle, yp(t) = yp,1(t) − yp,2(t) is a particular

solution to the given equation.
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11. The answer is “no”, because the method of undetermined coefficients cannot be applied to

y′′ − 6y′ − 4y =
1

t
.

13. In the original form, the function sin2 t does not fit any of the cases in the method of unde-

termined coefficients. But it can be written as sin2 t = (1 − cos 2t)/2, and so

2t+ sin2 t+ 3 = 2t+
1 − cos 2t

2
+ 3 =

(
2t+

7

2

)
−
(

1

2
cos 2t

)
.

Now, the method of undetermined coefficients can be applied to each term in the above

difference to find a particular solution to the corresponding nonhomogeneous equation, and

the difference of these particular solutions, by the superposition principle, is a particular

solution to the original equation. Thus, the answer is “yes”.

15. “No”, because the given equation is not an equation with constant coefficients.

17. The auxiliary equation in this problem is r2 − 1 = 0 with roots r = ±1. Hence,

yh(t) = c1e
t + c2e

−t

is a general solution to the corresponding homogeneous equation. Next, we find a particu-

lar solution yp(t) to the original nonhomogeneous equation. The method of undetermined

coefficients yields

yp(t) = At+B ⇒ y′p(t) ≡ A ⇒ y′′p(t) ≡ 0;

y′′p − yp = 0 − (At+B) = −At− B = −11t+ 1 ⇒ A = 11, B = −1

⇒ yp(t) = 11t− 1.

By the superposition principle, a general solution is given by

y(t) = yp(t) + yh(t) = 11t− 1 + c1e
t + c2e

−t .

19. Solving the auxiliary equation, r2 − 3r + 2 = 0, we find that r = 1, 2. Therefore, a general

solution to the homogeneous equation, y′′ − 3y′ + 2y = 0, is

yh(x) = c1e
x + c2e

2x .
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By the method of undetermined coefficients, a particular solution yp(x) to the original equation

has the form yp(x) = xs(A cosx+B sin x)ex. We choose s = 0 because r = 1 + i is not a root

of the auxiliary equation. So,

yp(x) = (A cosx+B sin x)ex

⇒ y′p(x) = [(A +B) cosx+ (B − A) sin x]ex

⇒ y′′p(x) = (2B cosx− 2A sinx)ex .

Substituting these expressions into the equation, we compare the corresponding coefficients

and find A and B.

{(2B cosx− 2A sinx) − 3[(A+B) cosx+ (B − A) sin x] + 2(A cosx+B sin x)} ex = ex sin x

⇒ −(A+B) cosx+ (A− B) sin x = sin x ⇒ A+B = 0,

A− B = 1
⇒ A = 1/2,

B = −1/2.

Therefore,

yp(x) =
(cosx− sin x)ex

2

and

y(x) =
(cosx− sin x)ex

2
+ c1e

x + c2e
2x

is a general solution to the given nonhomogeneous equation.

21. Since the roots of the auxiliary equation, which is r2 + 2r + 2 = 0, are r = −1 ± i, we have a

general solution to the corresponding homogeneous equation

yh(θ) = c1e
−θ cos θ + c2e

−θ sin θ = (c1 cos θ + c2 sin θ) e−θ ,

and look for a particular solution of the form

yp(θ) = θs(A cos θ +B sin θ)e−θ with s = 1.

Differentiating yp(θ), we get

y′p(θ) = (A cos θ +B sin θ)e−θ + θ
[
(A cos θ +B sin θ)e−θ

]′
,
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y′′p(θ) = 2
[
(A cos θ +B sin θ)e−θ

]′
+ θ
[
(A cos θ +B sin θ)e−θ

]′′
= 2 [(B − A) cos θ − (B + A) sin θ] e−θ + θ

[
(A cos θ +B sin θ)e−θ

]′′
.

(Note that we did not evaluate the terms containing the factor θ because they give zero result

when substituted into the original equation.) Therefore,

y′′p + 2y′p + 2yp = 2 [(B −A) cos θ − (B + A) sin θ] e−θ + 2(A cos θ +B sin θ)e−θ

= 2 (B cos θ − A sin θ) e−θ = e−θ cos θ .

Hence A = 0, B = 1/2, yp(θ) = (1/2)θe−θ sin θ, and a general solution is given by

y(θ) =
1

2
θe−θ sin θ + (c1 cos θ + c2 sin θ) e−θ .

23. The corresponding homogeneous equation, y′ − y = 0, is separable. Solving yields

dy

dt
= y ⇒ dy

y
= dt ⇒ ln |y| = t+ c ⇒ y = ±ecet = Cet,

where C �= 0 is an arbitrary constant. By inspection, y ≡ 0 is also a solution. Therefore,

yh(t) = Cet, where C is an arbitrary constant, is a general solution to the homogeneous

equation. (Alternatively, one can apply the method of solving first order linear equations in

Section 2.3 or the method discussed in Problem 21, Section 4.2.) A particular solution has

the form yp(t) = A. Substitution into the original equation yields

(A)′ − A = 1 ⇒ A = −1.

Thus y(t) = Cet − 1 is a general solution. To satisfy the initial condition, y(0) = 0, we find

0 = y(0) = Ce0 − 1 = C − 1 ⇒ C = 1.

So, the answer is y(t) = et − 1.

25. The auxiliary equation, r2 + 1 = 0, has roots r = ±i. Therefore, a general solution to the

corresponding homogeneous equation is zh(x) = c1 cosx + c2 sin x, and a particular solution
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to the original equation has the form zp(x) = Ae−x. Substituting this function into the given

equation, we find the constant A.

z′′ + z =
(
Ae−x

)′′
+ Ae−x = 2Ae−x = 2e−x ⇒ A = 1,

and a general solution to the given nonhomogeneous equation is

z(x) = e−x + c1 cosx+ c2 sin x .

Next, since z′(x) = −e−x − c1 sin x+ c2 cosx, from the initial conditions we get a system for

determining constants c1 and c2.

0 = z(0) = 1 + c1 ,

0 = z′(0) = −1 + c2
⇒ c1 = −1,

c2 = 1.

Hence, z = (x) = e−x − cosx+ sin x is the solution to the given initial value problem.

27. The roots of the auxiliary equation, r2−r−2 = 0, are r = −1 and r = 2. This gives a general

solution to the corresponding homogeneous equation of the form yh(x) = c1e
−x + c2e

2x. We

use the superposition principle to find a particular solution to the nonhomogeneous equation.

(i) For the equation

y′′ − y′ − 2y = cosx,

a particular solution has the form yp,1(x) = A cosx+B sin x. Substitution into the above

equation yields

(−A cosx− B sin x) − (−A sin x+B cosx) − 2(A cosx+B sin x)

= (−3A− B) cosx+ (A− 3B) sin x = cosx

⇒ −3A− B = 1,

A− 3B = 0
⇒ A = −3/10,

B = −1/10.

So, yp,1(x) = −(3/10) cosx− (1/10) sinx.
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(ii) For the equation

y′′ − y′ − 2y = sin 2x,

a particular solution has the form yp,2(x) = A cos 2x+B sin 2x. Substitution yields

(−4A cos 2x− 4B sin 2x) − (−2A sin 2x+ 2B cos 2x) − 2(A cos 2x+B sin 2x)

= (−6A− 2B) cos 2x+ (2A− 6B) sin 2x = sin 2x

⇒ −6A− 2B = 0,

2A− 6B = 1
⇒ A = 1/20,

B = −3/20.

So,

yp,2(x) =
1

20
cos 2x− 3

20
sin 2x.

Therefore, a general solution to the original equation is

y(x) = yp,1(x) − yp,2(x) + yh(x)

= − 3

10
cosx− 1

10
sin x− 1

20
cos 2x+

3

20
sin 2x+ c1e

−x + c2e
2x.

Next, we find c1 and c2 such that the initial conditions are satisfied.

−7/20 = y(0) = −3/10 − 1/20 + c1 + c2 ,

1/5 = y′(0) = −1/10 + 2(3/20) − c1 + 2c2
⇒ c1 + c2 = 0,

−c1 + 2c2 = 0
⇒ c1 = 0,

c2 = 0.

With these constants, the solution becomes

y(x) = − 3

10
cosx− 1

10
sin x− 1

20
cos 2x+

3

20
sin 2x .

29. The roots of the auxiliary equation, r2 − 1 = 0, are r = ±1. Therefore, a general solution to

the corresponding homogeneous equation is

yh(θ) = c1e
θ + c2e

−θ.

(i) For the equation

y′′ − y = sin θ,
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a particular solution has the form yp,1(x) = A cos θ + B sin θ. Substitution into the

equation yields

(−A cos θ − B sin θ) − (A cos θ +B sin θ) = −2A cos θ − 2B sin θ = sin θ

⇒ −2A = 0,

−2B = 1
⇒ A = 0,

B = −1/2.

So, yp,1(θ) = −(1/2) sin θ.

(ii) For the equation

y′′ − y = e2θ,

a particular solution has the form yp,2(θ) = Ae2θ. Substitution yields

(
Ae2θ

)′′ − (Ae2θ
)

= 3Ae2θ = e2θ ⇒ A = 1/3,

and yp,2(θ) = (1/3)e2θ.

By the superposition principle, a particular solution to the original nonhomogeneous equation

is given by

yp(θ) = yp,1(θ) − yp,2(θ) = −(1/2) sin θ − (1/3)e2θ,

and a general solution is

y(θ) = yp(θ) + yh(θ) = −(1/2) sin θ − (1/3)e2θ + c1e
θ + c2e

−θ .

Next, we satisfy the initial conditions.

1 = y(0) = −1/3 + c1 + c2 ,

−1 = y′(0) = −1/2 − 2/3 + c1 − c2
⇒ c1 + c2 = 4/3,

c1 − c2 = 1/6
⇒ c1 = 3/4,

c2 = 7/12.

Therefore, the solution to the given initial value problem is

y(θ) = −1

2
sin θ − 1

3
e2θ +

3

4
eθ +

7

12
e−θ .
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31. For the nonhomogeneous term sin t+ t cos t, a particular solution has the form

yp,1(t) = (A1t+ A0)t
s cos t+ (B1t+B0)t

s sin t.

For 10t = et ln 10, a particular solution should be of the form

yp,2(t) = Ctpet ln 10 = Ctp10t.

Since the roots of the auxiliary equation, r2 + 1 = 0, are r = ±i, we choose s = 1 and p = 0.

Thus, by the superposition principle,

yp(t) = yp,1(t) + yp,2(t) = (A1t+ A0)t cos t+ (B1t+B0)t sin t+ C · 10t.

33. The roots of the auxiliary equation, which is r2 − r − 2 = 0, are r = −1, 2. The right-hand

side of the given equation is a sum of two terms, et cos t and −t2 + t + 1. Corresponding

particular solutions have the forms

yp,1(t) = (A cos t+B sin t)tset and yp,2(t) = (C2t
2 + C1t+ C0)t

p ,

and we can take s = p = 0 since neither r = 1+ i nor r = 0 is a root of the auxiliary equation.

By the superposition principle,

yp(t) = (A cos t+B sin t)et + C2t
2 + C1t+ C0 .

35. Since the roots of the auxiliary equation are

r =
4 ±√

16 − 20

2
= 2 ± i,

which are different from 5 and 3i, a particular solution has the form

yp(t) = (A1t+ A0) cos 3t+ (B1t+B0) sin 3t+ Ce5t .

(The last term corresponds to e5t in the right-hand side of the original equation, and the first

two come from t sin 3t− cos 3t.)
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37. Clearly, r = 0 is not a root of the auxiliary equation, r3 − 2r2 − r + 2 = 0. (One can find

the roots, say, using the factorization r3 − 2r2 − r + 2 = (r − 2)(r − 1)(r + 1), but they are

not needed for the form of a particular solution: the only important thing is that they are

different from zero.) Therefore, a particular solution has the form

yp(t) = A2t
2 + A1t+ A0 .

Substitution into the original equation yields

y′′′p − 2y′′p − y′p + 2yp = (0) − 2(2A2) − (2A2t+ A1) + 2(A2t
2 + A1t+ A0)

= 2A2t
2 + (A1 − 2A2)t+ (A0 − A1 − 4A2) = 2t2 + 4t− 9.

Equating the coefficients, we obtain

2A2 = 2,

2A1 − 2A2 = 4,

2A0 −A1 − 4A2 = −9

⇒
A2 = 1,

A1 = 3,

A0 = −1.

Therefore, yp(t) = t2 + 3t− 1.

39. The auxiliary equation in this problem is r3 + r2 − 2 = 0. By inspection, we see that r = 0 is

not a root. Next, we find that r = 1 is a simple root because

(
r3 + r2 − 2

) ∣∣∣
r=1

= 0 and
(
r3 + r2 − 2

)′ ∣∣∣
r=1

=
(
3r2 + 2r

) ∣∣∣
r=1

�= 0.

Therefore, by the superposition principle, a particular solution has the form

yp(t) = t(A1t+ A0)e
t +B = (A1t

2 + A0t)e
t +B.

Differentiating, we get

y′p(t) =
[
A1t

2 + (A0 + 2A1)t+ A0

]
et ,

y′′p(t) =
[
A1t

2 + (A0 + 4A1)t+ 2A0 + 2A1

]
et ,

y′′′p (t) =
[
A1t

2 + (A0 + 6A1)t+ 3A0 + 6A1

]
et .
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We substitute yp and its derivatives into the original equation and equate the corresponding

coefficients. This yields{[
A1t

2 + (A0 + 6A1)t+ 3A0 + 6A1

]
+
[
A1t

2 + (A0 + 4A1)t+ 2A0 + 2A1

]
−2
[
A1t

2 + A0t
]}
et − 2B = tet + 1

⇒ [10A1t+ 8A1 + 5A0] e
t − 2B = tet + 1

⇒
10A1 = 1,

8A1 + 5A0 = 0,

−2B = 1

⇒
A1 = 1/10,

A0 = −4/25,

B = −1/2.

Hence, a particular solution is

yp(t) =

(
1

10
t− 4

25

)
tet − 1

2
.

41. The characteristic equation in this problem is r2 + 2r + 5 = 0, which has roots r = −1 ± 2i.

Therefore, a general solution to the corresponding homogeneous equation is given by

yh(t) = (c1 cos 2t+ c2 sin 2t) e−t . (4.1)

(a) For 0 ≤ t ≤ 3π/2, g(t) ≡ 10, and so the equation becomes

y′′ + 2y′ + 5y = 10.

Hence a particular solution has the form yp(t) ≡ A. Substitution into the equation yields

(A)′′ + 2(A)′ + 5(A) = 10 ⇒ 5A = 10 ⇒ A = 2,

and so, on [0, 3π/2], a general solution to the original equation is

y1(t) = (c1 cos 2t+ c2 sin 2t) e−t + 2.

We find c1 and c2 by substituting this function into the initial conditions.

0 = y1(0) = c1 + 2,

0 = y′1(0) = −c1 + 2c2
⇒ c1 = −2,

c2 = −1

⇒ y1(t) = − (2 cos 2t+ sin 2t) e−t + 2.
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(b) For t > 3π/2, g(t) ≡ 0, and so the given equation becomes homogeneous. Thus, a general

solution, y2(t), is given by (4.1), i.e.,

y2(t) = yh(t) = (c1 cos 2t+ c2 sin 2t) e−t .

(c) We want to satisfy the conditions

y1(3π/2) = y2(3π/2),

y′1(3π/2) = y′2(3π/2).

Evaluating y1, y2, and their derivatives at t = 3π/2, we solve the system

2e−3π/2 + 2 = −c1e−3π/2,

0 = (c1 − 2c2)e
3π/2

⇒ c1 = −2
(
e3π/2 + 1

)
,

c2 = − (e3π/2 + 1
)
.

43. Recall that the motion of a mass-spring system is governed by the equation

my′′ + by′ + ky = g(t),

where m is the mass, b is the damping coefficient, k is the spring constant, and g(t) is the

external force. Thus, we have an initial value problem

y′′ + 4y′ + 3y = 5 sin t, y(0) =
1

2
, y′(0) = 0.

The roots of the auxiliary equation, r2 + 4r + 3 = 0, are r = −3, −1, and a general solution

to the corresponding homogeneous equation is

yh(t) = c1e
−3t + c2e

−t .

We look for a particular solution to the original equation of the form yp(t) = A cos t+B sin t.

Substituting this function into the equation, we get

y′′p + 4y′p + 3yp = (−A cos t− B sin t) + 4(−A sin t+B cos t) + 3(A cos t+B sin t)

= (2A+ 4B) cos t+ (2B − 4A) sin t = 5 sin t

2A+ 4B = 0,

2B − 4A = 5
⇒ A = −1,

B = 1/2.
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Thus, a general solution to the equation describing the motion is

y(t) = − cos t+
1

2
sin t+ c1e

−3t + c2e
−t.

Differentiating, we find y′(t) = sin t+ (1/2) cos t− 3c1e
−3t − c2e

−t. Initial conditions give

y(0) = −1 + c1 + c2 = 1/2,

y′(0) = 1/2 − 3c1 − c2 = 0
⇒ c1 = −1/2,

c2 = 2.

Hence, the equation of motion is

y(t) = − cos t+
1

2
sin t− 1

2
e−3t + 2e−t.

45. (a) With m = k = 1 and L = π given initial value problem becomes

y(t) = 0, t ≤ − π

2V
,

y′′ + y′ =

{
cosV t, −π/(2V ) < t < π/(2V ),

0, t ≥ π/(2V ) .

The corresponding homogeneous equation y′′ + y = 0 is the simple harmonic equation

whose general solution is

yh(t) = C1 cos t+ C2 sin t . (4.2)

First, we find the solution to the given problem for −π/(2V ) < t < π/(2V ). The

nonhomogeneous term, cos V t, suggests a particular solution of the form

yp(t) = A cosV t+B sinV t.

Substituting yp(t) into the equation yields

(A cosV t+B sinV t)′′ + (A cosV t+B sinV t) = cosV t

⇒ (−V 2A cosV t− V 2B sinV t
)

+ (A cosV t+ B sin V t) = cosV t

⇒ (
1 − V 2

)
A cosV t+

(
1 − V 2

)
B sinV t = cosV t .

Equating coefficients, we get

A =
1

1 − V 2
, B = 0,
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Thus a general solution on (−π/(2V ), π/(2V )) is

y1(t) = yh(t) + yp(t) = C1 cos t+ C2 sin t+
1

1 − V 2
cosV t . (4.3)

Since y(t) ≡ 0 for t ≤ −π/(2V ), the initial conditions for the above solution are

y1

(
− π

2V

)
= y′1

(
− π

2V

)
= 0.

From (4.3) we obtain

y1

(
− π

2V

)
= C1 cos

(
− π

2V

)
+ C2 sin

(
− π

2V

)
= 0

y′1
(
− π

2V

)
= −C1 sin

(
− π

2V

)
+ C2 cos

(
− π

2V

)
+

V

1 − V 2
= 0.

Solving the system yields

C1 =
V

V 2 − 1
sin

π

2V
, C2 =

V

V 2 − 1
cos

π

2V
,

and

y1(t) =
V

V 2 − 1
sin

π

2V
cos t+

V

V 2 − 1
cos

π

2V
sin t+

1

1 − V 2
cosV t

=
V

V 2 − 1
sin
(
t+

π

2V

)
− 1

V 2 − 1
cosV t, − π

2V
< t <

π

2V
.

For t > π/(2V ) given equation is homogeneous, and its general solution, y2(t), is given

by (4.2). That is,

y2(t) = C3 cos t+ C4 sin t.

From the initial conditions

y2

( π

2V

)
= y1

( π

2V

)
,

y′2
( π

2V

)
= y′1

( π

2V

)
,

we conclude that

C3 cos
π

2V
+ C4 sin

π

2V
=

V

V 2 − 1
sin

π

V
,
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Figure 4–A: The graph of the function |A(V )|.

−C3 sin
π

2V
+ C4 cos

π

2V
=

V

V 2 − 1
cos

π

V
+

V

V 2 − 1
=

2V

V 2 − 1
cos2 π

2V
.

The solution of this system is

C3 = 0, C4 =
2V

V 2 − 1
cos

π

2V
.

So,

y2(t) =
2V

V 2 − 1
cos

π

2V
sin t.

(b) The graph of the function

|A(V )| =

∣∣∣∣ 2V

V 2 − 1
cos

π

2V

∣∣∣∣
is given in Figure 4-A. From this graph, we find that the most violent shaking of the

vehicle (the maximum of |A(V )|) happens when the speed V ≈ 0.73 .

47. The auxiliary equation in this problem is r2 +9 = 0 with roots r = ±3i. So, a general solution

to the corresponding homogeneous equation is

yh = c1 cos 3t+ c2 sin 3t.

The form of a particular solution, corresponding to the right-hand side, is

yp(t) = A cos 6t+B sin 6t.
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Substitution into the original equation yields

−27(A cos 6t+B sin 6t) = 27 cos 6t ⇒ A = −1, B = 0 ⇒ yp(t) = − cos 6t.

Therefore, a general solution has the form

y(t) = c1 cos 3t+ c2 sin 3t− cos 6t.

In (a)–(c), we have the same boundary condition at t = 0, that is, y(0) = −1. This yields

−1 = y(0) = c1 − 1 ⇒ c1 = 0.

Hence, all the solutions satisfying this condition are given by

y(t) = c2 sin 3t− cos 6t. (4.4)

(a) The second boundary condition gives 3 = y (π/6) = c2 +1 ⇒ c2 = 2, and the answer

is y = 2 sin 3t− cos 6t.

(b) This time we have 5 = y (π/3) = c2 · 0− 1 ⇒ 5 = −1, and so there is no solution of

the form (4.4) satisfying this second boundary condition.

(c) Now we have −1 = y (π/3) = c2 · 0 − 1 ⇒ −1 = −1, which is a true identity. This

means that any function in (4.4) satisfies both boundary conditions.

EXERCISES 4.6: Variation of Parameters, page 197

1. The auxiliary equation in this problem is r2 + 4 = 0, which has the roots r = ±2i. Therefore,

y1(t) = cos 2t and y2(t) = sin 2t are two linearly independent solutions, and a general solution

to the corresponding homogeneous equation is given by

yh(t) = c1 cos 2t+ c2 sin 2t.

Using the variation of parameters method, we look for a particular solution to the original

nonhomogeneous equation of the form

yp(t) = v1(t)y1(t) + v2(t)y2(t) = v1(t) cos 2t+ v2(t) sin 2t.
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The system (9) on page 195 in the text becomes

v′1(t) cos 2t+ v′2(t) sin 2t = 0

−2v′1(t) sin 2t+ 2v′2(t) cos 2t = tan 2t.
(4.5)

Multiplying the first equation in (4.5) by sin 2t, the second equation by (1/2) cos 2t, and adding

the resulting equations together, we get

v′2(t) =
1

2
sin 2t ⇒ v2 =

1

2

∫
sin 2t dt = −1

4
cos 2t+ c3.

From the first equation in (4.5) we also obtain

v′1(t) = −v′2(t) tan 2t = −1

2

sin2 2t

cos 2t
= −1

2

1 − cos2 2t

cos 2t
=

1

2
(cos 2t− sec 2t)

⇒ v1(t) =
1

2

∫
(cos 2t− sec 2t) dt =

1

4
(sin 2t− ln | sec 2t+ tan 2t|) + c4.

We take c3 = c4 = 0 since we need just one particular solution. Thus

yp(t) =
1

4
(sin 2t− ln | sec 2t+ tan 2t|) cos 2t− 1

4
cos 2t sin 2t

= −1

4
cos 2t ln | sec 2t+ tan 2t|

and a general solution to the given equation is

y(t) = yh(t) + yp(t) = c1 cos 2t+ c2 sin 2t− 1

4
cos 2t ln | sec 2t+ tan 2t|.

2. From Example 1 on page 196 in the text, we know that functions y1(t) = cos t and y2(t) = sin t

are two linearly independent solutions to the corresponding homogeneous equation, and so its

general solution is given by

yh(t) = c1 cos t+ c2 sin t.

Now we apply the method of variation of parameters to find a particular solution to the

original equation. By the formula (3) on page 194 in the text, yp(t) has the form

yp(t) = v1(t)y1(t) + v2(t)y2(t).
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Since

y′1(t) = (cos t)′ = − sin t, y′2(t) = (sin t)′ = cos t,

the system (9) on page 195 becomes

v′1(t) cos t+ v′2(t) sin t = 0,

−v′1(t) sin t+ v′2(t) cos t = sec t.
(4.6)

Multiplying the first equation by sin t and the second equation by cos t yields

v′1(t) sin t cos t+ v′2(t) sin2 t = 0,

−v′1(t) sin t cos t+ v′2(t) cos2 t = 1.

Adding these equations together, we obtain

v′2(t)
(
cos2 t+ sin2 t

)
= 1 or v′2(t) = 1.

From the first equation in (4.6), we can now find v′1(t):

v′1(t) = −v′2(t)
sin t

cos t
= − tan t.

So,

v′1(t) = − tan t,

v′2(t) = 1
⇒ v1(t) = − ∫ tan t dt = ln | cos t| + c3 ,

v2(t) =
∫
dt = t+ c4 .

Since we are looking for a particular solution, we can take c3 = c4 = 0 and get

yp(t) = cos t ln | cos t| + t sin t.

Thus a general solution to the given equation is

y(t) = yp(t) + yh(t) = cos t ln | cos t| + t sin t+ c1 cos t+ c2 sin t.

3. First, we can simplify the equation by dividing both sides by 2. This yields

x′′ − x′ − 2x = e3t .
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This equation has associated homogeneous equation x′′ − x′ − 2x = 0. The roots of the

associated auxiliary equation, r2 − r − 2 = 0, are r = 2 and r = −1. Therefore, a general

solution to this equation is

xh(t) = c1e
2t + c2e

−t.

For the variation of parameters method, we let

xp(t) = v1(t)x1(t) + v2(t)x2(t) , where x1(t) = e2t and x2(t) = e−t .

Thus, x′1(t) = 2e2t and x′2(t) = −e−t. This means that we have to solve the system

e2tv′1 + e−tv′2 = 0,

2e2tv′1 − e−tv′2 = e3t.

Adding these two equations yields

3e2tv′1 = e3t ⇒ v′1 =
1

3
et ⇒ v1(t) =

1

3
et .

Substututing v′1 into the first equation, we get

1

3
e3t + e−tv′2 = 0 ⇒ v′2 = −1

3
e4t ⇒ v2(t) = − 1

12
e4t .

Therefore,

xp(t) =
1

3
ete2t − 1

12
e4te−t =

1

4
e3t ,

and a general solution is

x(t) = c1e
2t + c2e

−t +
1

4
e3t .

5. This equation has associated homogeneous equation y′′ − 2y′ + y = 0. Its auxiliary equation,

r2−2r+1 = 0, has a double root r = 1. Thus a general solution to the homogeneous equation

is

yh(t) = c1e
t + c2te

t.

For the variation of parameters method, we let

yp(t) = v1(t)y1(t) + v2(t)y2(t) , where y1(t) = et and y2(t) = tet .
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Thus, y′1(t) = et and y′2(t) = tet + et. This means that we want to solve the system (see

system (9) on page 195 of text)

etv′1 + tetv′2 = 0,

etv′1 +
(
tet + et

)
v′2 = t−1et.

Subtracting these two equations yields

etv′2 = t−1et ⇒ v′2 = t−1.

So

v2(t) =

∫
t−1 dt = ln |t| + c3 .

Also, we have from the first equation of the system

etv′1 = −tetv′2 = −tett−1 = −et ⇒ v′1 = −1.

So,

v1(t) = −t+ c4 .

By letting c3 and c4 equal to zero, and plugging the expressions found above for v1(t) and

v2(t) into the equation defining yp(t) , we obtain a particular solution

yp(t) = −tet + tet ln |t|.

We obtain a general solution of the nonhomogeneous equation by adding this expression for

yp(t) to the expression for yh(t). Thus, we obtain

y(t) = c1e
t + c2te

t − tet + tet ln |t| = c1e
t + (c2 − 1)tet + tet ln |t|.

If we let C1 = c1 and C2 = c2 − 1, we can express this general solution in the form

y(t) = C1e
t + C2te

t + tet ln |t|.
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7. The auxiliary equation in this problem is r2 +16 = 0, which has the roots r = ±4i. Therefore,

y1(θ) = cos 4θ and y2(θ) = sin 4θ are two linearly independent solutions, and a general solution

to the corresponding homogeneous equation is given by

yh(θ) = c1 cos 4θ + c2 sin 4θ.

Using the variation of parameters method, we look for a particular solution to the original

nonhomogeneous equation of the form

yp(θ) = v1(θ)y1(θ) + v2(θ)y2(θ) = v1(θ) cos 4θ + v2(θ) sin 4θ.

The system (9) on page 195 in the text becomes

v′1(θ) cos 4θ + v′2(θ) sin 4θ = 0,

−4v′1(θ) sin 4θ + 4v′2(θ) cos 4θ = sec 4θ.
(4.7)

Multiplying the first equation in (4.7) by sin 4θ and the second equation by (1/4) cos 4θ, and

adding the resulting equations together, we get

v′2(θ) =
1

4
⇒ v2 =

1

4
θ + c3.

From the first equation in (4.7) we also obtain

v′1(θ) = −1

4
tan 4θ ⇒ v1(θ) = −1

4

∫
tan 4θ dθ =

1

16
ln | cos 4θ| + c4.

Taking c3 = c4 = 0, we obtain

yp(θ) =
cos 4θ

16
ln | cos 4θ| + 1

4
θ sin 4θ

⇒ y(θ) = c1 cos 4θ + c2 sin 4θ +
θ

4
sin 4θ +

cos 4θ

16
ln | cos 4θ|.

9. In this problem, the corresponding homogeneous equation is the same as that in Problem 1.

Hence y1(t) = cos 2t and y2(t) = sin 2t are two linearly independent solutions, and a general

solution to the homogeneous equation is given by

yh(t) = c1 cos 2t+ c2 sin 2t,
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and, in the variation of parameters method, a particular solution has the form

yp(t) = v1(t) cos 2t+ v2(t) sin 2t,

where v′1(t), v
′
2(t) satisfy the system

v′1(t) cos 2t+ v′2(t) sin 2t = 0,

−2v′1(t) sin 2t+ 2v′2(t) cos 2t = csc2 2t.

Multiplying the first equation by sin 2t and the second equation by (1/2) cos 2t, and adding

the resulting equations, we get

v′2(t) =
1

2
csc2 2t cos 2t ⇒ v2 =

1

2

∫
csc2 2t cos 2t dt = −1

4
csc 2t+ c3 .

From the first equation in the system above we also find

v′1(t) = −v′2(t) tan 2t = −1

2
csc2 2t cos 2t tan 2t = −1

2
csc 2t

⇒ v1(t) = −1

2

∫
csc 2t dt =

1

4
ln | csc 2t+ cot 2t| + c4 .

With c3 = c4 = 0,

yp(t) =
1

4
cos 2t ln | csc 2t+ cot 2t| − 1

4
csc 2t sin 2t =

1

4
(cos 2t ln | csc 2t+ cot 2t| − 1)

⇒ y(t) = c1 cos 2t+ c2 sin 2t+
1

4
(cos 2t ln | csc 2t+ cot 2t| − 1) .

11. This equation is similar to that in Example 1 on page 196 in the text. Only the nonhomoge-

neous term is different. Thus we will follow steps in Example 1. Two independent solutions

to the corresponding homogeneous equation, y′′ + y = 0, are y1(t) = cos t and y2(t) = sin t. A

particular solution to the original equation is of the form

yp(t) = v1(t) cos t+ v2(t) sin t,

where v1(t) and v2(t) satisfy

v′1(t) cos t+ v′2(t) sin t = 0,

−v′1(t) sin t+ v′2(t) cos t = tan2 t.
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Multiplying the first equation by sin t and the second equation by cos t, and adding them

together yield

v′2(t) = tan2 t cos t = (sec2 t− 1) cos t = sec t− cos t.

We find v′1(t) from the first equation in the system.

v′1(t) = −v′2(t) tan t = −(sec t− cos t) tan t = sin t− sin t

cos2 t
.

Integrating, we get

v1(t) =

∫ (
sin t− sin t

cos2 t

)
dt = − cos t− sec t,

v2(t) =

∫
(sec t− cos t) dt = ln | sec t+ tan t| − sin t,

where we have taken zero integration constants. Therefore,

yp(t) = −(cos t+ sec t) cos t+ (ln | sec t+ tan t| − sin t) sin t = sin t ln | sec t+ tan t| − 2,

and a general solution is given by

y(t) = c1 cos t+ c2 sin t+ sin t ln | sec t+ tan t| − 2.

13. The corresponding homogeneous equation in this problem is the same as that in Problem 1

(with y replaced by v). Similarly to the solution of Problem 1, we conclude that v1(t) = cos 2t

and v2(t) = sin 2t are two linearly independent solutions of the corresponding homogeneous

equation, and a particular solution to the original equation can be found as

vp(t) = u1(t) cos 2t+ u2(t) sin 2t ,

where u1(t) and u2(t) satisfy

u′1(t) cos 2t+ u′2(t) sin 2t = 0,

−2u′1(t) sin 2t+ 2u′2(t) cos 2t = sec4 2t.

Multiplying the first equation by sin 2t and the second equation by (1/2) cos 2t, and adding

the results together, we get

u′2(t) =
1

2
sec3 2t.
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From the first equation in the above system we also obtain

u′1(t) = −u′2(t) tan 2t = −1

2
sec4 2t sin 2t .

Integrating yields

u1(t) = −1

2

∫
sec4 2t sin 2t dt = −1

2

∫
cos−4 2t sin 2t dt = − 1

12
sec3 2t,

u2(t) =
1

2

∫
sec3 2t dt =

1

8
(sec 2t tan 2t+ ln | sec 2t+ tan 2t|).

Thus,

vp(t) = − 1

12
sec3 2t cos 2t+

1

8
(sec 2t tan 2t+ ln | sec 2t+ tan 2t|) sin 2t

= − 1

12
sec2 2t+

1

8
tan2 2t+

1

8
sin 2t ln | sec 2t+ tan 2t|

=
1

24
sec2 2t− 1

8
+

1

8
sin 2t ln | sec 2t+ tan 2t|,

and a general solution to the given equation is

v(t) = c1 cos 2t+ c2 sin 2t+
1

24
sec2 2t− 1

8
+

1

8
sin 2t ln | sec 2t+ tan 2t|.

15. The corresponding homogeneous equation is y′′ + y = 0. Its auxiliary equation has the roots

r = ±i. Hence, a general solution to the homogeneous problem is given by

yh(t) = c1 cos t+ c2 sin t.

We will find a particular solution to the original equation by first finding a particular solution

for each of two problems, one with the nonhomogeneous term g1(t) = 3 sec t and the other one

with the nonhomogeneous term g2(t) = −t2 + 1. Then we will use the superposition principle

to obtain a particular solution for the original equation. The term 3 sec t is not in a form that

allows us to use the method of undetermined coefficients. Therefore, we will use the method of

variation of parameters. To this end, let y1(t) = cos t and y2(t) = sin t (linearly independent

solutions to the corresponding homogeneous problem). Then a particular solution yp,1 to

y′′ + y = 3 sec t has the form

yp,1(t) = v1(t)y1(t) + v2(t)y2(t) = v1(t) cos t+ v2(t) sin t,
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where v1(t) and v2(t) are determined by the system

v′1 cos t+ v′2 sin t = 0,

−v′1 sin t+ v′2 cos t = 3 sec t.

Multiplying the first equation by cos t and the second equation by sin t and subtracting the

results, we get

v′1 = −3 sec t sin t = −3 tan t.

Hence

v1(t) = −3

∫
tan t dt = 3 ln | cos t| + C1 .

To find v′2(t), we multiply the first equation of the above system by sin t, the second by cos t,

and add the results to obtain

v′2 = 3 sec t cos t = 3 ⇒ v2(t) = 3t+ C2 .

Therefore, for this first equation (with g1(t) = 3 sec t), by letting C1 = C2 = 0, we have a

particular solution given by

yp,1(t) = 3 cos t ln | cos t| + 3t sin t.

The nonhomogeneous term g2(t) = −t2 + 1 is of a form that allows us to use the method of

undetermined coefficients. Thus, a particular solution to this nonhomogeneous equation will

have the form

yp,2(t) = A2t
2 + A1t+ A0 ⇒ y′p,2(t) = 2A2t+ A1 ⇒ y′′p,2(t) = 2A2 .

Plugging these expressions into the equation y′′ + y = −t2 + 1 yields

y′′p,2 + yp,2 = 2A2 + A2t
2 + A1t+ A0 = A2t

2 + A1t+ (2A2 + A0) = −t2 + 1.

By equating coefficients, we obtain

A2 = −1, A1 = 0, 2A2 + A0 = 1 ⇒ A0 = 3.
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Therefore, we have

yp,2(t) = −t2 + 3.

By the superposition principle, we see that a particular solution to the original problem is

given by

yp(t) = yp,1(t) + yp,2(t) = 3 cos t ln | cos t| + 3t sin t− t2 + 3.

Combining this solution with the general solution to the homogeneous equation yields a general

solution to the original differential equation,

y(t) = c1 cos t+ c2 sin t− t2 + 3 + 3t sin t+ 3 cos t ln | cos t|.

17. Multiplying the given equation by 2, we get

y′′ + 4y = 2 tan 2t− et.

The nonhomogeneous term, 2 tan 2t−et, can be written as a linear combination 2g1(t)−g2(t),

where g1(t) = tan 2t and g2(t) = et. A particular solution to the equation

y′′ + 4y = tan 2t

is found in Problem 1, that is,

yp,1(t) = −1

4
cos 2t ln | sec 2t+ tan 2t|.

A particular solution to

y′′ + 4y = et

can be found using the method of undetermined coefficients. We look for yp,2 of the form

yp,2(t) = Aet. Substitution yields(
Aet
)′′

+ 4
(
Aet
)

= et ⇒ 5Aet = et ⇒ A =
1

5
,

and so yp,2 = (1/5)et. By the superposition principle, a particular solution to the original

equation is

yp(t) = 2yp,1 − yp,2 = −1

2
cos 2t ln | sec 2t+ tan 2t| − 1

5
et .
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Adding a general solution to the homogeneous equation, we get

y(t) = c1 cos 2t+ c2 sin 2t− 1

2
cos 2t ln | sec 2t+ tan 2t| − 1

5
et .

19. A general solution of the corresponding homogeneous equation is given by

yh(t) = c1e
−t + c2e

t.

We will try to find a particular solution to the original nonhomogeneous equation of the form

yp(t) = v1(t)y1(t) + v2(t)y2(t), where y1(t) = e−t and y2(t) = et. We apply formulas (10) on

page 195 in the text, but replace indefinite integrals by definite integrals. Note that

y1(t)y
′
2(t) − y′1(t)y2(t) = e−xex − (−e−x

)
ex = 2.

With g(t) = 1/t and integration from 1 to t, formulas (10) yield

v1(t) =

t∫
1

−g(x)y2(x)

2
dx = −1

2

t∫
1

ex

x
dx ,

v2(t) =

t∫
1

g(x)y1(x)

2
dx =

1

2

t∫
1

e−x

x
dx .

(Notice that we have chosen the lower limit of integration to be equal to 1 because the initial

conditions are given at 1. We could have chosen any other value for the lower limit, but the

choice of 1 will make the determination of the constants c1 and c2 easier.) Thus

yp(t) =
et

2

t∫
1

e−x

x
dx− e−t

2

t∫
1

ex

x
dx ,

and so a general solution to the original differential equation is

y(t) = c1e
−t + c2e

t +
et

2

t∫
1

e−x

x
dx− e−t

2

t∫
1

ex

x
dx .

By plugging in the first initial condition (and using the fact that the integral of a function

from a to a is zero which is why we have chosen the lower limit of integration to be the initial

point, t = 1), we find that

y(1) = c1e
−1 + c2e

1 = 0.
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Differentiating y(t) yields

y′(t) = −c1e−t + c2e
t +

et

2

t∫
1

e−x

x
dx+

(
et

2

)(
e−t

t

)
+
e−t

2

t∫
1

ex

x
dx−

(
e−t

2

)(
et

t

)
,

where we have used the product rule and the fundamental theorem of calculus to differentiate

the last two terms of y(t). We now plug in the second initial condition into the equation we

just found for y′(t) to obtain

y′(1) = −c1e−1 + c2e
1 +

(−e−1

2

)(
e1

1

)
+

(
e1

2

)(
e−1

1

)
= −c1e−1 + c2e

1 − 1

2
+

1

2
= −2.

Solving the system

c1e
−1 + c2e

1 = 0,

−c1e−1 + c2e
1 = −2

yields c2 = −e−1 and c1 = e1. Therefore, the solution to our problem is given by

y(t) = e1−t − et−1 +
et

2

t∫
1

e−x

x
dx− e−t

2

t∫
1

ex

x
dx . (4.8)

Simpson’s rule is implemented on the software package provided free with the text (see also

the discussion of the solution to Problem 25 in Exercises 2.3). Simpson’s rule requires an even

number of intervals, but we don’t know how many are required to obtain the 2-place accuracy

desired. We will compute the approximate value of y(t) at t = 2 using 2, 4, 6, . . . intervals

for Simpson’s rule until the approximate value changes by less than five in the third place.

For n = 2, we divide [1, 2] into 4 equal subintervals. Thus each interval will be of length

(2 − 1)/4 = 1/4. Therefore the integrals are approximated by

2∫
1

ex

x
dx ≈ 1

12

[
e1

1
+ 4

e1.25

1.25
+ 2

e1.5

1.5
+ 4

e1.75

1.75
+
e2

2

]
≈ 3.0592 ,

2∫
1

e−x

x
dx ≈ 1

12

[
e−1

1
+ 4

e−1.25

1.25
+ 2

e−1.5

1.5
+ 4

e−1.75

1.75
+
e−2

2

]
≈ 0.1706 .
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Substituting these values into equation (4.8) we obtain

y(2) ≈ e1−2 − e2−1 − e−2

2
(3.0592) +

e2

2
(0.1706) = −1.9271 .

Repeating these calculations for n = 3, 4, and 5 yields the approximations in Table 4-A.

Table 4–A: Successive approximations for y(2) using Simpson’s rule.

Intervals y(2) ≈y(2) ≈y(2) ≈

6 −1.9275
8 −1.9275
10 −1.9275

Since these values do not change in the third place, we can expect that the first three places

are accurate and we obtained an approximate solution of y(2) = −1.93 .

21. A particular solution to the given equation has the form

yp(t) = v1(t)y1(t) + v2(t)y2(t) = v1(t)e
t + v2(t)(t+ 1).

Since y′1(t) = et, y′2(t) ≡ 1, the system (9), with a = a(t) = t and g(t) = t2, becomes

v′1(t)e
t + v′2(t)(t+ 1) = 0,

v′1(t)e
t + v′2(t) =

t2

t
= t.

Subtracting the second equation from the first one, we get

tv′2(t) = −t ⇒ v′2(t) = −1 ⇒ v2(t) = −t.

Substituting v′2(t) into the first equation yields

v′1(t)e
t − (t+ 1) = 0 ⇒ v′1(t) = (t+ 1)e−t

⇒ v1(t) =

∫
(t+ 1)e−t dt = −(t+ 1)e−t +

∫
e−t dt = −(t+ 2)e−t.
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Thus

yp(t) = −(t+ 2)e−tet − t(t+ 1) = −t2 − 2t− 2.

(Note that −2t − 2 = −2(t + 1) = −2y2(t) is a solution to the corresponding homogeneous

equation. Thus, −t2 = yp(t) + 2y2(t) is another particular solution.)

23. We are seeking for a particular solution to the given equation of the form

yp(t) = v1(t)y1(t) + v2(t)y2(t) = v1(t)(5t− 1) + v2(t)e
−5t.

Since y′1(t) ≡ 5, y′2(t) = −5e−5t, the system (9), with a = a(t) = t and g(t) = t2e−5t, becomes

v′1(t)(5t− 1) + v′2(t)e
−5t = 0,

5v′1(t) − 5v′2(t)e
−5t =

t2e−5t

t
= te−5t.

Dividing the second equation by 5 and adding to the first equation yields

5tv′1(t) =
1

5
te−5t ⇒ v′1(t) =

1

25
e−5t ⇒ v1(t) = − 1

125
e−5t.

Substituting v′1(t) into the first equation, we get

1

25
e−5t(5t− 1) + v′2(t)e

−5t = 0 ⇒ v′2(t) = −5t− 1

25
⇒ v2(t) = − t2

10
+

t

25
.

Thus

yp(t) = − 1

125
e−5t(5t− 1) +

(
− t2

10
+

t

25

)
e−5t =

(
1

125
− t2

10

)
e−5t .

(Since (1/125)e−5t = (1/125)y2(t) is a solution to the corresponding homogeneous equation,

the function −(t2/10)e−5t is also a particular solution.)

25. A general solution to the corresponding homogeneous equation is

yh(x) = c1y1(x) + c2y2(x) = x−1/2 (c1 cosx+ c2 sin x) .

To find a particular solution to the original equation, we apply the method of variation of

parameters. To form the system (9) on page 195, we need y′1 and y′2. Applying the product

rule, we get

y′1(x) = −1

2
x−3/2 cosx− x−1/2 sin x,
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y′2(x) = −1

2
x−3/2 sin x+ x−1/2 cosx.

Thus, functions v1(x) and v2(x) in a particular solution,

yp(x) = v1(x)y1(x) + v2(x)y2(x),

satisfy the system

v′1x
−1/2 cosx+ v′2x

−1/2 sin x = 0,

v′1

(
−1

2
x−3/2 cosx− x−1/2 sin x

)
+ v′2

(
−1

2
x−3/2 sin x+ x−1/2 cosx

)
=
x5/2

x2
= x1/2 .

From the first equation, we express v′1 = −v′2 tanx and substitute this expression into the

second equation. After some algebra, the result simplifies to

v′2 = x cos x ⇒ v′1 = −v′2 tanx = −x sin x.

Integrating, we get

v1(x) = −
∫
x sin x dx = x cosx− sin x+ C1 ,

v2(x) =

∫
x cosx dx = x sin x+ cos x+ C2 .

With C1 = C2 = 0,

yp(x) = (x cosx− sin x)x−1/2 cosx+ (x sin x+ cosx)x−1/2 sin x = x1/2 .

Therefore, a general solution to the given nonhomogeneous Bessel equation is

y(t) = x1/2 + x−1/2 (c1 cosx+ c2 sin x) .

EXERCISES 4.7: Qualitative Considerations for Variable-Coefficient and Nonlinear

Equations, page 208

1. Let Y (t) := y(−t). Then, using the chain rule, we get

dY

dt
= y′(−t)d(−t)

dt
= −y′(−t),
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d2Y

dt2
=
d[−y′(−t)]

dt
= −y′′(−t)d(−t)

dt
= y′′(−t).

Therefore, denoting −t = s, we obtain

Y ′′(t) + tY (t) = y′′(−t) + ty(−t) = y′′(s) − sy(s) = 0.

2. Comparing the given equation with (13) on page 202 in the text, we conclude that

inertia m = 1, damping b = 0, stiffness “k” = −6y.

For y > 0, the stiffness “k” is negative, and it tends to reinforce the displacement. So, we

should expect that the solutions y(t) grow without bound.

3. As in Problem 2, this equation describes the motion of the mass-spring system with unit

mass, no damping, and stiffness “k” = −6y. The initial displacement y(0) = −1 is negative

as well as the initial velocity y′(0) = −1. So, starting from t = 0, y(t) will decrease for a

while. This will result increasing positive stiffness, −6y, i.e., “the spring will become stiffer

and stiffer”. Eventually, the spring will become so strong that the mass will stop and then

go in the positive direction. While y(t) is negative, the positive stiffness will force the mass

to approach zero displacement point, y = 0. Thereafter, with y(t) > 0, the stiffness becomes

negative, which means that the spring itself will push the mass further away from y = 0 in

the positive direction with force, which increases with y. Thus, the curve y(t) will increase

unboundedly. Figure 4.23 confirms our prediction.

5. (a) Comparing the equation y′′ = 2y3 with equation (7) in Lemma 3, we conclude that

f(y) = 2y3, and so

F (y) =

∫
2y3 dy =

1

2
y4 + C,

where C is a constant. We can choose any particular value for C, say, C = 0. Thus

F (y) = (1/2)y4. Next, with constant K = 0 and sign “−” in front of the integral,

equation (11) on page 201, becomes

t = −
∫

dy√
2(1/2)y4

= −
∫
y−2dy = y−1 + c,
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or, equivalently,

y =
1

t− c
,

where c is an arbitrary constant.

(b) A linear combination of y1(t) := 1/(t− c1) and y2(t) := 1/(t− c2),

C1y1(t) + C2y2(t) =
C1

t− c1
+

C2

t− c2
=

(C1 + C2)t− (C1c2 + C2c1)

(t− c1)(t− c2)
,

is identically zero in a neighborhood of t = 0 if and only if (C1 +C2)t−(C1c2 +C2c1) ≡ 0.

Thus the numerator must be the zero polynomial, i.e., C1 and C2 must satisfy

C1 + C2 = 0,

C1c2 + C2c1 = 0
⇒ C2 = −C1 ,

C1 (c2 − c1) = 0.

Since c1 �= c2, the second equation implies that C1 = 0, and then C2 = 0 from the first

equation. Thus, only the trivial linear combination of y1(t) and y2(t) vanishes identically

around the origin, and so these functions are linearly independent.

(c) For any function of the form yc(t) := 1/(t− c), the equality

y′c(t) = − 1

(t− c)2
= − [yc(t)]

2

holds for all t �= c. In particular, at t = 0,

y′c(0) = − [yc(0)]2 .

(We assume that c �= 0; otherwise, t = 0 is not in the domain.) Obviously, this equality

fails for any positive initial velocity y′(0), in particular, it is false for given data, y(0) = 1

and y′(0) = 2.

6. Rewriting given equation in the equivalent form y′′ = (−k/m)y, we see that the function f(y)

in the energy integral lemma is (−k/m)y. So,

F (y) =

∫ (
− k

m
y

)
dy = − k

2m
y2 + C.
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With C = 0, F (y) = −[k/(2m)]y2, and the energy

E(t) =
1

2
[y′(t)]2 − F [y(t)] =

1

2
[y′(t)]2 −

(
− k

2m
y2

)
=

1

2
[y′(t)]2 +

k

2m
y2 .

By the energy integral lemma,

1

2
[y′(t)]2 +

k

2m
y2 = const.

Multiplying both sides by 2m, we get the stated equation.

7. (a) Since, for a point moving along a circle of radius �, the magnitude v of its linear velocity

�v and the angular velocity ω = dθ/dt are connected by v = ω� = (dθ/dt)�, and the vector

�v is tangent to the circle (and so, perpendicular to the radius), we have

angular momentum = � ·mv = � ·m · dθ
dt
� = m�2

dθ

dt
.

(b) From Figure 4.18, we see that the component of the gravitational force, mg, which is

perpendicular to the level arm, has the magnitude |mg sin θ| and is directed towards

decreasing θ. Thus,

torque = � · (−mg sin θ) = −�mg sin θ.

(c) According to the Newton’s law of rotational motion,

torque =
d

dt
(angular momentum) ⇒ −�mg sin θ =

d

dt

(
m�2

dθ

dt

)
⇒ −�mg sin θ = m�2

d2θ

dt2
⇒ d2θ

dt2
+
g

�
sin θ = 0.

9. According to Problem 8, with � = g, the function θ(t) satisfies the identity

(θ′)2

2
− cos θ = C = const. (4.9)

Our first purpose is to determine the constant C. Let ta denote the moment when pendulum is

in the apex point, i.e., θ(ta) = π. Since it doesn’t cross the apex over, we also have θ′(ta) = 0.

Substituting these two values into (4.9), we obtain

02

2
− cosπ = C ⇒ C = 1.
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Thus (4.9) becomes

(θ′)2

2
− cos θ = 1.

In particular, at the initial moment, t = 0,

[θ′(0)]2

2
− cos[θ(0)] = 1.

Since θ(0) = 0, we get

[θ′(0)]2

2
− cos 0 = 1 ⇒ [θ′(0)]

2
= 4

⇒ θ′(0) = 2 or θ′(0) = −2.

11. The “damping coefficient” in the Rayleigh equation is b = (y′)2 − 1. Thus, for low velocities

y′, we have b < 0, and b > 0 for high velocities. Therefore, the low velocities are boosted,

while high velocities are slowed, and so one should expect a limit cycle.

13. Qualitative features of solutions to Airy, Duffing, and van der Pol equations, are discussed

after Example 3, in Examples 6 and 7, respectively. Comparing curves in Figure 4.26 with

graphs depicted in Figures 4.13, 4.16, and 4.17, we conclude that the answers are

(a) Airy;

(b) Duffing;

(c) van der Pol.

15. (a) Yes, because the “stiffness” t2 is positive and no damping.

(b) No, because of the negative “stiffness” −t2.
(c) Writing y′′ + y5 = y′′ + (y4)y, we conclude that the mass-spring model, corresponding to

this equation, has positive “stiffness” y4 and no damping. Thus the answer is “yes”.

(d) Here, the “stiffness” is y5, which is negative for y < 0. So, “no”.

(e) Yes, because the “stiffness” 4 + 2 cos t ≥ 2 > 0 and no damping.

(f) Since both the “damping” t and the stiffness 1 are positive, all solutions are bounded.
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(g) No, because the “stiffness”, −1, is negative.

17. For the radius, r(t), we have the initial value problem

r′′(t) = −GMr−2, r(0) = a, r′(0) = 0.

Thus, in the energy integral lemma, f(r) = −GMr−2. Since∫
f(r)dr =

∫ (−GMr−2
)
dr = GMR−1 + C,

we can take F (r) = GMR−1, and the energy integral lemma yields

1

2
[r′(t)]2 − GM

r(t)
= C1 = const.

To find the constant C1, we use the initial conditions.

C1 =
1

2
[r′(0)]

2 − GM

r(0)
=

1

2
· 02 − GM

a
= −GM

a
.

Therefore, r(t) satisfies

1

2
[r′(t)]2 − GM

r(t)
= −GM

a
⇒ 1

2
(r′)2

=
GM

r
− GM

a
⇒ r′ = −

√
2GM

a

√
a− r

r
.

(Remember, r(t) is decreasing, and so r′(t) < 0.) Separating variables and integrating, we get∫ √
r

a− r
dr =

∫ (
−
√

2GM

a

)
dt ⇒ a

(
arctan

√
r

a− r
−
√
r(a− r)

a

)
= −

√
2GM

a
t+C2 .

We apply the initial condition, r(0) = a, once again to find the constant C2. But this time

we have to be careful because the argument of “arctan” function becomes infinite at r = a.

So, we take the limit of both sides rather than making simple substitution.

lim
t→+0

a

(
arctan

√
r(t)

a− r(t)
−
√
r(t)[a− r(t)]

a

)

= a

(
lim

t→+0
arctan

√
r(t)

a− r(t)
− lim

t→+0

√
r(t)[a− r(t)]

a

)
= a
(π

2
− 0
)

= a
π

2
,
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and, in the right-hand side,

lim
t→+0

(
−
√

2GM

a
t+ C2

)
= −

√
2GM

a
· 0 + C2 = C2.

Thus C2 = aπ/2 and r(t) satisfies

a

(
arctan

√
r(t)

a− r(t)
−
√
r(t)[a− r(t)]

a

)
= −

√
2GM

a
t+

aπ

2
.

At the moment t = T0, when Earth splashes into the sun, we have r(T0) = 0. Substituting

this condition into the last equation yields

a

(
arctan

√
0

a− 0
−
√

0(a− 0)

a

)
= −

√
2GM

a
T0 +

aπ

2

⇒ 0 = −
√

2GM

a
T0 +

aπ

2

⇒ T0 =
aπ

2

√
a

2GM
=

π

2
√

2

√
a3

GM
.

Then the required ratio is

T0

T
=

π

2
√

2

√
a3

GM

/
2π

√
a3

GM
=

1

4
√

2
.

EXERCISES 4.8: A Closer Look at Free Mechanical Vibrations, page 219

1. In this problem, we have undamped free vibration case governed by equation (2) on page 210

in the text. With m = 3 and k = 48, the equation becomes

3y′′ + 48y = 0 (4.10)

with the initial conditions y(0) = −0.5, y′(0) = 2.

The angular velocity of the motion is

ω =

√
k

m
=

√
48

3
= 4 .
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It follows that

period =
2π

ω
=

2π

4
=
π

2
,

natural frequency =
ω

2π
=

2

π
.

A general solution to (4.10), given in (4) on page 211 in the text, becomes

y(t) = C1 cosωt+ C2 sinωt = C1 cos 4t+ C2 sin 4t.

We find C1 and C2 from the initial conditions.

y(0) = (C1 cos 4t+ C2 sin 4t)
∣∣
t=0

= C1 = −1/2 ,

y′(0) = (−4C1 sin 4t+ 4C2 cos 4t)
∣∣
t=0

= 4C2 = 2
⇒ C1 = −1/2,

C2 = 1/2.

Thus, the solution to the initial value problem is

y(t) = −1

2
cos 4t+

1

2
sin 4t =

√
2

2
sin
(
4t− π

4

)
,

where we have used formulas (6) rewriting the solution in form (5), page 211 in the text. The

amplitude of the motion therefore is
√

2/2.

Setting y = 0 in the above solution, we find values of t when the mass passes through the

point of equilibrium.
√

2

2
sin
(
4t− π

4

)
= 0 ⇒ 4t− π

4
= nπ, n = 0, 1, . . . .

(Time t is nonnegative.) The first moment when this happens, i.e., the smallest value of t,

corresponds to n = 0. So,

4t− π

4
= 0 ⇒ t =

π

16
.

3. The characteristic equation in this problem, r2 + br + 16 = 0, has the roots

r =
−b±√

b2 − 64

2
. (4.11)

Substituting given particular values of b into (4.11), we find roots of the characteristic equation

and solutions to the initial value problems in each case.
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b = 0b = 0b = 0.

r =
±√−64

2
= ±4i.

A general solution has the form y = C1 cos 4t + C2 sin 4t. Constants C1 and C2 can be

found from the initial conditions.

y(0) = (C1 cos 4t+ C2 sin 4t)
∣∣
t=0

= C1 = 1 ,

y′(0) = (−4C1 sin 4t+ 4C2 cos 4t)
∣∣
t=0

= 4C2 = 0
⇒ C1 = 1,

C2 = 0

and so y(t) = cos 4t.

b = 6b = 6b = 6.

r =
−6 ±√

36 − 64

2
= −3 ±

√
7i.

A general solution has the form y = (C1 cos
√

7t+C2 sin
√

7t)e−3t. For constants C1 and

C2, we have the system

y(0) =
(
C1 cos

√
7t+ C2 sin

√
7t
)
e−3t

∣∣
t=0

= C1 = 1 ,

y′(0) =
[
(
√

7C2 − 3C1) cos
√

7t− (
√

7C1 + 3C2) sin
√

7t
]
e−3t

∣∣
t=0

=
√

7C2 − 3C1 = 0

⇒ C1 = 1,

C2 = 3/
√

7 ,

and so

y(t) =

[
cos

√
7t+

3√
7

sin
√

7t

]
e−3t =

4√
7
e−3t sin

(√
7t+ φ

)
,

where φ = arctan(
√

7/3) ≈ 0.723 .

b = 8b = 8b = 8.

r =
−8 ±√

64 − 64

2
= −4.

Thus, r = −4 is a double root of the characteristic equation. So, a general solution has

the form y = (C1t+ C0)e
−4t. For constants C1 and C2, we obtain the system

y(0) = (C1t+ C0) e
−4t
∣∣
t=0

= C0 = 1 ,

y′(0) = (−4C1t− 4C0 + C1) e
−4t
∣∣
t=0

= C1 − 4C0 = 0
⇒ C0 = 1,

C1 = 4,

and so y(t) = (4t+ 1)e−4t.
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b = 10b = 10b = 10.

r =
−10 ±√

100 − 64

2
= −5 ± 3.

Thus, r = −2, −8, and a general solution is given by y = C1e
−2t + C2e

−8t. Initial

conditions yield

y(0) = (C1e
−2t + C2e

−8t)
∣∣
t=0

= C1 + C2 = 1 ,

y′(0) = (−2C1e
−2t − 8C2e

−8t)
∣∣
t=0

= −2C1 − 8C2 = 0
⇒ C1 = 4/3,

C2 = −1/3,

and, therefore, y(t) = (4/3)e−2t − (1/3)e−8t is the solution to the initial value problem.

The graphs of the solutions are depicted in Figures B.19–B.22 in the answers in the text.

5. The auxiliary equation associated with given differential equation is r2 + 10r+ k = 0, and its

roots are r = −5 ±√
25 − k.

k = 20k = 20k = 20. In this case, r = −5 ±√
25 − 20 = −5 ±√

5. Thus, a general solution is given

by y = C1e
(−5+

√
5)t + C2e

(−5−√
5)t. The initial conditions yield

y(0) =
[
C1e

(−5+
√

5)t + C2e
(−5−√

5)t
]∣∣∣

t=0
= C1 + C2 = 1 ,

y′(0) =
[
(−5 +

√
5)C1e

(−5+
√

5)t + (−5 −√
5)C2e

(−5−√
5)t
]∣∣∣

t=0

= (−5 +
√

5)C1 + (−5 −√
5)C2 = 0

⇒ C1 =
(
1 +

√
5
)
/2,

C2 =
(
1 −√

5
)
/2,

and, therefore, y(t) = [
(
1 +

√
5
)
/2]e(−5+

√
5)t + [

(
1 −√

5
)
/2]e(−5−√

5)t is the solution to

the initial value problem.

k = 25k = 25k = 25. Then r = −5 ± √
25 − 25 = −5. Thus, r = −5 is a double root of the

characteristic equation. So, a general solution has the form y = (C1t + C0)e
−5t. For

constants C1 and C2, using the initial conditions, we obtain the system

y(0) = (C1t+ C0) e
−5t
∣∣
t=0

= C0 = 1 ,

y′(0) = (−5C1t− 5C0 + C1) e
−5t
∣∣
t=0

= C1 − 5C0 = 0
⇒ C0 = 1,

C1 = 5,

and so y(t) = (5t+ 1)e−5t.
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k = 30k = 30k = 30. In this case, r = −5 ±√
25 − 30 = −5 ±√

5i. A general solution has the form

y = (C1 cos
√

5t+ C2 sin
√

5t)e−5t. For constants C1 and C2, we have the system

y(0) =
(
C1 cos

√
5t+ C2 sin

√
5t
)
e−5t

∣∣
t=0

= C1 = 1 ,

y′(0) =
[
(
√

5C2 − 5C1) cos
√

5t− (
√

5C1 + 5C2) sin
√

5t
]
e−5t

∣∣
t=0

=
√

5C2 − 5C1 = 0

⇒ C1 = 1,

C2 =
√

5,

and so

y(t) =
[
cos

√
5t+

√
5 sin

√
5t
]
e−5t =

√
6e−5t sin

(√
5t+ φ

)
,

where φ = arctan(1/
√

5) ≈ 0.421 .

Graphs of the solutions for k = 20, 25, and 30 are shown in Figures B.23–B.25 in the answers

in the text.

7. The motion of this mass-spring system is governed by equation (12) on page 213 in the text.

With m = 1/8, b = 2, and k = 16 this equation becomes

1

8
y′′ + 2y′ + 16y = 0, (4.12)

and the initial conditions are y(0) = −3/4, y′(0) = −2. Since

b2 − 4mk = 4 − 4(1/8)16 = −4 < 0,

we have a case of underdamped motion. A general solution to (4.12) is given in (16), that is,

with α = −b/(2m) = −8 and β = (1/2m)
√

4mk − b2 = 8, we have

y = (C1 cos 8t+ C2 sin 8t) e−8t .

Using the initial conditions, we find the constants C1 and C2.

y(0) = (C1 cos 8t+ C2 sin 8t) e−8t
∣∣
t=0

= C1 = −3/4 ,

y′(0) = 8 [(C2 − C1) cos 8t− (C2 + C1) sin 8t] e−8t
∣∣
t=0

= 8 (C2 − C1) = −2

⇒ C1 = −3/4,

C2 = −1,
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and so

y(t) =

[
−3

4
cos 8t− sin 8t

]
e−8t =

5

4
e−8t sin(8t+ φ),

where tanφ = (−3/4)/(−1) = 3/4 and cos φ = −1 < 0. Thus,

φ = π + arctan(3/4) ≈ 3.785 .

The damping factor is (5/4)e−8t, the quasiperiod is P = 2π/8 = π/4, and the quasifrequency

is 1/P = 4/π.

9. Substituting the values m = 2, k = 40, and b = 8
√

5 into equation (12) on page 213 in the

text and using the initial conditions, we obtain the initial value problem

2
d2y

dt2
+ 8

√
5
dy

dt
+ 40y = 0, y(0) = 0.1 (m), y′(0) = 2 (m/sec).

The initial conditions are positive to reflect the fact that we have taken down to be positive

in our coordinate system. The auxiliary equation for this system is

2r2 + 8
√

5r + 40 = 0 or r2 + 4
√

5r + 20 = 0.

This equation has a double root at r = −2
√

5. Therefore, this system is critically damped

and the equation of motion has the form

y(t) = (C1 + C2t) e
−2

√
5t .

To find the constants C1 and C2, we use the initial conditions y(0) = 0.1 and y′(0) = 2. Thus,

we have

y(0) = 0.1 = C1 ,

y′(0) = 2 = C2 − 2
√

5C1 ⇒ C2 = 2 + 0.2
√

5 .

From this we obtain

y(t) =
[
0.1 +

(
2 + 0.2

√
5
)
t
]
e−2

√
5t .
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The maximum displacement of the mass is found by determining the first time the velocity

of the mass becomes zero. Therefore, we have

y′(t) = 0 =
(
2 + 0.2

√
5
)
e−2

√
5t − 2

√
5
[
0.1 +

(
2 + 0.2

√
5
)
t
]
e−2

√
5t ,

which gives

t =
2

2
√

5(2 + 0.2
√

5)
=

1√
5(2 + 0.2

√
5)
.

Thus the maximum displacement is

y

[
1√

5(2 + 0.2
√

5)

]
=

[
0.1 +

(
2 + 0.2

√
5
)( 1√

5(2 + 0.2
√

5)

)]
e−2

√
5/[

√
5(2+0.2

√
5)] ≈ 0.242 (m).

11. The equation of the motion of this mass-spring system is

y′′ + 0.2y′ + 100y = 0, y(0) = 0, y′(0) = 1.

Clearly, this is an underdamped motion because

b2 − 4mk = (0.2)2 − 4(1)(100) = −399.96 < 0.

So, we use use equation (16) on page 213 in the text for a general solution. With

α = − b

2m
= −0.2

2
= −0.1 and β =

1

2m

√
4mk − b2 =

1

2

√
399.96 =

√
99.99 ,

equation (16) becomes

y(t) =
(
C1 cos

√
99.99t+ C2 sin

√
99.99t

)
e−0.1t .

From the initial condiions,

y(0) =
(
C1 cos

√
99.99t+ C2 sin

√
99.99t

)
e−0.1t

∣∣
t=0

= C1 = 0 ,

y′(0) =
[(√

99.99C2 − 0.1C1

)
cos

√
99.99t− (0.1C2 +

√
99.99C1

)
sin

√
99.99t

]
e−0.1t

∣∣
t=0

=
√

99.99C2 − 0.1C1 = 1

⇒ C1 = 0,

C2 = 1/
√

99.99 .
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Therefore, the equation of motion is given by

y(t) =
1√

99.99
e−0.1t sin

√
99.99t .

The maximum displacement to the right occurs at the first point of local maximum of y(t).

The critical points of y(t) are solutions to

y′(t) =
e−0.1t

√
99.99

(√
99.99 cos

√
99.99t− 0.1 sin

√
99.99t

)
= 0

⇒
√

99.99 cos
√

99.99t− 0.1 sin
√

99.99t = 0

⇒ tan
√

99.99t = 10
√

99.99 =
√

9999 .

Solving for t, we conclude that the first point of local maximum is at

t = (1/
√

99.99) arctan
√

9999 ≈ 0.156 sec.

13. In Example 3, the solution was found to be

y(t) =

√
7

12
e−2t sin

(
2
√

3t+ φ
)
, (4.13)

where φ = π + arctan(
√

3/2). Therefore, we have

y′(t) = −
√

7

3
e−2t sin

(
2
√

3t+ φ
)

+
√

7 e−2t cos
(
2
√

3t+ φ
)
.

Thus, to find the relative extrema for y(t), we set

y′(t) = −
√

7

3
e−2t sin

(
2
√

3t+ φ
)

+
√

7 e−2t cos
(
2
√

3t+ φ
)

= 0

⇒ sin
(
2
√

3t+ φ
)

cos
(
2
√

3t+ φ
) =

√
7√

7/3
=

√
3

⇒ tan
(
2
√

3t+ φ
)

=
√

3 .

Since tan θ =
√

3 when θ = (π/3)+nπ, where n is an integer, we see that the relative extrema

will occur at the points tn, where

2
√

3tn + φ =
π

3
+ nπ ⇒ tn =

(π/3) + nπ − φ

2
√

3
.
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By substituting π+arctan
(√

3/2
)

for φ in the last equation above and by requiring that t be

greater than zero, we obtain

tn =
(π/3) + (n− 1)π − arctan

(√
3/2
)

2
√

3
, n = 1, 2, 3, . . . .

We see that the solution curve given by equation (4.13) above will touch the exponential

curves y(t) = ±
(√

7/12
)
e−2t when we have

√
7

12
e−2t sin

(
2
√

3t+ φ
)

= ±
√

7

12
e−2t,

where φ = π + arctan
(√

3/2
)
. This will occur when sin

(
2
√

3t+ φ
)

= ±1. Since sin θ = ±1

when θ = (π/2) +mπ for any integer m, we see that the times Tm, when the solution touches

the exponential curves, satisfy

2
√

3Tm + φ =
π

2
+mπ ⇒ Tm =

(π/2) +mπ − φ

2
√

3
,

where φ = π + arctan
(√

3/2
)

and m is an integer. Again requiring that t be positive we see

that y(t) touches the exponential curve when

Tm =
(π/2) + (m− 1)π − arctan

(√
3/2
)

2
√

3
, m = 1, 2, 3, . . . .

From these facts it follows that, for y(t) to be an extremum and, at the same time, touch the

curves y(t) = ±√7/12e−2t, there must be integers m and n such that

(π/3) + nπ − arctan
(√

3/2
)

2
√

3
=

(π/2) +mπ − arctan
(√

3/2
)

2
√

3

⇒ π

3
+ nπ =

π

2
+mπ

⇒ n−m =
1

2
− 1

3
=

1

6
.

But, since m and n are integers, their difference is an integer and never 1/6. Thus, the extrema

of y(t) do not occur on the exponential curves.
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15. Since the exponential function is never zero, from the equation of motion (16) on page 213 in

the text we conclude that the mass passes the equilibrium position, that is, y(t) = 0, if and

only if

sin(ωt+ φ) = 0.

Therefore, the time between two successive crossings of the equilibrium position is π/ω, which

is a half of the quasiperiod P . So, we can find the quasiperiod P by multiplying the time

between two successive crossings of the equilibrium position by two. Whenever P is computed,

we can measure the displacement y(t) at any moment t (with y(t) �= 0) and then at the moment

t+ P . Taking the quotient

y(t+ P )

y(t)
=
Ae−(b/2m)(t+P ) sin[ω(t+ P ) + φ]

Ae−(b/2m)t sin(ωt+ φ)
= e−(b/2m)P ,

we can calculate the damping coefficient b as

b = −2m ln[y(t+ P )/y(t)]

P
.

EXERCISES 4.9: A Closer Look at Forced Mechanical Vibrations, page 227

1. The frequency response curve (13) on page 223, with m = 4, k = 1, and b = 2, becomes

M(γ) =
1√

(k −mγ2)2 + b2γ2
=

1√
(1 − 4γ2)2 + 4γ2

.

The graph of this function is shown in Figure B.26 in the answers in the text.

3. The auxiliary equation in this problem is r2 +9 = 0, which has roots r = ±3i. Thus, a general

solution to the corresponding homogeneous equation has the form

yh(t) = C1 cos 3t+ C2 sin 3t.

We look for a particular solution to the original nonhomogeneous equation of the form

yp(t) = ts(A cos 3t+B sin 3t),
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where we take s = 1 because r = 3i is a simple root of the auxiliary equation. Computing

the derivatives

y′(t) = A cos 3t+B sin 3t+ t(−3A sin 3t+ 3B cos 3t),

y′′(t) = 6B cos 3t− 6A sin 3t+ t(−9A cos 3t− 9B sin 3t),

and substituting y(t) and y′′(t) into the original equation, we get

6B cos 3t− 6A sin 3t+ t(−9A cos 3t− 9B sin 3t) + 9t(A cos 3t+B sin 3t) = 2 cos 3t

⇒ 6B cos 3t− 6A sin 3t = 2 cos 3t ⇒ A = 0,

B = 1/3.

So, yp(t) = (1/3)t sin 3t, and y(t) = C1 cos 3t + C2 sin 3t + (1/3)t sin 3t is a general solution.

To satisfy the initial conditions, we solve

y(0) = C1 = 1,

y′(0) = 3C2 = 0
⇒ C1 = 1,

C2 = 0.

So, the solution to the given initial value problem is

y(t) = cos 3t+
1

3
t sin 3t .

The graph of y(t) is depicted in Figure B.27 in the answers section in the text.

5. (a) The corresponding homogeneous equation, my′′ + ky = 0, is the equation of a simple

harmonic motion, and so its general solution is given by

yh(t) = C1 cosωt+ C2 sinωt, ω =
√
k/m .

Since γ �= ω, we look for a particular solution of the form

yp(t) = A cos γt+B sin γt

⇒ y′p(t) = −Aγ sin γt+Bγ cos γt

⇒ y′′p(t) = −Aγ2 cos γt− Bγ2 sin γt.
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Substitution into the original equation yields

m
(−Aγ2 cos γt− Bγ2 sin γt

)
+ k (A cos γt+B sin γt) = F0 cos γt

⇒ A
(−mγ2 + k

)
cos γt+B

(−mγ2 + k
)
sin γt = F0 cos γt

⇒ A = F0/ (k −mγ2) ,

B = 0
⇒ yp(t) =

F0

k −mγ2
cos γt.

Therefore, a general solution to the original equation is

y(t) = C1 cosωt+ C2 sinωt+
F0

k −mγ2
cos γt .

With the initial conditions, y(0) = y′(0) = 0, we get

y(0) = C1 + F0/ (k −mγ2) = 0,

y′(0) = ωC2 = 0
⇒ C1 = −F0/ (k −mγ2) ,

C2 = 0.

Therefore,

y(t) = − F0

k −mγ2
cosωt+

F0

k −mγ2
cos γt ,

which can also be written in the form

y(t) =
F0

k −mγ2
(cos γt− cosωt) =

F0

m(ω2 − γ2)
(cos γt− cosωt) .

(b) Here one can apply the “difference-to-product” identity

cosA− cosB = 2 sin

(
B + A

2

)
sin

(
B − A

2

)
with A = γt and B = ωt to get

y(t) =
2F0

m(ω2 − γ2)
sin

(
ω + γ

2
t

)
sin

(
ω − γ

2
t

)
.

(c) For F0 = 32, m = 2, ω = 9, and γ = 7, the solution in part (b) becomes

y(t) =
2(32)

2(92 − 72)
sin

(
9 + 7

2
t

)
sin

(
9 − 7

2
t

)
= sin 8t sin t .

The graph of this function is shown in Figure B.28.
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7. The auxiliary equation to equation (1) on page 220 in the text, mr2 + br + k = 0, has roots

r =
−b±√

b2 − 4mk

2m
,

which are both real (b2 > 4mk) and negative because
√
b2 − 4mk < b. Let

r1 :=
−b−√

b2 − 4mk

2m
,

r2 :=
−b+

√
b2 − 4mk

2m
.

Then a general solution to the homogeneous equation corresponding to (1) has the form

yh(t) = c1e
r1t + c2e

r2t .

A particular solution to (1) is still given by (7) on page 221 in the text. Thus,

y(t) = c1e
r1t + c2e

r2t +
F0√

(k −mγ2)2 + b2γ2
sin(γt+ θ),

tan θ = (k −mγ2)/(bγ), is a general solution to the forced overdamped equation.

9. If a mass of m = 8 kg stretches the spring by � = 1.96 m, then the spring stiffness must be

k =
mg

�
=

8 · 9.8
1.96

= 40 (N/m).

Substitution m = 8, b = 3, k = 40, and the external force F (t) = cos 2t into the equation (23)

on page 226 in the text yields

8y′′ + 3y′ + 40y = cos 2t.

The steady-state (a particular) solution to this equation is given in (6) and (7), page 221, that

is,

yp(t) =
F0

(k −mγ2)2 + b2γ2

{(
k −mγ2

)
cos γt+ bγ sin γt

}
=

1

[40 − (8)(2)2]2 + (3)2(2)2

{(
40 − 8(2)2

)
cos 2t+ (3)(2) sin 2t

}
=

1

100
{8 cos 2t+ 6 sin 2t} =

1

10
sin(2t+ θ),

where θ = arctan(8/6) ≈ 0.927 .
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11. First, we find the mass

m =
8 lb

32 ft/sec2
=

1

4
slug.

Thus the equation (23), describing the motion, with m = 1/4, b = 1, k = 10, and the external

force F (t) = 2 cos 2t becomes

1

4
y′′ + y′ + 10y = 2 cos 2t, (4.14)

with the initial conditions are y(0) = y′(0) = 0. A general solution to the corresponding

homogeneous equation is given in Section 4.8, formula (16). That is,

yh(t) = eαt (C1 cosβt+ C2 sin βt) .

We compute

α = − b

2m
= − 1

2(1/4)
= −2 and β =

1

2(1/4)

√
4(1/4)(10)− 12 = 6.

So,

yh(t) = e−2t (C1 cos 6t+ C2 sin 6t) .

For a particular solution, we use formula (7), page 221 in the text.

yp(t) =
F0√

(k −mγ2)2 + b2γ2
sin(γt+ θ)

=
2√

[10 − (1/4)(2)2]2 + (1)2(2)2

sin(2t+ θ) =
2√
85

sin(2t+ θ),

where θ = arctan[(k−mγ2)/(bγ)] = arctan(9/2) ≈ 1.352 . A general solution to (4.14) is then

given by

y(t) = e−2t (C1 cos 6t+ C2 sin 6t) +
2√
85

sin(2t+ θ) .

From the initial conditions, we find

y(0) = C1 + (2/
√

85) sin θ = 0,

y′(0) = −2C1 + 6C2 + (4/
√

85) cos θ = 0

⇒ C1 = −(2/
√

85) sin θ = −18/85,

C2 =
[
C1 − (2/

√
85) cos θ

]
/3 = −22/255.
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⇒ y(t) = e−2t

[
−18

85
cos 6t− 22

255
sin 6t

]
+

2√
85

sin(2t+ θ) .

The resonance frequency for the system is

γr

2π
=

√
(k/m) − (b2)/(2m2)

2π
=

√
40 − 8

2π
=

2
√

2

π
,

where we have used formula (15) on page 223 in the text for γr.

13. The mass attached to the spring is

m =
32 lb

32 ft/sec2
= 1 slug.

Thus the equation governing the motion, my′′ + by′ + ky = Fext, with m = 1, b = 2, k = 5,

and Fext(t) = 3 cos 4t becomes

y′′ + 2y′ + 5y = 3 cos 4t.

This is an underdamped motion because b2 − 4mk = (2)2 − 4(1)(5) = −16 < 0. For the

steady-state solution of this equation we use formula (6) on page 221 in the text. Since

Fext(t) = 3 cos 4t, we have F0 = 3, and γ = 4. Substituting m, b, k, F0, and γ into (6), we

obtain

yp(t) =
3

[5 − (1)(4)2]2 + (2)2(4)2

{
[5 − (1)(4)2] cos 4t+ (2)(4) sin 4t

}
=

3

185
(8 sin 4t− 11 cos 4t) .

REVIEW PROBLEMS: page 228

1. Solving the auxiliary equation, r2 + 8r − 9 = 0, we find r1 = −9, r2 = 1. Thus a general

solution is given by

y(t) = c1e
r1t + c2e

r2t = c1e
−9t + c2e

t .

3. The auxiliary equation, 4r2 − 4r + 10 = 0, has roots r1,2 = (1 ± 3i)/2. Therefore a general

solution is

y(t) =

[
c1 cos

(
3t

2

)
+ c2 sin

(
3t

2

)]
et/2 .
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5. The roots of the auxiliary equation, 6r2 − 11r + 3 = 0, are r1 = 3/2 and r2 = 1/3. Thus,

y(t) = c1e
r1t + c2e

r2t = c1e
3t/2 + c2e

t/3

is a general solution.

7. Solving the auxiliary equation, 36r2 + 24r + 5 = 0, we find

r =
−24 ±√242 − 4(36)(5)

2(36)
= −1

3
± 1

6
i.

Thus a general solution is given by

y(t) =

[
c1 cos

(
t

6

)
+ c2 sin

(
t

6

)]
e−t/3 .

9. The auxiliary equation, 16r2−56r+49 = (4r−7)2 = 0, has a double root r = 7/4. Therefore,

e7t/4 and te7t/4 are two linearly independent solutions, and a general solution is given by

y(t) = c1e
7t/4 + c2te

7t/4 = (c1 + c2t) e
7t/4 .

11. This equation is a Cauchy-Euler equation. Using the approach discussed in Problem 38,

Exercises 4.3, we make the substitution t = es and obtain

dx

ds
=
dx

dt

dt

ds
= t

dx

dt
,

d2x

ds2
=

d

ds

(
dx

ds

)
=
dx

ds
+ t2

d2x

dt2
,

⇒ t2
d2x

dt2
+ 5x =

(
d2x

ds2
− dx

ds

)
+ 5x =

d2x

ds2
− dx

ds
+ 5x = 0.

The axiliary equation to this constant coefficient linear equation is r2 − r + 5 = 0, which has

roots

r =
1 ±√12 − 4(1)(5)

2
=

1 ±√
19

2
.

Thus,

y(s) = es/2

[
c1 cos

(√
19s

2

)
+ c2 sin

(√
19s

2

)]
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is a general solution as a function of s. The back substitution, s = ln t, yields

y(t) = t1/2

[
c1 cos

(√
19

2
ln t

)
+ c2 sin

(√
19

2
ln t

)]
.

13. The roots of the auxiliary equation, r2 + 16 = 0, are r = ±4i. Thus a general solution to the

corresponding homogeneous equation is given by

yh(t) = c1 cos 4t+ c2 sin 4t .

The method of undetermined coefficients suggests the form yp(t) = (A1t+A0)e
t for a particular

solution to the original equation. We compute

y′p(t) = (A1t+ A0 + A1)e
t , y′′p(t) = (A1t+ A0 + 2A1)e

t

and substitute y′′p(t) and yp(t) into the given equation. This yields

y′′p + 16yp =
[
(A1t+ A0 + 2A1)e

t
]
+ 16

[
(A1t+ A0)e

t
]

= tet

⇒ (17A1t+ 17A0 + 2A1) e
t = tet ⇒ A1 =

1

17
, A0 = − 2

289
.

Therefore,

yp(t) =

(
t

17
− 2

289

)
et

⇒ y(t) = yh(t) + yp(t) = c1 cos 4t+ c2 sin 4t+

(
t

17
− 2

289

)
et .

15. This is a third order homogeneous linear differential equation with constant coefficients. Its

auxiliary equation is 3r3 + 10r2 + 9r + 2 = 0. Factoring yields

3r3 + 10r2 + 9r + 2 = (3r3 + 3r2) + (7r2 + 7r) + (2r + 2) = (3r2 + 7r + 2)(r + 1).

Thus the roots of the auxiliary equation are

r = −1 and r =
−7 ±√72 − 4(3)(2)

6
= −2, −1

3
,

and a general solution is given by

y(t) = c1e
−2t + c2e

−t + c3e
−t/3 .
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17. To solve the auxiliary equation, r3 +10r− 11 = 0, we note that r1 = 1 is a root. Dividing the

polynomial r3 + 10r − 11 by r − 1 we get

r3 + 10r − 11 = (r − 1)(r2 + r + 11),

and so the other two roots are

r2,3 =
−1 ±√1 − 4(1)(11)

2
=

−1

2
±

√
43

2
i.

A general solution is then given by

y(t) = c1e
t + e−t/2

[
c2 cos

(√
43t

2

)
+ c3 sin

(√
43t

2

)]
.

19. By inspection, we find that r = −3 as a root of the auxiliary equation, 4r3 +8r2−11r+3 = 0.

Using, say, the long division, we get

4r3 + 8r2 − 11r + 3 = (r + 3)(4r2 − 4r + 1) = (r + 3)(2r − 1)2 .

Thus, in addition, r = 1/2 is a double root of the auxiliary equation. A general solution then

has the form

y(t) = c1e
−3t + c2e

t/2 + c3te
t/2 .

21. First, we solve the corresponding homogeneous equation,

y′′ − 3y′ + 7y = 0.

Since the roots of the auxiliary equation, r2 − 3r + 7 = 0, are

r =
3 ±√

9 − 28

2
=

3 ±√
19i

2
,

a general solution to the homogeneous equation is

yh(t) =

[
c1 cos

(√
19t

2

)
+ c2 sin

(√
19t

2

)]
e3t/2 .
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We use the superposition principle to find a particular solution to the original nonhomogeneous

equation.

A particular solution, yp,1(t) to y′′ − 3y′ + 7y = 7t2 has the form

yp,1(t) = A2t
2 + A1t+ A0 .

Substitution yields

y′′p,1 − 3y′p,1 + 7yp,1 = 2A2 − 3(2A2t+ A1) + 7(A2t
2 + A1t+ A0) = 7t2

⇒ (7A2)t
2 + (7A1 − 6A2)t+ (7A0 − 3A1 + 2A2) = 7t2

⇒
7A2 = 7,

7A1 − 6A2 = 0,

7A0 − 3A1 + 2A2 = 0

⇒
A2 = 1,

A1 = 6/7,

A0 = 4/49,

and so

yp,1(t) = t2 +
6

7
t+

4

49
.

The other term in the right-hand side of the original equation is et. A particular solution to

y′′ − 3y′ + 7y = et has the form yp,2(t) = Aet. Substitution yields

y′′p,2 − 3y′p,2 + 7yp,2 = 5Aet = et ⇒ A =
1

5
⇒ yp,2(t) =

1

5
et .

By the superposition principle, a general solution to the original equation is

y(t) = yh(t) − yp,2(t) + yp,1(t)

=

[
c1 cos

(√
19t

2

)
+ c2 sin

(√
19t

2

)]
e3t/2 − 1

5
et + t2 +

6

7
t+

4

49
.

23. The corresponding homogeneous equation in this problem is similar to that in Problem 13.

Thus, y1(t) = cos 4θ and y2(t) = sin 4θ are its two linearly independent solutions, and a

general solution is given by

yh(θ) = c1 cos 4θ + c2 sin 4θ .

For a particular solution to the original equation, we use the variation of parameters method.

Letting

yp(θ) = v1(θ) cos 4θ + v2(θ) sin 4θ,
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we get the following system for v′1 and v′2 (see (9) on page 195 in the text):

v′1(θ) cos 4θ + v′2(θ) sin 4θ = 0

−4v′1(θ) sin 4θ + 4v′2(θ) cos 4θ = tan 4θ.

Multiplying the first equation by sin 4θ and the second equation by (1/4) cos 4θ, and adding

the resulting equations together, we get

v′2(θ) =
1

4
sin 4θ ⇒ v2 = − 1

16
cos 4θ + c3.

From the first equation in the above system we also obtain

v′1(θ) = −v′2(θ) tan 4θ = −1

4

sin2 4θ

cos 4θ
= −1

4
(sec 4θ − cos 4θ)

⇒ v1(θ) = −1

4

∫
(sec 4θ − cos 4θ) dθ = − 1

16
ln | sec 4θ + tan 4θ| + 1

16
sin 4θ + c4.

Taking c3 = c4 = 0, we obtain

yp(θ) =

(
− 1

16
ln | sec 4θ + tan 4θ| + 1

16
sin 4θ

)
cos 4θ +

(
− 1

16
cos θ

)
sin 4θ

= − 1

16
(cos 4θ) ln | sec 4θ + tan 4θ|,

and a general solution to the original equation is

y(θ) = c1 cos 4θ + c2 sin 4θ − 1

16
(cos 4θ) ln | sec 4θ + tan 4θ| .

25. Since the auxiliary equation, 4r2 − 12r + 9 = (2r − 3)2 = 0, has a double root r = 3/2, a

general solution to the corresponding homogeneous equation is

yh(t) = c1e
3t/2 + c2te

3t/2.

By the superposition principle, a particular solution to the original equation has the form

yp(t) = Ae5t +Be3t .

Substituting this expression into the given nonhomogeneous equation, we get

4y′′p − 12y′p + 9yp = 4
(
25Ae5t + 9Be3t

)− 12
(
5Ae5t + 3Be3t

)
+ 9
(
Ae5t +Be3t

)
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= 49Ae5t + 9Be3t = e5t + e3t ⇒ A = 1/49, B = 1/9.

Therefore, yp(t) = (1/49)e5t + (1/9)e3t and a general solution to the original equation is

y(t) = c1e
3t/2 + c2te

3t/2 +
1

49
e5t +

1

9
e3t .

27. This is a Cauchy-Euler equation. Thus we make the substitution x = et and get

x2 d
2y

dx2
+ 2x

dy

dx
− 2y = 6x−2 + 3x

⇒
(
d2y

dt2
− dy

dt

)
+ 2

dy

dt
− 2y = 6(et)−2 + 3(et)

⇒ d2y

dt2
+
dy

dt
− 2y = 6e−2t + 3et . (4.15)

The auxiliary equation, r2 + r− 2 = 0, has the roots r = −2, 1. Therefore, a general solution

to the corresponding homogeneous equation is

yh(t) = c1e
t + c2e

−2t .

A particular solution to (4.15) has the form

yp(t) = Ate−2t +Btet .

(The factor t appeared in both terms because et and e−2t are both solutions to the homogeneous

equation.) Differentiating, we find

yp(t) = Ate−2t +Btet

⇒ y′p(t) = A(1 − 2t)e−2t +B(t+ 1)et

⇒ y′p(t) = A(4t− 4)e−2t +B(t+ 2)et .

Substitution into (4.15) yields

−3Ae−2t + 3Bet = 6e−2t + 3et ⇒ A = −2, B = 1.

Thus a general solution to (4.15) is given by

y(t) = yh(t) + yp(t) = c1e
t + c2e

−2t − 2te−2t + tet .
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The back substitution et = x (or t = ln x) results

y(x) = c1x+ c2x
−2 − 2x−2 ln x+ x lnx .

29. The roots of the auxiliary equation in this problem are

r =
−4 ±√42 − 4(1)(7)

2
= −2 ±

√
3i .

Therefore, a general solution is given by

y(t) =
(
c1 cos

√
3t+ c2 sin

√
3t
)
e−2t .

Substituting the initial conditions, we obtain

y(0) =
(
c1 cos

√
3t+ c2 sin

√
3t
)
e−2t

∣∣
t=0

= c1 = 1,

y′(0) =
[
(−2c1 +

√
3c2) cos

√
3t− (

√
3c1 + 2c2) sin

√
3t
]
e−2t

∣∣
t=0

= −2c1 +
√

3c2 = −2.

Solving this system yields c1 = 1, c2 = 0. The solution to the given initial value problem is

y(t) = e−2t cos
√

3t .

31. We solve the corresponding homogeneous equation. Its auxiliary equation, r2 − 2r + 10 = 0,

has the roots r = 1 ± 3i. Thus

yh(t) = (c1 cos 3t+ c2 sin 3t) et

is a general solution.

Now, we apply the method of undetermined coefficients and look for a particular solution to

the original nonhomogeneous equation of the form yp(t) = A cos 3t+B sin 3t. Differentiating

yp(t) twice, we obtain y′p(t) = −3A sin 3t+3B cos 3t, y′′p = −9A cos 3t−9B sin 3t and substitute

these expressions into the original equation. Thus we get

(−9A cos 3t− 9B sin 3t) − 2(−3A sin 3t+ 3B cos 3t) + 10(A cos 3t+B sin 3t)

= 6 cos 3t− sin 3t
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⇒ (A− 6B) cos 3t+ (6A+B) sin 3t = 6 cos 3t− sin 3t

⇒ A− 6B = 6,

6A+B = −1
⇒ A = 0,

B = −1.

So, yp(t) = − sin 3t, and y(t) = (c1 cos 3t+ c2 sin 3t) et − sin 3t is a general solution to the

given equation.

Next, we satisfy the initial conditions.

y(0) = c1 = 2,

y′(0) = c1 + 3c2 − 3 = −8
⇒ c1 = 2,

c2 = −7/3.

Hence, the answer is

y(t) =

(
2 cos 3t− 7

3
sin 3t

)
et − sin 3t.

33. The associated characteristic equation in this problem is r3 − 12r2 + 27r + 40 = 0, which is

a third order equation. Using the rational root theorem, we look for its integer roots among

the divisors of 40, which are ±1, ±2, ±4, ±8, ±10, ±20, and ±40. By inspection, r = −1 is

a root. Dividing r3 − 12r2 + 27r + 40 by r + 1, we get

r3 − 12r2 + 27r + 40 = (r2 − 13r + 40)(r + 1),

and so the other two roots of the auxiliary equation are the roots of r2−13r+40 = 0, which are

r = 5 and 8. Therefore, a general solution to the given equation is y(t) = c1e
−t + c2e

5t + c3e
8t.

We find the values of c1, c2, and c3 from the initial conditions.

y(0) = (c1e
−t + c2e

5t + c3e
8t)
∣∣
t=0

= c1 + c2 + c3 = −3,

y′(0) = (−c1e−t + 5c2e
5t + 8c3e

8t)
∣∣
t=0

= −c1 + 5c2 + 8c3 = −6,

y′′(0) = (c1e
−t + 25c2e

5t + 64c3e
8t)
∣∣
t=0

= c1 + 25c2 + 64c3 = −12

⇒
c1 = −1,

c2 = −3,

c3 = 1.

Therefore, y(t) = −e−t − 3e5t + e8t is the solution to the given initial value problem.

35. Since the roots of the auxiliary equation, r2 + 1 = 0, are r = ±i, the functions y1(θ) = cos θ

and y2(θ) = sin θ are two linearly independent solutions to the corresponding homogeneous

equation, and its general solution is given by

yh(θ) = c1 cos θ + c2 sin θ .
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We apply the method of variation of parameters to find a particular solution to the original

equation. We look for a particular solution of the form

yp(θ) = v1(θ) cos θ + v2(θ) sin θ,

where v1(θ) and v2(θ) satisfy the system (9), Section 4.6. That is,

v′1 cos θ + v′2 sin θ = 0,

−v′1 sin θ + v′2 cos θ = sec θ .

Multiplying the first equation by sin θ, the second equation by cos θ, and adding them together

yield

v′2 sin2 θ + v′2 cos2 θ = sec θ cos θ ⇒ v′2 = 1 ⇒ v2(θ) = θ.

From the first equation in the above system we also get

v′1 = −v′2 tan θ = − tan θ ⇒ v1(θ) = −
∫

tan θ dθ = ln | cos θ|,

where we have taken the zero integration constant. So,

yp(θ) = cos θ ln | cos θ| + θ sin θ ,

and

y(θ) = c1 cos θ + c2 sin θ + cos θ ln | cos θ| + θ sin θ

is a general solution to the original equation. Differentiating we find that

y′(θ) = −c1 sin θ + c2 cos θ − sin θ ln | cos θ| + θ cos θ.

Substitution of y(θ) and y′(θ) into the initial conditions yields

y(0) = c1 = 1,

y′(0) = c2 = 2
⇒ c1 = 1,

c2 = 2,

and so the answer is y(θ) = cos θ + 2 sin θ + cos θ ln | cos θ| + θ sin θ.
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37. Comparing the given homogeneous equations with mass-spring oscillator equation (13) in

Section 4.7,

[inertia] y′′ + [damping] y′ + [stiffness] y = 0,

we see that in equations (a) through (d) the damping coefficient is 0. So, the behavior, of

solutions, as t→ +∞, depends on the sign of the stiffness coefficient “k”.

(a) “k”= t4 > 0. This implies that all the solutions remain bounded as t→ +∞.

(b) “k”= −t4 < 0. The stiffness of the system is negative and increases unboundedly as

t → +∞. It reinforces the displacement, y(t), with magnitude increasing with time.

Hence some solutions grow rapidly with time.

(c) “k”= y6 > 0. Similarly to (a), we conclude that all the solutions are bounded.

(d) “k”= y7. The function f(y) = y7 is positive for positive y and negative if y is negative.

Hence, we can expect that some of the solutions (say, ones satisfying negative initial

conditions) are unbounded.

(e) “k”= 3 + sin t. Since | sin t| ≤ 1 for any t, we conclude that

“k” ≥ 3 + (−1) = 2 > 0,

and all the solutions are bounded as t→ +∞.

(f) Here there is positive damping “b”= t2 increasing with time, which results an increasing

drain of energy from the system, and positive constant stiffness k = 1. Thus all the

solutions are bounded.

(g) Negative damping “b”= −t2 increases (in absolute value) with time, which imparts energy

to the system instead of draining it. Note that the stiffness k = −1 is also negative. Thus

we should expect that some of the solutions increase unboundedly as t→ +∞.

39. If a weight of w = 32 lb stretches the spring by � = 6 in = 0.5 ft, then the spring stiffness must

be

k =
w

�
=

32

0.5
= 64 (lb/ft).
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Also, the mass m of the weight is

m =
w

g
=

32

32
= 1 (slug),

and the damping constant b = 2 lb-sec/ft. The external force is given to be F (t) = F0 cos γt

with F0 = 4 and γ = 8.

Clearly, we have an underdamped motion because b2 − 4mk = 4 − 256 < 0. So, we can use

formula (6) in Section 4.9 for the steady-state solution. This yields

yp(t) =
F0

(k −mγ2)2 + b2γ2

{
(k −mγ2) cos γt+ bγ sin γt

}
=

4

(64 − 82)2 + 2282

{
(64 − 82) cos 8t+ (2)(8) sin 8t

}
=

1

4
sin 8t .

The resonant frequency for the system is γr/(2π), where γr is given in (15), Section 4.9.

Applying this formula, we get

resonant frequency =
1

2π

√
k

m
− b2

2m2
=

1

2π

√
64

1
− 22

2(12)
=

√
62

2π
.
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CHAPTER 5: Introduction to Systems andPhase
Plane Analysis

EXERCISES 5.2: Elimination Method for Systems, page 250

1. Subtracting the second equation in the system from the first one, we eliminate y and obtain

x′ + y′ = −2y,

y′ = x− 2y
⇒ x′ = −x.

This equation is separable (also, it is linear). Separation yields

dx

x
= −dt ⇒ ln |x| = −t+ C ⇒ x(t) = c2e

−t .

Substituting this solution into the second equation, we obtain an equation for y:

y′ + 2y = x = c2e
−t .

This equation is a first order linear equation. Solving we obtain

µ(t) = exp

(∫
(2)dt

)
= e2t

⇒ e2ty =

∫ (
c2e

−t
)
e2tdt = c2

∫
etdt = c2e

t + c1

⇒ y(t) = c1e
−2t + c2e

−t .

Therefore, a general solution is

x(t) = c2e
−t , y(t) = c1e

−2t + c2e
−t .

3. We eliminate x by subtracting the second equation from the first equation. This yields

y′ + 2y = 0 ⇒ dy

y
= −2dt ⇒ ln |y| = −2t+ c ⇒ y(t) = c2e

−2t .
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From the second equation we get

x′−y′ = 0 ⇒ (x−y)′ = 0 ⇒ x(t)−y(t) = c1 ⇒ x(t) = c1 +c2e
−2t ,

and a general solution is given by

x(t) = c1 + c2e
−2t , y(t) = c2e

−2t .

5. Writing this system in operator notation yields the system

(D − 1)[x] +D[y] = 5,

D[x] + (D + 1)[y] = 1.
(5.1)

We will first eliminate the function x(t), although we could proceed just as easily by eliminat-

ing the function y(t). Thus, we apply the operator D to the first equation and the operator

−(D − 1) to the second equation to obtain

D(D − 1)[x] +D2[y] = D[5] = 0,

−(D − 1)D[x] − (D − 1)(D + 1)[y] = −(D − 1)[1] = 1.

Adding these two equations yields

{D(D − 1) − (D − 1)D} [x] +
{
D2 − (D2 − 1)

}
[y] = 1

⇒ 0 · x+ 1 · y = 1 ⇒ y(t) = 1.

To find the function x(t), we will eliminate y from the system given in (5.1). Therefore, we

multiply the first equation in (5.1) by (D + 1) and the second by −D to obtain the system

(D + 1)(D − 1)[x] + (D + 1)D[y] = (D + 1)[5] = 5,

−D2[x] −D(D + 1)[y] = D[1] = 0.

By adding these two equations we obtain{
(D2 − 1) −D2

}
[x] = 5 ⇒ −x = 5 ⇒ x(t) = −5.

Therefore, this system of linear differential equation is solved by the functions

x(t) = −5 and y(t) = 1.
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7. In order to eliminate u, we multiply the first equation by (D − 1), the second equation – by

(D + 1), and subtract the results.

(D − 1) {(D + 1)[u] − (D + 1)[v]} = (D − 1) [et] = (et)
′ − et = 0,

(D + 1) {(D − 1)[u] + (2D + 1)[v]} = (D + 1) [5] = (5)′ + 5 = 5

⇒ (D2 − 1) [u] − (D2 − 1) [v] = 0,

(D2 − 1) [u] + {(D + 1)(2D + 1)} [v] = 5

⇒ {
(D + 1)(2D + 1) +

(
D2 − 1

)}
[v] = 5 ⇒ {D(D + 1)} [v] =

5

3
. (5.2)

The corresponding homogeneous equation, {D(D + 1)} [v] = 0, has the characteristic equation

r(r + 1) = 0 ⇒ r = 0,−1,

and so its general solution is

vh(t) = c1 + c2e
−t.

Applying the method of undetermined coefficients, we look for a particular solution to (5.2) of

the form vp(t) = cts, where we choose s = 1 (because the homogeneous equation has constant

solutions and does not have solutions of the form ct). Substitution v = ct into (5.2) yields

{D(D + 1)} [ct] = (D + 1)[c] = c =
5

3
⇒ vp(t) =

5

3
t.

Therefore, a general solution to (5.2) is

v(t) = vh(t) + vp(t) = c1 + c2e
−t +

5

3
t.

We now go back to the original system and subtract the second equation from the first one.

2u− (3D + 2)[v] = et − 5

⇒ u =

(
3

2
D + 1

)
[v] +

1

2
et − 5

2

⇒ u =
3

2

(
c1 + c2e

−t +
5

3
t

)′
+

(
c1 + c2e

−t +
5

3
t

)
+

1

2
et − 5

2

⇒ u(t) = c1 − 1

2
c2e

−t +
1

2
et +

5

3
t.
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Thus, a general solution to the given system is

u(t) = c1 − 1

2
c2e

−t +
1

2
et +

5

3
t,

v(t) = c1 + c2e
−t +

5

3
t.

9. Expressed in operator notation, this system becomes

(D + 2)[x] +D[y] = 0,

(D − 1)[x] + (D − 1)[y] = sin t.

In order to eliminate the function y(t), we will apply the operator (D−1) to the first equation

above and the operator −D to the second one. Thus, we have

(D − 1)(D + 2)[x] + (D − 1)D[y] = (D − 1)[0] = 0,

−D(D − 1)[x] −D(D − 1)[y] = −D[sin t] = − cos t.

Adding these two equations yields the differential equation involving the single function x(t)

given by {
(D2 +D − 2) − (D2 −D)

}
[x] = − cos t

⇒ 2(D − 1)[x] = − cos t. (5.3)

This is a linear first order differential equation with constant coefficients and so can be solved

by the methods of Chapter 2. (See Section 2.3.) However, we will use the methods of

Chapter 4. We see that the auxiliary equation associated with the corresponding homogeneous

equation is given by 2(r − 1) = 0, which has the root r = 1. Thus, a general solution to the

corresponding homogeneous equation is

xh(t) = C1e
t.

We will use the method of undetermined coefficients to find a particular solution to the

nonhomogeneous equation. To this end, we note that a particular solution to this differential

equation will have the form

xp(t) = A cos t+B sin t ⇒ x′p(t) = −A sin t+B cos t.
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Substituting these expressions into the nonhomogeneous equation given in (5.3) yields

2x′p − 2xp = 2(−A sin t+B cos t) − 2(A cos t+B sin t)

= (2B − 2A) cos t+ (−2A− 2B) sin t = − cos t.

By equating coefficients we obtain

2B − 2A = −1 and − 2A− 2B = 0.

By solving these two equations simultaneously for A and B, we see that

A =
1

4
and B = −1

4
.

Thus, a particular solution to the nonhomogeneous equation given in (5.3) will be

xp(t) =
1

4
cos t− 1

4
sin t

and a general solution to the nonhomogeneous equation (5.3) will be

x(t) = xh(t) + xp(t) = C1e
t +

1

4
cos t− 1

4
sin t.

We now must find a function y(t). To do this, we subtract the second of the two differential

equations in the system from the first to obtain

3x+ y = − sin t ⇒ y = −3x− sin t.

Therefore, we see that

y(t) = −3

[
C1e

t +
1

4
cos t− 1

4
sin t

]
− sin t

⇒ y(t) = −3C1e
t − 3

4
cos t− 1

4
sin t.

Hence this system of differential equations has the general solution

x(t) = C1e
t +

1

4
cos t− 1

4
sin t and y(t) = −3C1e

t − 3

4
cos t− 1

4
sin t.
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11. From the second equation, we obtain u = − (D2 + 2) [v]/2. Substitution into the first equation

eliminates u and gives

(
D2 − 1

){−1

2

(
D2 + 2

)
[v]

}
+ 5v = et

⇒ [(
D2 − 1

) (
D2 + 2

)− 10
]
[v] = −2et

⇒ (
D4 +D2 − 12

)
[v] = −2et. (5.4)

Solving the characteristic equation, r4 + r2 − 12 = 0,

r4 + r2 − 12 = 0 ⇒ (
r2 + 4

) (
r2 − 3

)
= 0 ⇒ r = ±2i,±

√
3 ,

we conclude that a general solution to the corresponding homogeneous equation is

vh(t) = c1 cos 2t+ c2 sin 2t+ c3e
√

3t + c4e
−√

3t .

A particular solution to (5.4) has the form vp(t) = cet. Substitution yields

(
D4 +D2 − 12

) [
cet
]

= cet + cet − 12cet = −10cet = −2et ⇒ c =
1

5
.

Therefore, v = vh + vp = c1 cos 2t+ c2 sin 2t+ c3e
√

3t + c4e
−√

3t + et/5 and

u = −1

2

(
D2 + 2

)
[v] = −1

2

(
c1 cos 2t+ c2 sin 2t+ c3e

√
3t + c4e

−√
3t +

1

5
et

)′′

−
(
c1 cos 2t+ c2 sin 2t+ c3e

√
3t + c4e

−√
3t +

1

5
et

)
= c1 cos 2t+ c2 sin 2t− 5

2
c3e

√
3t − 5

2
c4e

−√
3t − 3

10
et .

By replacing (−5/2)c3 by c3 and (−5/2)c4 by c4 we obtain the same answer as given in the

text.

13. Expressing x from the second equation and substituting the result into the first equation, we

obtain

x = y′ − y ⇒ d(y′ − y)

dt
= (y′ − y) − 4y ⇒ y′′ − 2y′ + 5y = 0.
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This homogeneous linear equation with constant coefficients has the characteristic equation

r2 − 2r + 5 = 0 with roots r = 1 ± 2i. Thus a general solution is

y = c1e
t cos 2t+ c2e

t sin 2t .

Therefore,

x =
(
c1e

t cos 2t+ c2e
t sin 2t

)′ − (c1et cos 2t+ c2e
t sin 2t

)
=
(
c1e

t cos 2t− 2c1e
t sin 2t+ c2e

t sin 2t+ 2c2e
t cos 2t

)− (c1et cos 2t+ c2e
t sin 2t

)
= 2c2e

t cos 2t− 2c1e
t sin 2t.

15. In operator form, the system becomes

−2z + (D − 5)[w] = 5t,

(D − 4)[z] − 3w = 17t.

We multiply the first equation by 3, the second equation by (D − 5), and add the resulting

equations.

{−6 + (D − 5)(D − 4)} [z] = 3(5t) + (D − 5)[17t] = −70t+ 17

⇒ (
D2 − 9D + 14

)
[z] = −70t+ 17.

Solving the characteristic equation, r2 − 9r + 14 = 0, we obtain r = 2, 7. Hence, a general

solution to the corresponding homogeneous equation is zh(t) = c1e
2t + c2e

7t. A particular

solution has the form zp(t) = At+B. Substitution yields(
D2 − 9D + 14

)
[At+B] = (At+B)′′ − 9(At+B)′ + 14(At+B)

= 14At− 9A + 14B = −70t+ 17

⇒ A =
−70

14
= −5, B =

17 + 9A

14
= −2

⇒ z(t) = zh(t) + zp(t) = c1e
2t + c2e

7t − 5t− 2.

We use now the second equation from the original system to find w.

w =
1

3
(z′ − 4z − 17t) = −2

3
c1e

2t + c2e
7t + t+ 1.
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17. Expressed in operator notation, this system becomes

(D2 + 5) [x] − 4[y] = 0,

−[x] + (D2 + 2) [y] = 0.

In order to eliminate the function x(t), we apply the operator (D2 +5) to the second equation.

Thus, we have (
D2 + 5

)
[x] − 4[y] = 0,

− (D2 + 5
)
[x] +

(
D2 + 5

) (
D2 + 2

)
[y] = 0.

Adding these two equations together yields the differential equation involving the single func-

tion y(t) given by{
(D2 + 5)(D2 + 2) − 4

}
[y] = 0 ⇒ (

D4 + 7D2 + 6
)
[y] = 0.

The auxiliary equation for this homogeneous equation, r4 + 7r2 + 6 = (r2 + 1)(r2 + 6) = 0,

has roots r = ±i, ±i√6. Thus, a general solution is

y(t) = C1 sin t+ C2 cos t+ C3 sin
√

6t+ C4 cos
√

6t.

We must now find a function x(t) that satisfies the system of differential equations given in

the problem. To do this we solve the second equation of the system of differential equations

for x(t) to obtain

x(t) =
(
D2 + 2

)
[y].

Substituting the expression we found for y(t), we see that

x(t) = −C1 sin t− C2 cos t− 6C3 sin
√

6t− 6C4 cos
√

6t

+2
(
C1 sin t+ C2 cos t+ C3 sin

√
6t+ C4 cos

√
6t
)

⇒ x(t) = C1 sin t+ C2 cos t− 4C3 sin
√

6t− 4C4 cos
√

6t.

Hence this system of differential equations has the general solution

x(t) = C1 sin t+ C2 cos t− 4C3 sin
√

6t− 4C4 cos
√

6t

y(t) = C1 sin t+ C2 cos t+ C3 sin
√

6t+ C4 cos
√

6t.
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19. From the first equation, we conclude that y = x′ − 4x. Substitution into the second equation

yields

(x′ − 4x)
′
= −2x+ (x′ − 4x) ⇒ x′′ − 5x′ + 6x = 0.

The characteristic equation, r2 − 5r + 6 = 0, has roots r = 2, 3, and so a general solution is

x(t) = c1e
2t + c2e

3t

⇒ y(t) =
(
c1e

2t + c2e
3t
)′ − 4

(
c1e

2t + c2e
3t
)

= −2c1e
2t − c2e

3t .

We find constants c1 and c2 from the initial condition.

1 = x(0) = c1e
2(0) + c2e

3(0) = c1 + c2 ,

0 = y(0) = −2c1e
2(0) − c2e

3(0) = −2c1 − c2
⇒ c1 = −1,

c2 = 2.

Therefore, the answer to this problem is

x(t) = −e2t + 2e3t , y(t) = 2e2t − 2e3t .

21. To apply the elimination method, we write the system using operator notation:

D2[x] − y = 0,

−x+D2[y] = 0.
(5.5)

Eliminating y by applying D2 to the first equation and adding to the second equation gives(
D2D2 − 1

)
[x] = 0,

which reduces to (
D4 − 1

)
[x] = 0. (5.6)

The corresponding auxiliary equation, r4−1 = 0, has roots ±1, ±i. Thus, the general solution

to (5.6) is given by

x(t) = C1e
t + C2e

−t + C3 cos t+ C4 sin t. (5.7)

Substituting x(t) into the first equation in (5.5) yields

y(t) = x′′(t) = C1e
t + C2e

−t − C3 cos t− C4 sin t. (5.8)
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We use initial conditions to determine constants C1, C2, C3, and C4. Differentiating (5.7) and

(5.8), we get

3= x(0) = C1e
0 + C2e

−0 + C3 cos 0 + C4 sin 0 = C1 + C2 + C3 ,

1= x′(0) = C1e
0 − C2e

−0 − C3 sin 0 + C4 cos 0 = C1 − C2 + C4 ,

1= y(0) = C1e
0 + C2e

−0 − C3 cos 0 − C4 sin 0 = C1 + C2 − C3 ,

−1 = y′(0) = C1e
0 − C2e

−0 + C3 sin 0 − C4 cos 0 = C1 − C2 − C4

⇒

C1 + C2 + C3 = 3,

C1 − C2 + C4 = 1,

C1 + C2 − C3 = 1,

C1 − C2 − C4 = −1.

Solving we obtain C1 = C2 = C3 = C4 = 1. So, the desired solution is

x(t) = et + e−t + cos t+ sin t,

y(t) = et + e−t − cos t− sin t.

23. We will attempt to solve this system by first eliminating the function y(t). Thus, we multiply

the first equation by (D + 2) and the second by −(D − 1). Therefore, we obtain

(D + 2)(D − 1)[x] + (D + 2)(D − 1)D[y] = (D + 2)
[−3e−2t

]
= 6e−2t − 6e−2t = 0,

−(D − 1)(D + 2)[x] − (D − 1)(D + 2)[y] = −(D − 1)
[
3et
]

= −3et + 3et = 0.

Adding these two equations yields

0 · x+ 0 · y = 0,

which will be true for any two functions x(t) and y(t). (But not every pair of functions

will satisfy this system of differential equations.) Thus, this is a degenerate system, and has

infinitely many linearly independent solutions. To see if we can find these solutions, we will

examine the system more closely. Notice that we could write this system as

(D − 1)[x+ y] = −3e−2t,

(D + 2)[x+ y] = 3et.
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Therefore, let’s try the substitution z(t) = x(t) + y(t). We want a function z(t) that satisfies

the two equations

z′(t) − z(t) = −3e−2t and z′(t) + 2z(t) = 3et, (5.9)

simultaneously. We start by solving the first equation given in (5.9). This is a linear differential

equation with constant coefficients which has the associated auxiliary equation r − 1 = 0.

Hence, the solution to the corresponding homogeneous equation is

zh(t) = Cet.

By the method of undetermined coefficients, we see that a particular solution will have the

form

zp(t) = Ae−2t ⇒ z′p = −2Ae−2t.

Substituting these expressions into the first differential equation given in (5.9) yields

z′p(t) − zp(t) = −2Ae−2t − Ae−2t = −3Ae−2t = −3e−2t ⇒ A = 1.

Thus, the first equation given in (5.9) has the general solution

z(t) = Cet + e−2t.

Now, substituting z(t) into the second equation in (5.9) gives

Cet − 2e−2t + 2
(
Cet + e−2t

)
= 3et ⇒ 3Cet = 3et .

Hence, C must be 1. Therefore, z(t) = et + e−2t is the only solution that satisfies both

differential equations given in (5.9) simultaneously. Thus, any two differentiable functions

that satisfy the equation x(t) + y(t) = et + e−2t will satisfy the original system.

25. Writing the system in operator form yields

(D − 1)[x] − 2y + z = 0,

−x+D[y] − z = 0,

−4x+ 4y + (D − 5)[z] = 0.
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We use the second equation to express z in terms of x and y.

z = −x+D[y]. (5.10)

Substituting this expression into the other two equations, we obtain

(D − 1)[x] − 2y + (−x+D[y]) = 0,

−4x+ 4y + (D − 5)[−x+D[y]] = 0

⇒ (D − 2)[x] + (D − 2)[y]) = 0,

−(D − 1)[x] + (D2 − 5D + 4) [y] = 0.
(5.11)

Now we eliminate x by multiplying the first equation by (D − 1), the second equation – by

(D − 2), and adding the results. This yields{
(D − 1)(D − 2) + (D − 2)(D2 − 5D + 4)

}
[y] = 0

⇒ {
(D − 2)(D2 − 4D + 3)

}
[y] = 0 ⇒ {(D − 2)(D − 1)(D − 3)} [y] = 0.

The roots of the characteristic equation, (r − 2)(r − 1)(r − 3) = 0, are r = 1, 2, and 3. Thus,

a general solution for y is

y = c1e
t + c2e

2t + c3e
3t .

With h := x+ y, the first equation in (5.11) can be written in the form

(D − 2)[h] = 0 or h′ − 2h = 0,

which has a general solution h = Ke2t. Therefore,

x = h− y = −c1et + (K − c2)e
2t − c3e

3t .

To find K, we substitute the above solutions x(t) and y(t), with c1 = c3 = 0, into the second

equation in (5.11). Thus we get

−(D − 1)
[
(K − c2)e

2t
]
+
(
D2 − 5D + 4

) [
c2e

2t
]

= 0

⇒ −(K − c2)e
2t + (4(c2) − 5(2c2) + 4(c2)) e

2t = 0

⇒ −K − c2 = 0 ⇒ K = −c2 .
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Hence,

x = −c1et − 2c2e
2t − c3e

3t .

Finally, we find z using (5.10).

z = − (−c1et − 2c2e
2t − c3e

3t
)

+
(
c1e

t + c2e
2t + c3e

3t
)′

= 2c1e
t + 4c2e

2t + 4c3e
3t .

27. We eliminate z by expressing

z =
1

4
(−x′ + 4x) = −1

4
(D − 4)[x] (5.12)

from the first equation and substituting (5.12) into the second and third equations. We obtain

2

{
−1

4
(D − 4)[x]

}
+ (D − 4)[y] = 0,

2x+ 4y +D

[
−1

4
(D − 4)[x]

]
− 4

{
−1

4
(D − 4)[x]

}
= 0.

After some algebra, the above system simplifies to

−(D − 4)[x] + 2(D − 4)[y] = 0,(
D2 − 8D + 8

)
[x] − 16y = 0.

We use the second equation to find that

y =
1

16

(
D2 − 8D + 8

)
[x]. (5.13)

Then the first equation becomes

−(D − 4)[x] + 2(D − 4)

[
1

16

(
D2 − 8D + 8

)
[x]

]
= 0

⇒ (D − 4)

{
−1 +

1

8

(
D2 − 8D + 8

)}
[x] = 0 ⇒ (D − 4)D(D − 8)[x] = 0.

Solving the characteristic equation, we get r = 0, 4, and 8; so

x = c1e
8t + c2e

4t + c3 .

271



Chapter 5

Substitution of this solution into (5.12) and (5.13) yield

z =
1

4
(−x′ + 4x) = −c1e8t + c3 ,

y =
1

16
(x′′ − 8x′ + 8x) =

1

2

(
c1e

8t − c2e
4t + c3

)
.

29. We begin by expressing the system in operator notation

(D − λ)[x] + y = 0,

−3x+ (D − 1)[y] = 0.

We eliminate y by applying (D− 1) to the first equation and subtracting the second equation

from it. This gives

{(D − 1)(D − λ) − (−3)} [x] = 0

⇒ {
D2 − (λ+ 1)D + (λ+ 3)

}
[x] = 0. (5.14)

Note that since the given system is homogeneous, y(t) also satisfies this equation (compare

(7) and (8) on page 247 of the text). So, we can investigate solutions x(t) only. The auxiliary

equation, r2 − (λ+ 1)r + (λ+ 3) = 0, has roots

r1 =
(λ+ 1) −√

∆

2
, r2 =

(λ+ 1) +
√

∆

2
,

where the discriminant ∆ := (λ+ 1)2 − 4(λ+ 3). We consider two cases:

i) If λ+ 3 < 0, i.e. λ < −3, then ∆ > (λ+ 1)2 and the root

r2 >
(λ+ 1) + |λ+ 1|

2
= 0.

Therefore, the solution x(t) = er2t is unbounded as t→ +∞.

ii) If λ + 3 ≥ 0, i.e. λ ≥ −3, then ∆ ≤ (λ + 1)2. If ∆ < 0, then a fundamental solution set

to (5.14) is {
e(λ+1)t/2 cos

(√−∆t

2

)
, e(λ+1)t/2 sin

(√−∆t

2

)}
. (5.15)
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If ∆ ≥ 0, then
√

∆ < |λ+ 1| and a fundamental solution set is

{er1t, er2t} , if ∆ > 0,

{er1t, ter1t} , if ∆ = 0,
(5.16)

where both roots r1, r2 are non-positive if and only if λ ≤ −1. For λ = −1 we have

∆ = (−1 + 1)2 − 4(−1 + 3) < 0, and we have a particular case of the fundamental

solution set (5.15) (without exponential term) consisting of bounded functions. Finally,

if λ < −1, then r1 < 0, r2 ≤ 0, and all the functions listed in (5.15), (5.16) are bounded.

Any solution x(t) is a linear combination of fundamental solutions and, therefore, all solutions

x(t) are bounded if and only if −3 ≤ λ ≤ −1.

31. Solving this problem, we follow the arguments described in Section 5.1, page 242 of the text,

i.e., x(t), the mass of salt in the tank A, and y(t), the mass of salt in the tank B, satisfy the

system

dx

dt
= inputA − outputA ,

(5.17)
dy

dt
= inputB − outputB ,

with initial conditions x(0) = 0, y(0) = 20. It is important to notice that the volume of each

tank stays at 100 L because the net flow rate into each tank is the same as the net outflow.

Next we observe that “inputA” consists of the salt coming from outside, which is

0.2 kg/L · 6 L/min = 1.2 kg/min,

and the salt coming from the tank B, which is given by

y(t)

100
kg/L · 1 L/min =

y(t)

100
kg/min.

Thus,

inputA =

[
1.2 +

y(t)

100

]
kg/min.
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“outputA” consists of two flows: one is going out of the system and the other one is going to

the tank B. So,

outputA =
x(t)

100
kg/L · (4 + 3) L/min =

7x(t)

100
kg/min,

and the first equation in (5.17) becomes

dx

dt
= 1.2 +

y

100
− 7x

100
.

Similarly, the second equation in (5.17) can be written as

dy

dt
=

3x

100
− 3y

100
.

Rewriting this system in the operator form, we obtain

(D + 0.07)[x] − 0.01y = 1.2 ,

−0.03x+ (D + 0.03)[y] = 0 .
(5.18)

Eliminating y yields

{(D + 0.07)(D + 0.03) − (−0.01)(−0.03)} [x] = (D + 0.03)[1.2] = 0.036 ,

which simplifies to (
D2 + 0.1D + 0.0018

)
[x] = 0.036 . (5.19)

The auxiliary equation, r2 + 0.1r + 0.0018 = 0, has roots

r1 = − 1

20
−
√

1

400
− 18

10000
= − 1

20
−

√
7

100
=

−5 −√
7

100
≈ −0.0765 ,

r2 =
−5 +

√
7

100
≈ −0.0235 .

Therefore, the general solution the corresponding homogeneous equation is

xh(t) = C1e
r1t + C2e

r2t.

Since the nonhomogeneous term in (5.19) is a constant (0.036), we are looking for a particular

solution of the form xp(t) = A =const. Substituting into (5.19) yields

0.0018A = 0.036 ⇒ A = 20,
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and the general solution, x(t), is

x(t) = xh(t) + xp(t) = C1e
r1t + C2e

r2t + 20.

From the first equation in (5.18) we find

y(t) = 100 · {(D + 0.07)[x] − 1.2} = 100
dx

dt
+ 7x(t) − 120

= 100
{
r1C1e

r1t + r2C2e
r2t
}

+ 7
{
C1e

r1t + C2e
r2t + 20

}− 120

=
(
2 −

√
7
)
C1e

r1t +
(
2 +

√
7
)
C2e

r2t + 20.

The initial conditions imply

0 = x(0) = C1 + C2 + 20,

20 = y(0) =
(
2 −√

7
)
C1 +

(
2 +

√
7
)
C2 + 20

⇒ C1 + C2 = −20,(
2 −√

7
)
C1 +

(
2 +

√
7
)
C2 = 0

⇒ C1 = −
(

10 +
20√

7

)
, C2 = −

(
10 − 20√

7

)
.

Thus the solution to the problem is

x(t) = −
(

10 +
20√

7

)
er1t −

(
10 − 20√

7

)
er2t + 20 (kg),

y(t) =
30√

7
er1t − 30√

7
er2t + 20 (kg).

33. Since no solution flows in or out of the system from the tank B, we conclude that the solution

flows from the tank B to the tank A with the same rate as it does from A to B, that is, 1 L/min.

Furthermore, the solution flows in and out of the tank A with the same rate, 4 L/min, and so

the volume of the solution in the tank A (as well as in the tank B) remains constant, 100 L.

Thus, with x(t) and y(t) denoting the amount of salt in the tanks A and B, respectively, the

law “rate of change = input rate − output rate” becomes

Tank A:

x′ =
(
4 L/min · 0.2 kg/L + 1 L/min · y

100
kg/L

)
− x

100
kg/L · (1 L/min + 4 L/min);
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Tank B:

y′ = 1 L/min · x

100
kg/L − 1 L/min · y

100
kg/L.

Hence, we obtain the system

x′ = 0.8 − x

20
+

y

100
,

y′ =
x

100
− y

100
.

From the second equation, we find that x = 100y′ + y. Substitution into the first equation

yields

(100y′ + y)
′
= 0.8 − 100y′ + y

20
+

y

100

⇒ 100y′′ + 6y′ +
1

25
y = 0.8 ⇒ y′′ + 0.06y′ + 0.0004y = 0.008 . (5.20)

The characteristic equation r2+0.06r+0.0004 = 0 of the corresponding homogeneous equation

has roots

r =
−0.06 ±√(0.06)2 − 4(1)(0.0004)

2
=

−3 ±√
5

100
,

and so

yh(t) = c1e
(−3−√

5)t/100 + c2e
(−3+

√
5)t/100

is a general solution to the homogeneous equation. We now look for a particular solution of

the form yp(t) = c. Substitution into (5.20) gives

0.0004c = 0.008 ⇒ c =
0.008

0.0004
= 20.

Thus

y(t) = yp(t) + yh(t) = 20 + c1e
(−3−√

5)t/100 + c2e
(−3+

√
5)t/100 (5.21)

is a general solution to (5.20). Then

x(t) = y + 100y′ = 20 + (1 − 3 −
√

5)c1e
(−3−√

5)t/100 + (1 − 3 +
√

5)c2e
(−3+

√
5)t/100

= 20 − (2 +
√

5)c1e
(−3−√

5)t/100 + (−2 +
√

5)c2e
(−3+

√
5)t/100 . (5.22)
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Next, we use the initial condition, x(0) = 0, y(0) = 20, to find values of c1 and c2.

20 − (2 +
√

5)c1 + (−2 +
√

5)c2 = 0,

20 + c1 + c2 = 20
⇒ c1 = 10/

√
5 ,

c2 = −10/
√

5.

With these values, the solution given in (5.21), (5.22) becomes

x(t) = 20 −
(

20 + 10
√

5√
5

)
e(−3−√

5)t/100 +

(
20 − 10

√
5√

5

)
e(−3+

√
5)t/100 ,

y(t) = 20 +

(
10√

5

)
e(−3−√

5)t/100 −
(

10√
5

)
e(−3+

√
5)t/100 .

35. Let x(t) and y(t) denote the temperatures at time t in zones A and B, respectively. Therefore,

the rate of change of temperature in zone A will be x′(t) and in zone B will be y′(t). We

can apply Newton’s law of cooling to help us express these rates of change in an alternate

manner. Thus, we observe that the rate of change of the temperature in zone A due to the

outside temperature is k1[100− x(t)] and due to the temperature in zone B is k2[y(t)− x(t)].

Since the time constant for heat transfer between zone A and the outside is 2 hrs (= 1/k1),

we see that k1 = 1/2. Similarly, we see that 1/k2 = 4 which implies that k2 = 1/4. Therefore,

since there is no heating or cooling source in zone A, we can write the equation for the rate

of change of the temperature in the attic as

x′(t) =
1

2
[100 − x(t)] +

1

4
[y(t) − x(t)].

In the same way, we see that the rate of change of the temperature in zone B due to the

temperature of the attic is k3[x(t) − y(t)], where 1/k3 = 4; and the rate of change of the

temperature in this zone due to the outside temperature is k4[100 − y(t)], where 1/k4 = 4.

In this zone, however, we must consider the cooling due to the air conditioner. Since the

heat capacity of zone B is (1/2)◦F per thousand Btu and the air conditioner has the cooling

capacity of 24 thousand Btu per hr, we see that the air conditioner removes heat from this

zone at the rate of (1/2) × 24◦ = 12◦ F/hr. (Since heat is removed from the house, this rate

will be negative.) By combining these observations, we see that the rate of change of the

temperature in zone B is given by

y′(t) = −12 +
1

4
[x(t) − y(t)] +

1

4
[100 − y(t)].
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By simplifying these equations, we observe that this cooling problem satisfies the system

4x′(t) + 3x(t) − y(t) = 200,

−x′(t) + 4y′(t) + 2y(t) = 52.

In operator notation, this system becomes

(4D + 3)[x] − [y] = 200,

−[x] + (4D + 2)[y] = 52.

Since we are interested in the temperature in the attic, x(t), we will eliminate the function

y(t) from the system above by applying (4D+2) to the first equation and adding the resulting

equations to obtain

{(4D + 2)(4D + 3) − 1} [x] = (4D + 2)[200] + 52 = 452

⇒ (
16D2 + 20D + 5

)
[x] = 452. (5.23)

This last equation is a linear equation with constant coefficients whose corresponding homo-

geneous equation has the associated auxiliary equation 16r2 + 20r + 5 = 0. By the quadratic

formula, the roots to this auxiliary equation are

r1 =
−5 +

√
5

8
≈ −0.345 and r2 =

−5 −√
5

8
≈ −0.905 .

Therefore, the homogeneous equation associated with this equation has a general solution

given by

xh(t) = c1e
r1t + c2e

r2t,

where r1 and r2 are given above. By the method of undetermined coefficients, we observe that

a particular solution to equation (5.23) will have the form

xp(t) = A ⇒ x′p(t) = 0 ⇒ x′′p(t) = 0.

Substituting these expressions into equation (5.23) yields

16x′′p + 20x′p + 5xp = 5A = 452 ⇒ A = 90.4 .
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Thus, a particular solution to the differential equation given in (5.23) is xp(t) = 90.4 and the

general solution to this equation will be

x(t) = c1e
r1t + c2e

r2t + 90.4 ,

where r1 = (−5 +
√

5)/8 and r2 = (−5 −√
5)/8. To determine the maximum temperature of

the attic, we will assume that zones A and B have sufficiently cool initial temperatures. (So

that, for example, c1 and c2 are negative.) Since r1 and r2 are negative, as t goes to infinity,

c1e
r1t and c2e

r2t each go to zero. Therefore, the maximum temperature that can be attained

in the attic will be

lim
t→∞

x(t) = 90.4◦ F.

37. In this problem, we combine the idea exploded in interconnected tanks problems,

rate of change = rate in − rate out, (5.24)

with the Newton’s law of cooling

dT

dt
= K(T −M). (5.25)

Let x(t) and y(t) denote temperatures in rooms A and B, respectively.

Room A. It gets temperature only from the heater with a rate

rate in = 80, 000 Btu/h · 1/4◦

1000 Btu
= 20◦/h.

Temperature goes out of the room A into the room B and outside with different coeffi-

cients of proportionality in (5.25): K1 = 1/2 and K2 = 1/4, respectively. Therefore,

rate out = rate into B + rate outside

=
1

2
(x− y) +

1

4
(x− 0) =

3

4
x− 1

2
y.

Thus, (5.24) implies that

x′ = 20 −
(

3

4
x− 1

2
y

)
= 20 − 3

4
x+

1

2
y.
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Room B. Similarly, we obtain

y′ =

[
1000 · 2

1000
+

1

2
(x− y)

]
− 1

5
(y − 0) = 2 +

1

2
x− 7

10
y.

Hence, the system governing the temperature exchange is

x′ = 20 − (3/4)x+ (1/2)y,

y′ = 2 + (1/2)x− (7/10)y.

We find the critical points of this system by solving

20 − (3/4)x+ (1/2)y = 0,

2 + (1/2)x− (7/10)y = 0
⇒ 3x− 2y = 80,

−5x+ 7y = 20
⇒ x = 600/11 ,

y = 460/11 .

Therefore, (600/11, 460/11) is the only critical point of the system. Analyzing the direction

field, we conclude that (600/11, 460/11) is an asymptotically stable node. Hence,

lim
t→∞

y(t) =
460

11
≈ 41.8◦F.

(One can also find an explicit solution y(t) = 460/11 + c1e
r1t + c2e

r2t, where r1 < 0, r2 < 0,

to conclude that y(t) → 460/11 as t→ ∞.)

39. Let y be an arbitrary function differentiable as many times as necessary. Note that, for a

differential operator, say, A, A[y] is a function, and so we can use commutative, associative,

and distributive laws operating such functions.

(a) It is straightforward that

(A+B)[y] := A[y] +B[y] = B[y] + A[y] =: (B + A)[y].

To prove commutativity of the multiplication, we will use the linearity of the differential

operator D, that is, D[αx+βy] = αD[x]+βD[y] and the fact that DiDj = Di+j = DjDi.

For the latter,

(
DiDj

)
[y] := Di

[
Dj[y]

]
=
(
y(j)
)(i)

= y(i+j) =
(
y(i)
)(j)

= Dj
[
Di[y]

]
=:
(
DjDi

)
[y].
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Thus we have

(AB)[y] :=A
[
B[y]

]
=

(
2∑

j=0

ajD
j

)[(
2∑

i=0

biD
i

)
[y]

]

:=

(
2∑

j=0

ajD
j

)[
2∑

i=0

biD
i[y]

]
:=

2∑
j=0

{
ajD

j

[
2∑

i=0

biD
i[y]

]}

=
2∑

j=0

2∑
i=0

(
ajD

jbiD
i
)
[y] =

2∑
i=0

2∑
j=0

(
biD

iajD
j
)
[y]

=

2∑
i=0

{
biD

i

[
2∑

j=0

ajD
j[y]

]}
=:

(
2∑

i=0

biD
i

)[
2∑

j=0

ajD
j[y]

]

=:

(
2∑

i=0

biD
i

)[(
2∑

j=0

ajD
j

)
[y]

]
= B

[
A[y]

]
=: (BA)[y].

(b) We have

{(A +B) + C} [y] := (A+B)[y] + C[y] := (A[y] +B[y]) + C[y]

= A[y] + (B[y] + C[y]) =: A[y] + (B + C)[y] =: {A+ (B + C)} [y]

and

{(AB)C} [y] := (AB)
[
C[y]

]
:= A

[
B
[
C[y]

]]
=: A

[
(BC)[y]

]
=: {A(BC)} [y].

(c) Using the linearity of differential operators, we obtain

{A(B + C)} [y] := A
[
(B + C)[y]

]
:= A

[
B[y] + C[y]

]
= A

[
B[y]

]
+A
[
C[y]

]
=: (AB)[y] + (AC)[y] =: {(AB) + (AC)} [y].

41. As it was noticed in Example 2, we can treat a “polynomial” in D, that is, an expression

of the form p(D) =
∑n

i=0 aiD
i, as a regular polynomial, i.e., p(r) =

∑n
i=0 air

i, while per-

forming arithmetic operations. Hence, the factorization problem for p(D) is equivalent to the

factorization problem for p(r), which is the same as finding its roots.

(a) r =
−3 ±√32 − 4(−4)

2
=

−3 ± 5

2
= −4, 1 ⇒ D2 + 3D − 4 = (D + 4)(D − 1).
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(b) r =
−1 ±√12 − 4(−6)

2
=

−1 ± 5

2
= −3, 2 ⇒ D2 +D − 6 = (D + 3)(D − 2).

(c) r =
−9 ±√92 − 4(−5)2

4
=

−9 ± 11

4
= −5, 1/2 ⇒ 2D2 +9D−5 = (D+5)(2D−1).

(d) r = ±
√

2 ⇒ D2 − 2 = (D +
√

2)(D −√
2).

EXERCISES 5.3: Solving Systems and Higher–Order Equations Numerically, page 261

1. We isolate y′′(t) first and obtain an equivalent equation

y′′(t) = 3y(t) − ty′(t) + t2 .

Denoting x1 := y, x2 := y′ we conclude that

x′1 = y′ = x2 ,

x′2 = (y′)′ = y′′ = 3y − ty′ + t2 = 3x1 − tx2 + t2 ,

with initial conditions x1(0) = y(0) = 3, x2(0) = y′(0) = −6. Therefore, given initial value

problem is equivalent to

x′1 = x2 ,

x′2 = 3x1 − tx2 + t2 ,

x1(0) = 3, x2(0) = −6.

3. Isolating y(4)(t), we get

y(4)(t) = y(3)(t) − 7y(t) + cos t .

In this problem, we need four new variables – for y(t), y′(t), y′′(t), and y(3)(t). Thus we denote

x1 = y, x2 = y′ , x3 = y′′ , and x4 = y(3) .

The initial conditions then become

x1(0) = y(0) = 1, x2(0) = y′(0) = 1, x3(0) = y′′(0) = 0, x4(0) = y(3)(0) = 2.

We have

x′1 = y′ = x2 ,
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x′2 = (y′)′ = y′′ = x3 ,

x′3 = (y′′)′ = y(3) = x4 ,

x′4 =
(
y(3)
)′

= y(4) = y(3) − 7y + cos t = x4 − 7x1 + cos t .

Hence, the required initial value problem for a system in normal form is

x′1 = x2 ,

x′2 = x3 ,

x′3 = x4 ,

x′4 = x4 − 7x1 + cos t,

x1(0) = x2(0) = 1, x3(0) = 0, x4(0) = 2 .

5. First we express the given system as

x′′ = x′ − y + 2t,

y′′ = x− y − 1.

Setting x1 = x, x2 = x′, x3 = y, x4 = y′ we obtain

x′1 = x′ = x2 ,

x′2 = x′′ = x2 − x3 + 2t ,

x′3 = y′ = x4 ,

x′4 = y′′ = x1 − x3 − 1

⇒

x′1 = x2 ,

x′2 = x2 − x3 + 2t ,

x′3 = x4 ,

x′4 = x1 − x3 − 1

with initial conditions x1(3) = 5, x2(3) = 2, x3(3) = 1, and x4(3) = −1.

7. In an equivalent form, we have a system

x′′′ = y + t,

y′′ =
2y − 2x′′ + 1

5
.

Setting

x1 = x, x2 = x′, x3 = x′′, x4 = y, x5 = y′,
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we obtain a system in normal form

x′1 = x2 ,

x′2 = x3 ,

x′3 = x4 + t ,

x′4 = x5 ,

x′5 =
1

5
(2x4 − 2x3 + 1)

with initial conditions

x1(0) = x2(0) = x3(0) = 4, x4(0) = x5(0) = 1.

9. To see how the improved Euler’s method can be extended let’s recall, from Section 3.6, the

improved Euler’s method (pages 127–128 of the text). For the initial value problem

x′ = f(t, x), x(t0) = x0 ,

the recursive formulas for the improved Euler’s method are

tn+1 = tn + h,

xn+1 = xn +
h

2
[f(tn, xn) + f(tn + h, xn + hf(tn, xn))] ,

where h is the step size. Now suppose we want to approximate the solution x1(t), x2(t) to the

system

x′1 = f1(t, x1, x2) and x′2 = f2(t, x1, x2),

that satisfies the initial conditions

x1(t0) = a1, x2(t0) = a2 .

Let x1;n and x2;n denote approximations to x1(tn) and x2(tn), respectively, where tn = t0 +nh

for n = 0, 1, 2, . . .. The recursive formulas for the improved Euler’s method are obtained by

forming the vector analogue of the scalar formula. We obtain

tn+1 = tn + h,
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x1;n+1 = x1;n +
h

2
[f1(tn, x1;n, x2;n)

+f1(tn + h, x1;n + hf1(tn, x1;n, x2;n), x2;n + hf2(tn, x1;n, x2;n))],

x2;n+1 = x2;n +
h

2
[f2(tn, x1;n, x2;n)

+f2(tn + h, x1;n + hf1(tn, x1;n, x2;n), x2;n + hf2(tn, x1;n, x2;n))].

The approach can be used more generally for systems of m equations in normal form.

Suppose we want to approximate the solution x1(t), x2(t), . . ., xm(t) to the system

x′1 = f1 (t, x1, x2, . . . , xm) ,

x′2 = f2 (t, x1, x2, . . . , xm) ,
...

x′m = fm (t, x1, x2, . . . , xm) ,

with the initial conditions

x1(t0) = a1 , x2(t0) = a2 , . . . , xm(t0) = am .

We adapt the recursive formulas above to obtain

tn+1 = tn + h, n = 0, 1, 2, . . . ;

x1;n+1 = x1;n +
h

2
[f1(tn, x1;n, x2;n, . . . , xm;n) + f1(tn + h, x1;n + hf1(tn, x1;n, x2;n, . . . , xm;n),

x2;n + hf2(tn, x1;n, x2;n, . . . , xm;n), . . . , xm;n + hfm(tn, x1;n, x2;n, . . . , xm;n))] ,

x2;n+1 = x2;n +
h

2
[f2(tn, x1;n, x2;n, . . . , xm;n) + f2(tn + h, x1;n + hf1(tn, x1;n, x2;n, . . . , xm;n),

x2;n + hf2(tn, x1;n, x2;n, . . . , xm;n), . . . , xm;n + hfm(tn, x1;n, x2;n, . . . , xm;n))] ,

...

xm;n+1 = xm;n +
h

2
[fm(tn, x1;n, x2;n, . . . , xm;n) + fm(tn + h, x1;n + hf1(tn, x1;n, x2;n, . . . , xm;n),

x2;n + hf2(tn, x1;n, x2;n, . . . , xm;n), . . . , xm;n + hfm(tn, x1;n, x2;n, . . . , xm;n))] .

11. See the answer in the text.
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13. See the answer in the text.

15. See the answer in the text.

17. Let x1 := u and x2 := v, and denote the independent variable by t (in order to be consistent

with formulas in Section 5.3). In new notation, we have an initial value problem

x′1 = 3x1 − 4x2 ,

x′2 = 2x1 − 3x2 ,

x1(0) = x2(0) = 1

for a system in normal form. Here

f1(t, x1, x2) = 3x1 − 4x2 , f2(t, x1, x2) = 2x1 − 3x2 .

Thus formulas for ki,j’s in vectorized Runge-Kutta algorithm become

k1,1 = h(3x1;n − 4x2;n),

k2,1 = h(2x1;n − 3x2;n),

k1,2 = h

[
3

(
x1;n +

k1,1

2

)
− 4

(
x2;n +

k2,1

2

)]
,

k2,2 = h

[
2

(
x1;n +

k1,1

2

)
− 3

(
x2;n +

k2,1

2

)]
,

k1,3 = h

[
3

(
x1;n +

k1,2

2

)
− 4

(
x2;n +

k2,2

2

)]
,

k2,3 = h

[
2

(
x1;n +

k1,2

2

)
− 3

(
x2;n +

k2,2

2

)]
,

k1,4 = h [3 (x1;n + k1,3) − 4 (x2;n + k2,3)] ,

k2,4 = h [2 (x1;n + k1,3) − 3 (x2;n + k2,3)] .

With the inputs t0 = 0, x1;0 = x2;0 = 1, and step size h = 1 we compute

k1,1 = h(3x1;0 − 4x2;0) = 3(1) − 4(1) = −1,

k2,1 = h(2x1;0 − 3x2;0) = 2(1) − 3(1) = −1,

k1,2 = h

[
3

(
x1;0 +

k1,1

2

)
− 4

(
x2;0 +

k2,1

2

)]
= 3

(
1 +

−1

2

)
− 4

(
1 +

−1

2

)
= −1

2
,
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k2,2 = h

[
2

(
x1;0 +

k1,1

2

)
− 3

(
x2;0 +

k2,1

2

)]
= 2

(
1 +

−1

2

)
− 3

(
1 +

−1

2

)
= −1

2
,

k1,3 = h

[
3

(
x1;0 +

k1,2

2

)
− 4

(
x2;0 +

k2,2

2

)]
= 3

(
1 +

−1/2

2

)
− 4

(
1 +

−1/2

2

)
= −3

4
,

k2,3 = h

[
2

(
x1;0 +

k1,2

2

)
− 3

(
x2;0 +

k2,2

2

)]
= 2

(
1 +

−1/2

2

)
− 3

(
1 +

−1/2

2

)
= −3

4
,

k1,4 = h [3 (x1;0 + k1,3) − 4 (x2;0 + k2,3)] = 3

(
1 +

−3

4

)
− 4

(
1 +

−3

4

)
= −1

4
,

k2,4 = h [2 (x1;0 + k1,3) − 3 (x2;0 + k2,3)] = 2

(
1 +

−3

4

)
− 3

(
1 +

−3

4

)
= −1

4
.

Using the recursive formulas, we find t1 = t0 + h = 0 + 1 = 1 and

x1;1 = x1;0 +
1

6
(k1,1 + 2k1,2 + 2k1,3 + k1,4) = 1 +

(−1) + 2(−1/2) + 2(−3/4) + (−1/4)

6
=

3

8
,

x2;1 = x2;0 +
1

6
(k2,1 + 2k2,2 + 2k2,3 + k2,4) = 1 +

(−1) + 2(−1/2) + 2(−3/4) + (−1/4)

6
=

3

8

as approximations to x1(1) and x2(1) with step h = 1.

We repeat the algorithm with h = 2−m, m = 1, 2, . . . . The results of these computations are

listed in Table 5-A.

Table 5–A: Approximations of the solution to Problem 17.

mmm h = 2−mh = 2−mh = 2−m x1(1;h)x1(1;h)x1(1;h) x2(1;h)x2(1;h)x2(1;h)

0 1.0 0.375 0.375
1 0.5 0.36817 0.36817
2 0.25 0.36789 0.36789

We stopped at m = 2, since

∣∣x1(1; 2−1) − x1(1; 2−2)
∣∣ = ∣∣x2(1; 2−1) − x2(1; 2−2)

∣∣ = 0.36817 − 0.36789 = 0.00028 < 0.001 .

Hence u(1) = v(1) ≈ 0.36789 .
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18. For starting values we take t0 = 0, x0,1 = 10, and x0,2 = 15, which are determined by the

initial conditions. Here h = 0.1, and

f1(t, x1, x2) = −(0.1)x1x2 ,

f2(t, x1, x2) = −x1 .

Now, using the definitions of tn, xi;n, ki,1, ki,2, ki,3, and ki,4 on page 258 of the text, we have

k1,1 = hf1 (tn, x1;n, x2;n) = −h(0.1)x1;nx2;n ,

k2,1 = hf2 (tn, x1;n, x2;n) = −hx1;n,

k1,2 = hf1

(
tn +

h

2
, x1;n +

k1,1

2
, x2;n +

k2,1

2

)
= −h(0.1)

(
x1;n +

k1,1

2

)(
x2;n +

k2,1

2

)
,

k2,2 = hf2

(
tn +

h

2
, x1;n +

k1,1

2
, x2;n +

k2,1

2

)
= −h

(
x1;n +

k1,1

2

)
,

k1,3 = hf1

(
tn +

h

2
, x1;n +

k1,2

2
, x2;n +

k2,2

2

)
= −h(0.1)

(
x1;n +

k1,2

2

)(
x2;n +

k2,2

2

)
,

k2,3 = hf2

(
tn +

h

2
, x1;n +

k1,2

2
, x2;n +

k2,2

2

)
= −h

(
x1;n +

k1,2

2

)
,

k1,4 = hf1 (tn + h, x1;n + k1,3, x2;n + k2,3) = −h(0.1) (x1;n + k1,3) (x2;n + k2,3) ,

k2,4 = hf2 (tn + h, x1;n + k1,3, x2;n + k2,3) = −h (x1;n + k1,3) .

Using these values, we find

tn+1 = tn + h = tn + 0.1 ,

x1;n+1 = x1;n +
1

6
(k1,1 + 2k1,2 + 2k1,3 + k1,4) ,

x2;n+1 = x2;n +
1

6
(k2,1 + 2k2,2 + 2k2,3 + k2,4) .

In Table 5-B we give approximate values for tn, x1;n, and x2;n .

From Table 5-B we see that the strength of the guerrilla troops, x1, approaches zero, therefore

with the combat effectiveness coefficients of 0.1 for guerrilla troops and 1 for conventional

troops the conventional troops win.

19. See the answer in the text.
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Table 5–B: Approximations of the solutions to Problem 18.

tttnnn x1;n ≈x1;n ≈x1;n ≈ x2;n ≈x2;n ≈x2;n ≈

0 10 15
0.1 3.124 9.353
0.2 1.381 7.254
0.3 0.707 6.256
0.4 0.389 5.726
0.5 0.223 5.428

21. First, we convert given initial value problem to an initial value problem for a normal system.

Let x1(t) = H(t), x2(t) = H ′(t). Then H ′′(t) = x′2(t), x1(0) = H(0) = 0, x2(0) = H ′(0) = 0,

and we get

x′1 = x2 ,

60 − x1 = (77.7)x′2 + (19.42)x2
2 ,

x1(0) = x2(0) = 0

⇒
x′1 = x2 ,

x′2 = [60 − x1 − (19.42)x2
2] /77.7 ,

x1(0) = x2(0) = 0.

Thus f1(t, x1, x2) = x2, f2(t, x1, x2) = [60 − x1 − (19.42)x2
2] /77.7, t0 = 0, x1;0 = 0, and

x2;0 = 0. With h = 0.5, we need (5 − 0)/0.5 = 10 steps to approximate the solution over the

interval [0, 5]. Taking n = 0 in the vectorized Runge-Kutta algorithm, we approximate the

solution at t = 0.5.

k1,1 = hx2;0 = 0.5(0) = 0,

k2,1 = h
[
60 − x1;0 − (19.42)x2

2;0

]
/77.7 = 0.5

[
60 − (0) − (19.42)(0)2

]
/77.7 = 0.38610 ,

k1,2 = h

(
x2;0 +

k2,1

2

)
= 0.5

(
(0) +

0.38610

2

)
= 0.09653 ,

k2,2 = h

[
60 −

(
x1;0 +

k1,1

2

)
− (19.42)

(
x2;0 +

k2,1

2

)2
]
/77.7 = 0.38144 ,

k1,3 = h

(
x2;0 +

k2,2

2

)
= 0.5

(
(0) +

0.38144

2

)
= 0.09536 ,
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k2,3 = h

[
60 −

(
x1;0 +

k1,2

2

)
− (19.42)

(
x2;0 +

k2,2

2

)2
]
/77.7 = 0.38124 ,

k1,4 = h (x2;0 + k2,3) = 0.5 ((0) + 0.38124) = 0.19062 ,

k2,4 = h
[
60 − (x1;0 + k1,3) − (19.42) (x2;0 + k2,3)

2] /77.7 = 0.36732 .

Using the recursive formulas, we find

t1 = t0 + h = 0 + 0.5 = 0.5

x1(0.5) ≈ x1;1 = x1;0 +
1

6
(k1,1 + 2k1,2 + 2k1,3 + k1,4) = 0.09573 ,

x2(0.5) ≈ x2;1 = x2;0 +
1

6
(k2,1 + 2k2,2 + 2k2,3 + k2,4) = 0.37980 .

Next, we repeat the procedure with n = 1, 2, . . . , 9. The results of these computations (the

values of x1;n only) are presented in Table 5-C.

Table 5–C: Approximations of the solution to Problem 21.

nnn tttnnn x1;n ≈ H(tn)x1;n ≈ H(tn)x1;n ≈ H(tn) nnn tttnnn x1;n ≈ H(tn)x1;n ≈ H(tn)x1;n ≈ H(tn)

0 0 0 6 3.0 2.75497
1 0.5 0.09573 7 3.5 3.52322
2 1.0 0.37389 8 4.0 4.31970
3 1.5 0.81045 9 4.5 5.13307
4 2.0 1.37361 10 5.0 5.95554
5 2.5 2.03111

23. Let x1 = y and x2 = y′ to give the initial value problem

x′1 = f1(t, x1, x2) = x2 ,

x′2 = f2(t, x1, x2) = −x1 (1 + rx2
1) ,

x1(0) = a,

x2(0) = 0.

Now, using the definitions of tn, xi;n, ki,1, ki,2, ki,3, and ki,4 on page 258 of the text, we have

k1,1 = hf1 (tn, x1;n, x2;n) = hx2;n ,
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k2,1 = hf2 (tn, x1;n, x2;n) = −hx1;n

(
1 + rx2

1;n

)
,

k1,2 = hf1

(
tn +

h

2
, x1;n +

k1,1

2
, x2;n +

k2,1

2

)
= h

(
x2;n +

k2,1

2

)
,

k2,2 = hf2

(
tn +

h

2
, x1;n +

k1,1

2
, x2;n +

k2,1

2

)
= −h

(
x1;n +

k1,1

2

)[
1 + r

(
x1;n +

k1,1

2

)2
]
,

k1,3 = hf1

(
tn +

h

2
, x1;n +

k1,2

2
, x2;n +

k2,2

2

)
= h

(
x2;n +

k2,2

2

)
,

k2,3 = hf2

(
tn +

h

2
, x1;n +

k1,2

2
, x2;n +

k2,2

2

)
= −h

(
x1;n +

k1,2

2

)[
1 + r

(
x1;n +

k1,2

2

)2
]
,

k1,4 = hf1 (tn + h, x1;n + k1,3, x2;n + k2,3) = h (x2;n + k2,3),

k2,4 = hf2 (tn + h, x1;n + k1,3, x2;n + k2,3) = −h (x1;n + k1,3)
[
1 + r (x1;n + k1,3)

2].
Using these values, we find

tn+1 = tn + h = tn + 0.1 ,

x1;n+1 = x1;n +
1

6
(k1,1 + 2k1,2 + 2k1,3 + k1,4) ,

x2;n+1 = x2;n +
1

6
(k2,1 + 2k2,2 + 2k2,3 + k2,4) .

In Table 5-D we give the approximate period for r = 1 and 2 with a = 1, 2 and 3, from this

we see that the period varies as r is varied or as a is varied.

Table 5–D: Approximate period of the solution to Problem 23.

rrr a = 1a = 1a = 1 a = 2a = 2a = 2 a = 3a = 3a = 3

1 4.8 3.3 2.3
2 4.0 2.4 1.7

25. With x1 = y, x2 = y′, and x3 = y′′, the initial value problem can be expressed as the system

x′1 = x2 ,

x′2 = x3 ,

x′3 = t− x3 − x2
1 ,

x1(0) = 1,

x2(0) = 1,

x3(0) = 1.
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Here

f1(t, x1, x2, x3) = x2 ,

f2(t, x1, x2, x3) = x3 ,

f3(t, x1, x2, x3) = t− x3 − x2
1 .

Since we are computing the approximations for c = 1, the initial value for h in Step 1 of the

algorithm in Appendix E of the text is h = (1 − 0)2−0 = 1. The equations in Step 3 are

k1,1 = hf1 (t, x1, x2, x3) = hx2 ,

k2,1 = hf2 (t, x1, x2, x3) = hx3 ,

k3,1 = hf3 (t, x1, x2, x3) = h
(
t− x3 − x2

1

)
,

k1,2 = hf1

(
t+

h

2
, x1 +

k1,1

2
, x2 +

k2,1

2
, x3 +

k3,1

2

)
= h

(
x2 +

k2,1

2

)
,

k2,2 = hf2

(
t+

h

2
, x1 +

k1,1

2
, x2 +

k2,1

2
, x3 +

k3,1

2

)
= h

(
x3 +

k3,1

2

)
,

k3,2 = hf3

(
t+

h

2
, x1 +

k1,1

2
, x2 +

k2,1

2
, x3 +

k3,1

2

)
= h

[
t+

h

2
− x3 − k3,1

2
−
(
x1 +

k1,1

2

)2
]
,

k1,3 = hf1

(
t+

h

2
, x1 +

k1,2

2
, x2 +

k2,2

2
, x3 +

k3,2

2

)
= h

(
x2 +

k2,2

2

)
,

k2,3 = hf2

(
t+

h

2
, x1 +

k1,2

2
, x2 +

k2,2

2
, x3 +

k3,2

2

)
= h

(
x3 +

k3,2

2

)
,

k3,3 = hf3

(
t+

h

2
, x1 +

k1,2

2
, x2 +

k2,2

2
, x3 +

k3,2

2

)
= h

[
t+

h

2
− x3 − k3,2

2
−
(
x1 +

k1,2

2

)2
]
,

k1,4 = hf1 (t+ h, x1 + k1,3, x2 + k2,3, x3 + k3,3) = h (x2 + k2,3) ,

k2,4 = hf2 (t+ h, x1 + k1,3, x2 + k2,3, x3 + k3,3) = h (x3 + k3,3) ,

k3,4 = hf3 (t+ h, x1 + k1,3, x2 + k2,3, x3 + k3,3) = h
[
t+ h− x3 − k3,3 − (x1 + k1,3)

2] .
Using the starting values t0 = 0, a1 = 1, a2 = 0, and a3 = 1, we obtain the first approximations

x1(1; 1) = 1.29167 ,

x2(1; 1) = 0.28125 ,
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x3(1; 1) = 0.03125 .

Repeating the algorithm with h = 2−1, 2−2, 2−3 we obtain the approximations in Table 5-E.

Table 5–E: Approximations of the Solution to Problem 25.

nnn hhh y(1) ≈ x1(1; 2−n)y(1) ≈ x1(1; 2−n)y(1) ≈ x1(1; 2−n) x2(1; 2−n)x2(1; 2−n)x2(1; 2−n) x3(1; 2−n)x3(1; 2−n)x3(1; 2−n)

0 1.0 1.29167 0.28125 0.03125
1 0.5 1.26039 0.34509 −0.06642
2 0.25 1.25960 0.34696 −0.06957
3 0.125 1.25958 0.34704 −0.06971

We stopped at n = 3 since∣∣∣∣x1(1; 2−3) − x1(1; 2−2)

x1(1; 2−3)

∣∣∣∣ = ∣∣∣∣1.25958 − 1.25960

1.25958

∣∣∣∣ = 0.00002 < 0.01 ,∣∣∣∣x2(1; 2−3) − x2(1; 2−2)

x2(1; 2−3)

∣∣∣∣ = ∣∣∣∣0.34704 − 0.34696

0.34704

∣∣∣∣ = 0.00023 < 0.01 , and∣∣∣∣x3(1; 2−3) − x3(1; 2−2)

x3(1; 2−3)

∣∣∣∣ = ∣∣∣∣−0.06971 + 0.06957

−0.06971

∣∣∣∣ = 0.00201 < 0.01 .

Hence

y(1) ≈ x1

(
1; 2−3

)
= 1.25958 ,

with tolerance 0.01 .

27. See the answer in the text.

29. See the answer in the text.

EXERCISES 5.4: Introduction to the Phase Plane, page 274

1. Substitution of x(t) = e3t, y(t) = et into the system yields

dx

dt
=

d

dt

(
e3t
)

= 3e3t = 3
(
et
)3

= 3y3 ,
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dy

dt
=

d

dt

(
et
)

= et = y.

Thus, given pair of functions is a solution. To sketch the trajectory of this solution, we express

x as a function of y.

x = e3t =
(
et
)3

= y3 for y = et > 0.

Since y = et is an increasing function, the flow arrows are directed away from the origin. See

Figure B.29 in the answers of the text.

3. In this problem, f(x, y) = x− y, g(x, y) = x2 + y2 − 1. To find the critical point set, we solve

the system

x− y = 0,

x2 + y2 − 1 = 0
⇒ x = y,

x2 + y2 = 1.

Eliminating y yields

2x2 = 1 ⇒ x = ± 1√
2
.

Substituting x into the first equation, we find the corresponding value for y. Thus the critical

points of the given system are (1/
√

2, 1/
√

2) and (−1/
√

2,−1/
√

2).

5. In this problem,

f(x, y) = x2 − 2xy, g(x, y) = 3xy − y2,

and so we find critical points by solving the system

x2 − 2xy = 0,

3xy − y2 = 0
⇒ x(x− 2y) = 0,

y(3x− y) = 0.

From the first equation we conclude that either x = 0 or x = 2y. Substituting these values

into the second equation, we get

x = 0 ⇒ y[3(0) − y] = 0 ⇒ −y2 = 0 ⇒ y = 0;

x = 2y ⇒ y[3(2y)− y] = 0 ⇒ 5y2 = 0 ⇒ y = 0, x = 2(0) = 0.

Therefore, (0, 0) is the only critical point.
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6. We see by Definition 1 on page 266 of the text that we must solve the system of equations

given by

y2 − 3y + 2 = 0,

(x− 1)(y − 2) = 0.

By factoring the first equation above, we find that this system becomes

(y − 1)(y − 2) = 0,

(x− 1)(y − 2) = 0.

Thus, we observe that if y = 2 and x is any constant, then the system of differential equations

given in this problem will be satisfied. Therefore, one family of critical points is given by the

line y = 2. If y �= 2, then the system of equations above simplifies to y−1 = 0, and x−1 = 0.

Hence, another critical point is the point (1, 1).

7. Here f(x, y) = y − 1, g(x, y) = ex+y. Thus the phase plane equation becomes

dy

dx
=

ex+y

y − 1
=

exey

y − 1
.

Separating variables yields

(y − 1)e−ydy = exdx ⇒
∫

(y − 1)e−ydy =

∫
exdx

⇒ −ye−y + C = ex or ex + ye−y = C.

9. The phase plane equation for this system is

dy

dx
=
g(x, y)

f(x, y)
=
ex + y

2y − x
.

We rewrite this equation in symmetric form,

−(ex + y) dx+ (2y − x) dy = 0,

and check it for exactness.

∂M

∂y
=

∂

∂y
[−(ex + y)] = −1,
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∂N

∂x
=

∂

∂x
(2y − x) = −1.

Therefore, the equation is exact. We have

F (x, y) =

∫
N(x, y) dy =

∫
(2y − x) dy = y2 − xy + g(x);

M(x, y) =
∂

∂x
F (x, y) =

∂

∂x

(
y2 − xy + g(x)

)
= −y + g′(x) = − (ex + y)

⇒ g′(x) = −ex ⇒ g(x) =

∫
(−ex) dx = −ex .

Hence, a general solution to the phase plane equation is given implicitly by

F (x, y) = y2 − xy − ex = C or ex + xy − y2 = −C = c,

where c is an arbitrary constant.

11. In this problem, f(x, y) = 2y and g(x, y) = 2x. Therefore, the phase plane equation for given

system is
dy

dx
=

2x

2y
=
x

y
.

Separation variables and integration yield

y dy = x dx ⇒
∫
y dy =

∫
x dx

⇒ 1

2
y2 =

1

2
x2 + C ⇒ y2 − x2 = c.

Thus, the trajectories are hyperbolas if c �= 0 and, for c = 0, the lines y = ±x.
In the upper half-plane, y > 0, we have x′ = 2y > 0 and, therefore, x(t) increases. In the

lower half-plane, x′ < 0 and so x(t) decreases. This implies that solutions flow from the left

to the right in the upper half-plane and from the right to the left in the lower half-plane. See

Figure B.30 in the text.

13. First, we will find the critical points of this system. Therefore, we solve the system

(y − x)(y − 1) = 0,

(x− y)(x− 1) = 0.
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Notice that both of these equations will be satisfied if y = x. Thus, x = C and y = C, for

any fixed constant C, will be a solution to the given system of differential equations and one

family of critical points is the line y = x. We also see that we have a critical point at the

point (1, 1). (This critical point is, of course, also on the line y = x.)

Next we will find the integral curves. Therefore, we must solve the first order differential

equation given by

dy

dx
=
dy/dt

dx/dt
=

(x− y)(x− 1)

(y − x)(y − 1)
⇒ dy

dx
=

1 − x

y − 1
.

We can solve this last differential equation by the method of separation of variables. Thus,

we have ∫
(y − 1)dy =

∫
(1 − x)dx

⇒ y2

2
− y = x− x2

2
+ C

⇒ x2 − 2x+ y2 − 2y = 2C.

By completing the square, we obtain

(x− 1)2 + (y − 1)2 = c,

where c = 2C+2. Therefore, the integral curves are concentric circles with centers at the point

(1, 1), including the critical point for the system of differential equations. The trajectories

associated with the constants c = 1, 4, and 9, are sketched in Figure B.31 in the answers of

the text.

Finally we will determine the flow along the trajectories. Notice that the variable t imparts a

flow to the trajectories of a solution to a system of differential equations in the same manner

as the parameter t imparts a direction to a curve written in parametric form. We will find this

flow by determining the regions in the xy-plane where x(t) is increasing (moving from left to

right on each trajectory) and the regions where x(t) is decreasing (moving from right to left on

each trajectory). Therefore, we will use four cases to study the equation dx/dt = (y−x)(y−1),

the first equation in our system.
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Case 1 : y > x and y < 1. (This region is above the line y = x but below the line y = 1.)

In this case, y − x > 0 but y − 1 < 0. Thus, dx/dt = (y − x)(y − 1) < 0. Hence, x(t)

will be decreasing here. Therefore, the flow along the trajectories will be from right to

left and so the movement is clockwise.

Case 2 : y > x and y > 1. (This region is above the lines y = x and y = 1.) In this case,

we see that y− x > 0 and y− 1 > 0. Hence, dx/dt = (y− x)(y− 1) > 0. Thus, x(t) will

be increasing and the flow along the trajectories in this region will still be clockwise.

Case 3 : y < x and y < 1. (This region is below the lines y = x and y = 1.) In this case,

y−x < 0 and y−1 < 0. Thus, dx/dt > 0 and so x(t) is increasing. Thus, the movement

is from left to right and so the flow along the trajectories will be counterclockwise.

Case 4 : y < x and y > 1. (This region is below the line y = x but above the line y = 1.)

In this case, y − x < 0 and y − 1 > 0. Thus, dx/dt < 0 and so x(t) will be decreasing

here. Therefore, the flow is from right to left and, thus, counterclockwise here also.

Therefore, above the line y = x the flow is clockwise and below that line the flow is counter-

clockwise. See Figure B.31 in the answers of the text.

15. From Definition 1 on page 266 of the text, we must solve the system of equations given by

2x+ y + 3 = 0,

−3x− 2y − 4 = 0.

By eliminating y in the first equation we obtain

x+ 2 = 0

and by eliminating x in the first equation we obtain

−y + 1 = 0.

Thus, we observe that x = −2 and y = 1 will satisfy both equations. Therefore (−2, 1) is a

critical point.

From Figure B.32 in the answers of the text we see that all solutions passing near the point

(−2, 1) do not stay close to it therefore the critical point (−2, 1) is unstable.
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17. For critical points, we solve the system

f(x, y) = 0,

g(x, y) = 0
⇒ 2x+ 13y = 0,

−x− 2y = 0
⇒ 2(−2y) + 13y = 0,

x = 2y
⇒ y = 0,

x = 0.

Therefore, the system has just one critical point, (0, 0). The direction field is shown in

Figure B.33 in the text. From this picture we conclude that (0, 0) is a center (stable).

19. We set v = y′. Then y′′ = (y′)′ = v′ and so given equation is equivalent to the system

y′ = v,

v′ − y = 0
⇒ y′ = v,

v′ = y.

In this system, f(y, v) = v and g(y, v) = y. For critical points we solve

f(y, v) = v = 0,

g(y, v) = y = 0
⇒ y = 0,

v = 0

and conclude that, in yv-plane, the system has only one critical point, (0, 0). In the upper

half-plane, y′ = v > 0 and, therefore, y increases and solutions flow to the right; similarly,

solutions flow to the left in the lower half-plane. See Figure B.34 in the answers of the text.

The phase plane equation for the system is

dv

dy
=
dv/dx

dy/dx
=
y

v
⇒ v dv = y dy ⇒ v2 − y2 = c.

Thus, the integral curves are hyperbolas for c �= 0 and lines v = ±y for c = 0. On the line

v = −y, the solutions flow into the critical point (0, 0), whereas solutions flow away from (0, 0)

on v = y. So, (0, 0) is a saddle point (unstable).

21. First we convert the given equation into a system of first order equations involving the func-

tions y(t) and v(t) by using the substitution

v(t) = y′(t) ⇒ v′(t) = y′′(t).

Therefore, this equation becomes the system

y′ = v,

v′ = −y − y5 = −y (1 + y4) .
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To find the critical points, we solve the system of equations given by v = 0 and −y (1 + y4) = 0.

This system is satisfied only when v = 0 and y = 0. Thus, the only critical point is the point

(0, 0). To find the integral curves, we solve the first order equation given by

dv

dy
=
dv/dt

dy/dt
=

−y − y5

v
.

This is a separable equation and can be written as

v dv =
(−y − y5

)
dy ⇒ v2

2
= −y

2

2
− y6

6
+ C

⇒ 3v2 + 3y2 + y6 = c (c = 6C),

where we have integrated to obtain the second equation above. Therefore, the integral curves

for this system are given by the equations 3v2 + 3y2 + y6 = c for each positive constant c.

To determine the flow along the trajectories, we will examine the equation dy/dt = v. Thus,

we see that
dy

dt
> 0 when v > 0, and

dy

dt
< 0 when v < 0.

Therefore, y will be increasing when v > 0 and decreasing when v < 0. Hence, above the

y-axis the flow will be from left to right and below the x-axis the flow will be from right to

left. Thus, the flow on these trajectories will be clockwise (Figure B.35 in the answers of the

text). Thus (0, 0) is a center (stable).

23. With v = y′, v′ = y′′, the equation transforms to the system

y′ = v,

v′ + y − y4 = 0
⇒ y′ = v,

v′ = y4 − y.
(5.26)

Therefore, f(y, v) = v and g(y, v) = y4 − y = y(y3 − 1). We find critical points by solving

v = 0,

y(y3 − 1) = 0
⇒ v = 0,

y = 0 or y = 1.

Hence, system (5.26) has two critical points, (0, 0) and (1, 0).

In the upper half plane, y′ = v > 0 and so solutions flow to the right; similarly, solutions flow

to the left in the lower half-plane. See Figure B.36 in the text for the direction field. This
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figure indicates that (0, 0) is a stable critical point (center) whereas (1, 0) is a saddle point

(unstable).

25. This system has two critical points, (0, 0) and (1, 0), which are solutions to the system

y = 0,

−x+ x3 = 0.

The direction field for this system is depicted in Figure B.37. From this figure we conclude

that

(a) the solution passing through the point (0.25, 0.25) flows around (0, 0) and thus is periodic;

(b) for the solution (x(t), y(t)) passing through the point (2, 2), y(t) → ∞ as t→ ∞, and so

this solution is not periodic;

(c) the solution passing through the critical point (1, 0) is a constant (equilibrium) solution

and so is periodic.

27. The direction field for given system is shown in Figure B.38 in the answers of the text. From

the starting point, (1, 1), following the direction arrows the solution flows down and to the left,

crosses the x-axis, has a turning point in the fourth quadrant, and then does to the left and

up toward the critical point (0, 0). Thus we predict that, as t → ∞, the solution (x(t), y(t))

approaches (0, 0).

29. (a) The phase plane equation for this system is

dy

dx
=

3y

x
.

It is separable. Separating variables and integrating, we get

dy

y
=

3dx

x
⇒ ln |y| = 3 ln |x| + C ⇒ y = cx3 .

So, integral curves are cubic curves. Since in the right half-plane x′ = x > 0, in the left

half-plane x′ < 0, the solutions flow to the right in the right half-plane and to the left
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in the left half-plane. Solutions starting on the y-axis stay on it (x′ = 0); they flow up

if the initial point is in the upper half-plane (because y′ = y > 0) and flow down if the

initial point in the lower half-plane. This matches the figure for unstable node.

(b) Solving the phase plane equation for this system, we get

dy

dx
=

−4x

y
⇒ y dy = −4x dx ⇒ y2 + 4x2 = C.

Thus the integral curves are ellipses. (Also, notice that the solutions flow along these

ellipses in clockwise direction because x increases in the upper half-plane and decreases

in the lower half-plane.) Therefore, here we have a center (stable).

(c) Solving −5x + 2y > 0 and x − 4y > 0 we find that x increases in the half-plane y > 5x

and decreases in the half-plane y < 5x, and y increases in the half-plane y < x/4 and

decreases in the half-plane y > x/4. This leads to the scheme
↘ ↙
↗ ↖ for the solution’s

flows. Thus all solutions approach the critical point (0, 0), as t→ ∞, which corresponds

to a stable node.

(d) An analysis, similar to that in (c), shows that all the solutions flow away from (0, 0).

Among pictures shown in Figure 5.7, only the unstable node and the unstable spiral have

this feature. Since the unstable node is the answer to (a), we have the unstable spiral in

this case.

(e) The phase plane equation
dy

dx
=

4x− 3y

5x− 3y
,

has two linear solutions, y = 2x and y = 2x/3. (One can find them by substituting

y = ax into the above phase plane equation and solving for a.) Solutions starting from

a point on y = 2x in the first quadrant, have x′ = 5x − 3(2x) = −x < 0 and so flow

toward (0, 0); similarly, solutions, starting from a point on this line in the third quadrant,

have x′ = −x > 0 and, again, flow to (0, 0). On the other line, y = 2x/3, the picture

is opposite: in the first quadrant, x′ = 5x − 3(2x/3) = 3x > 0, and x′ < 0 in the third

quadrant. Therefore, there are two lines, passing through the critical point (0, 0), such
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that solutions to the system flow into (0, 0) on one of them and flow away from (0, 0) on

the other. This is the case of a saddle (unstable) point.

(f) The only remaining picture is the asymptotically stable spiral. (One can also get a

diagram
↙ ↖
↘ ↗ for solution’s flows with just one matching picture in Figure 5.7.)

31. (a) Setting y′ = v and so y′′ = v′, we transform given equation to a first order system

dy

dx
= v,

dv

dx
= f(y).

(b) By the chain rule,

dv

dy
=
dv

dx
· dx
dy

=
dv

dx

/
dy

dx
=
f(y)

v
⇒ dv

dy
=
f(y)

v
.

This equation is separable. Separation variables and integration yield

v dv = f(y) dy ⇒
∫
v dv =

∫
f(y) dy

⇒ 1

2
v2 = F (y) +K,

where F (y) is an antiderivative of f(y). Substituting back v = y′ gives the required.

33. Since S(t) and I(t) represent population and we cannot have a negative population, we are

only interested in the first quadrant of the SI-plane.

(a) In order to find the trajectory corresponding to the initial conditions I(0) = 1 and

S(0) = 700, we must solve the first order equation

dI

dS
=
dI/dt

dS/dt
=
aSI − bI

−aSI = −aS − b

aS

⇒ dI

dS
= −1 +

b

a

1

S
. (5.27)

By integrating both sides of equation (5.27) with respect to S, we obtain the integral

curves given by

I(S) = −S +
b

a
lnS + C.
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A sketch of this curve for a = 0.003 and b = 0.5 is shown in Figure B.39 in the answers

of the text.

(b) From the sketch in Figure B.39 in the answers of the text we see that the peak number

of infected people is 295.

(c) The peak number of infected people occurs when dI/dS = 0. From equation (5.27) we

have
dI

dS
= 0 = −1 +

b

a

1

S
.

Solving for S we obtain

S =
b

a
=

0.5

0.003
≈ 167 people.

35. (a) We denote v(t) = x′(t) to transform the equation

d2x

dt2
= −x+

1

λ− x

to an equivalent system of two first order differential equations, that is

dx

dt
= v,

dv

dt
= −x+

1

λ− x
.

(b) The phase plane equation in xv-plane for the system in (a) is

dv

dx
=

−x+ 1/(λ− x)

v
.

This equation is separable. Separating variables and integrating, we obtain

v dv =

(
−x+

1

λ− x

)
dx ⇒

∫
v dv =

∫ (
−x+

1

λ− x

)
dx

⇒ 1

2
v2 = −1

2
x2 − ln |λ− x| + C1 ⇒ v2 = C − x2 − 2 ln |λ− x|

⇒ v = ±
√
C − x2 − 2 ln(λ− x) .

(The absolute value sign is not necessary because x < λ.)
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(c) To find critical points for the system in (a), we solve

v = 0,

−x+
1

λ− x
= 0

⇒ v = 0,

x2 − λx+ 1 = 0
⇒

v = 0,

x =
λ±√

λ2 − 4

2
.

For 0 < λ < 2, λ2 − 4 < 0 and so both roots are complex numbers. However, for λ > 2

there are two distinct real solutions,

x1 =
λ−√

λ2 − 4

2
and x2 =

λ+
√
λ2 − 4

2
,

and the critical points are(
λ−√

λ2 − 4

2
, 0

)
and

(
λ+

√
λ2 − 4

2
, 0

)
.

(d) The phase plane diagrams for λ = 1 and λ = 3 are shown in Figures B.40 and B.41 in

the answers section of the text.

(e) From Figures B.40 we conclude that, for λ = 1, all solution curves approach the vertical

line x = 1(= λ). This means that the bar is attracted to the magnet. The case λ = 3

is more complicated. The behavior of the bar depends on the initial displacement x(0)

and the initial velocity v(0) = x′(0). From Figure B.41 we see that (with v(0) = 0) if

x(0) is small enough, then the bar will oscillate about the position x = x1; if x(0) is

close enough to λ, then the bar will be attracted to the magnet. It is also possible that,

with an appropriate combination of x(0) and v(0), the bar will come to rest at the saddle

point (x2, 0).

37. (a) Denoting y′ = v, we have y′′ = v′, and (with m = µ = k = 1) (16) can be written as a

system

y′ = v,

v′ = −y +


y, if |y| < 1, v = 0,

sign(y), if |y| ≥ 1, v = 0,

−sign(v), if v �= 0

=


0, if |y| < 1, v = 0,

−y + sign(y), if |y| ≥ 1, v = 0,

−y − sign(v), if v �= 0.
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(b) The condition v �= 0 corresponds to the third case in (5.28), i.e., the system has the form

y′ = v,

v′ = −y − sign(v).

The phase plane equation for this system is

dv

dy
=
dv/dt

dy/dt
=

−y − sign(v)

v
.

We consider two cases.

1) v > 0. In this case sign(v) = 1 and we have

dv

dy
=

−y − 1

v
⇒ v dv = −(y + 1)dy

⇒
∫
v dv = −

∫
(y + 1)dy

⇒ 1

2
v2 = −1

2
(y + 1)2 + C ⇒ v2 + (y + 1)2 = c,

where c = 2C.

2) v < 0. In this case sign(v) = −1 and we have

dv

dy
=

−y + 1

v
⇒ v dv = −(y − 1)dy

⇒
∫
v dv = −

∫
(y − 1)dy

⇒ 1

2
v2 = −1

2
(y − 1)2 + C ⇒ v2 + (y − 1)2 = c.

(c) The equation v2 + (y+ 1)2 = c defines a circle in the yv-plane centered at (−1, 0) and of

the radius
√
c if c > 0, and it is the empty set if c < 0. The condition v > 0 means that

we have to take only the half of these circles lying in the upper half plane. Moreover, the

first equation, y′ = v, implies that trajectories flow from left to right. Similarly, in the

lower half plane, v < 0, we have concentric semicircles v2 + (y − 1)2 = c, c ≥ 0, centered

at (1, 0) and flowing from right to left.
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(d) For the system found in (a),

f(y, v) = v,

g(y, v) =


0, if |y| < 1, v = 0,

−y + sign(y), if |y| ≥ 1, v = 0,

−y − sign(v), if v �= 0.

Since f(y, v) = 0 ⇔ v = 0 and

g(y, 0) =

{
0, if |y| < 1,

−y + sign(y), if |y| ≥ 1,

we consider two cases. If y < 1, then g(y, 0) ≡ 0. This means that any point of the

interval −1 < y < 1 is a critical point. If |y| ≥ 1, then g(y, 0) = −y + sign(y) which is 0

if y = ±1. Thus the critical point set is the segment v = 0, −1 ≤ y ≤ 1.

(e) According to (c), the mass released at (7.5, 0) goes in the lower half plane from right to

left along a semicircle centered at (1, 0). The radius of this semicircle is 7.5 − 1 = 6.5,

and its other end is (1 − 6.5, 0) = (−5.5, 0). From this point, the mass goes from left to

right in the upper half plane along the semicircle centered at (−1, 0) and of the radius

−1 − (−5.5) = 4.5, and comes to the point (−1 + 4.5, 0) = (3.5, 0). Then the mass

again goes from right to left in the lower half plane along the semicircle centered at

(1, 0) and of the radius 3.5 − 1 = 2.5, and comes to the point (1 − 2.5, 0) = (−1.5, 0).

From this point, the mass goes in the upper half plane from left to right along the

semicircle centered at (−1, 0) and of the radius −1 − (−1.5) = 0.5, and comes to the

point (−1 + 0.5, 0) = (−0.5, 0). Here it comes to rest because | − 0.5| < 1, and there is

not a lower semicircle starting at this point. See the colored curve in Figure B.42 of the

text.

EXERCISES 5.5: Coupled Mass-Spring Systems, page 284

1. For the mass m1 there is only one force acting on it; that is the force due to the spring with

constant k1. This equals −k1(x− y). Hence, we get

m1x
′′ = −k1(x− y).
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For the mass m2 there are two forces acting on it: the force due to the spring with constant

k2 is −k2y; and the force due to the spring with constant k1 is k1(y − x). So we get

m2y
′′ = k1(x− y) − k2y.

So the system is

m1x
′′ = k1(y − x),

m2y
′′ = −k1(y − x) − k2y,

or, in operator form,

(
m1D

2 + k1

)
[x] − k1y = 0,

−k1x+
{
m2D

2 + (k1 + k2)
}

[y] = 0.

With m1 = 1, m2 = 2, k1 = 4, and k2 = 10/3, we get

(D2 + 4) [x] − 4y = 0,

−4x+ (2D2 + 22/3) [y] = 0,
(5.28)

with initial conditions:

x(0) = −1, x′(0) = 0, y(0) = 0, y′(0) = 0.

Multiplying the second equation of the system given in (5.28) by 4, applying (2D2 + 22/3) to

the first equation of this system, and adding the results, we get

(
D2 + 4

)(
2D2 +

22

3

)
[x] − 16x = 0

⇒
(

2D4 +
46

3
D2 +

40

3

)
[x] = 0

⇒ (
3D4 + 23D2 + 20

)
[x] = 0.

The characteristic equation is

3r4 + 23r2 + 20 = 0,
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which is a quadratic in r2. So

r2 =
−23 ±√

529 − 240

6
=

−23 ± 17

6
.

Since −20/3 and −1 are negative, the roots of the characteristic equation are ±iβ1 and ±iβ2,

where

β1 =

√
20

3
, β2 = 1.

Hence

x(t) = c1 cosβ1t+ c2 sin β1t+ c3 cos β2t+ c4 sin β2t.

Solving the first equation of the system given in (5.28) for y, we get

y(t) =
1

4

(
D2 + 4

)
[x] =

1

4

[(−β2
1 + 4

)
c1 cosβ1t+

(−β2
1 + 4

)
c2 sin β1t

+
(−β2

2 + 4
)
c3 cosβ2t+

(−β2
2 + 4

)
c4 sin β2t

]
.

Next we substitute into the initial conditions. Setting x(0) = −1, x′(0) = 0 yields

−1 = c1 + c3 ,

0 = c2β1 + c4β2 .

From the initial conditions y(0) = 0, y′(0) = 0, we get

0 =
1

4

[(−β2
1 + 4

)
c1 +

(−β2
2 + 4

)
c3
]
,

0 =
1

4

[
β1

(−β2
1 + 4

)
c2 + β2

(−β2
2 + 4

)
c4
]
.

The solution to the above system is

c2 = c4 = 0, c1 = − 9

17
, c3 = − 8

17
,

which yields the solutions

x(t) = − 9

17
cos

√
20

3
t− 8

17
cos t ,

y(t) =
6

17
cos

√
20

3
t− 6

17
cos t .
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3. We define the displacements of masses from equilibrium, x, y, and z, as in Example 2. For

each mass, there are two forces acting on it due to Hook’s law.

For the mass on the left,

F11 = −kx and F12 = k(y − x);

for the mass in the middle,

F21 = −k(y − x) and F22 = k(z − y);

finally, for the mass on the right,

F31 = −k(z − y) and F32 = −kz.

Applying Newton’s second law for each mass, we obtain the following system

mx′′ = −kx + k(y − x),

my′′ = −k(y − x) + k(z − y),

mz′′ = −k(z − y) − kz,

or, in operator form, (
mD2 + 2k

)
[x] − ky = 0,

−kx +
(
mD2 + 2k

)
[y] − kz = 0,

−ky +
(
mD2 + 2k

)
[z] = 0.

From the first equation, we express

y =
1

k

(
mD2 + 2k

)
[x] (5.29)

and substitute this expression into the other two equations to get

−kx+
(
mD2 + 2k

) [1

k

(
mD2 + 2k

)
[x]

]
− kz = 0,

− (mD2 + 2k
)
[x] +

(
mD2 + 2k

)
[z] = 0.
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The first equation yields

z = −x+

{
1

k

(
mD2 + 2k

)}2

[x] =

{
1

k2

(
mD2 + 2k

)2 − 1

}
[x], (5.30)

and so

− (mD2 + 2k
)
[x] +

(
mD2 + 2k

) [{ 1

k2

(
mD2 + 2k

)2 − 1

}
[x]

]
=
(
mD2 + 2k

){ 1

k2

(
mD2 + 2k

)2 − 2

}
[x] = 0.

The characteristic equation for this homogeneous linear equation with constant coefficients is(
mr2 + 2k

){ 1

k2

(
mr2 + 2k

)2 − 2

}
= 0,

which splits onto two equations,

mr2 + 2k = 0 ⇒ r = ±i
√

2k

m
(5.31)

and

1

k2

(
mr2 + 2k

)2 − 2 = 0 ⇒ (
mr2 + 2k

)2 − 2k2 = 0

⇒
(
mr2 + 2k −

√
2k
)(

mr2 + 2k +
√

2k
)

= 0

⇒ r = ±i
√

(2 −√
2)k

m
, r = ±i

√
(2 +

√
2)k

m
. (5.32)

Solutions (5.31) and (5.32) give normal frequences

ω1 =
1

2π

√
2k

m
, ω2 =

1

2π

√
(2 −√

2)k

m
, ω3 =

1

2π

√
(2 +

√
2)k

m
.

Thus, a general solution x(t) has the form x(t) = x1(t) + x2(t) + x3(t), where functions

xj(t) = c1j cos(2πωjt) + c2j sin(2πωjt).

Note that xj ’s satisfy the following differential equations:(
mD2 + 2k

)
[x1] = 0,
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mD2 + 2k −

√
2k
)

[x2] = 0, (5.33)(
mD2 + 2k +

√
2k
)

[x3] = 0.

For normal modes, we find solutions yj(t) and zj(t), corresponding to xj , j = 1, 2, and 3 by

using (5.29), (5.30), and identities (5.33).

ω1:

y1 =
1

k

(
mD2 + 2k

)
[x1] ≡ 0,

z1 =

{
1

k

(
mD2 + 2k

)2 − 1

}
[x1] = −x1;

ω2:

y2 =
1

k

(
mD2 + 2k

)
[x2] =

{
1

k

(
mD2 + 2k −

√
2k
)

+
√

2

}
[x2] =

√
2x2,

z2 =

{
1

k

(
mD2 + 2k

)2 − 1

}
[x2] =

{[
1

k

(
mD2 + 2k

)2 − 2

]
+ 1

}
[x2] = x2;

ω3:

y3 =
1

k

(
mD2 + 2k

)
[x3] =

{
1

k

(
mD2 + 2k +

√
2k
)
−

√
2

}
[x3] = −

√
2x3,

z3 =

{
1

k

(
mD2 + 2k

)2 − 1

}
[x3] =

{[
1

k

(
mD2 + 2k

)2 − 2

]
+ 1

}
[x3] = x3;

5. This spring system is similar to the system in Example 2 on page 282 of the text, except the

middle spring has been replaced by a dashpot. We proceed as in Example 1. Let x and y

represent the displacement of masses m1 and m2 to the right of their respective equilibrium

positions. The mass m1 has a force F1 acting on its left side due to the left spring and a force

F2 acting on its right side due to the dashpot. Applying Hooke’s law, we see that

F1 = −k1x.

Assuming as we did in Section 4.1 that the damping force due to the dashpot is proportional

to the magnitude of the velocity, but opposite in direction, we have

F2 = b (y′ − x′) ,
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where b is the damping constant. Notice that velocity of the arm of the dashpot is the

difference between the velocities of mass m2 and mass m1. The mass m2 has a force F3 acting

on its left side due to the dashpot and a force F4 acting on its right side due to the right

spring. Using similar arguments, we find

F3 = −b (y′ − x′) and F4 = −k2y.

Applying Newton’s second law to each mass gives

m1x
′′(t) = F1 + F2 = −k1x(t) + b [y′(t) − x′(t)] ,

m2y
′′(t) = F3 + F4 = −b [y′(t) − x′(t)] − k2y.

Plugging in the constants m1 = m2 = 1, k1 = k2 = 1, and b = 1, and simplifying yields

x′′(t) + x′(t) + x(t) − y′(t) = 0,

−x′(t) + y′′(t) + y′(t) + y(t) = 0.
(5.34)

The initial conditions for the system will be y(0) = 0 (m2 is held in its equilibrium position),

x(0) = −2 (m1 is pushed to the left 2 ft), and x′(0) = y′(0) = 0 (the masses are simply

released at time t = 0 with no additional velocity). In operator notation this system becomes

(D2 +D + 1) [x] −D[y] = 0,

−D[x] + y′′(t) + (D2 +D + 1) [y] = 0.

By multiplying the first equation above by D and the second by (D2 +D+1) and adding the

resulting equations, we can eliminate the function y(t). Thus, we have{(
D2 +D + 1

)2 −D2
}

[x] = 0

⇒ {[(
D2 +D + 1

)−D
] · [(D2 +D + 1

)
+D

]}
[x] = 0

⇒ {(
D2 + 1

)
(D + 1)2

}
[x] = 0.

This last equation is a fourth order linear differential equation with constant coefficients whose

associated auxiliary equation has roots r = −1, −1, i, and −i. Therefore, the solution to this

differential equation is

x(t) = c1e
−t + c2te

−t + c3 cos t+ c4 sin t
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⇒ x′(t) = (−c1 + c2)e
−t − c2te

−t − c3 sin t+ c4 cos t

⇒ x′′(t) = (c1 − 2c2)e
−t + c2te

−t − c3 cos t− c4 sin t.

To find y(t), note that by the first equation of the system given in (5.34), we have

y′(t) = x′′(t) + x′(t) + x(t).

Substituting x(t), x′(t), and x′′(t) into this equation yields

y′(t) = (c1 − 2c2)e
−t + c2te

−t − c3 cos t− c4 sin t

+(−c1 + c2)e
−t − c2te

−t − c3 sin t+ c4 cos t+ c1e
−t + c2te

−t + c3 cos t+ c4 sin t

⇒ y′(t) = (c1 − c2)e
−t + c2te

−t − c3 sin t+ c4 cos t.

By integrating both sides of this equation with respect to t, we obtain

y(t) = −(c1 − c2)e
−t − c2te

−t − c2e
−t + c3 cos t+ c4 sin t+ c5 ,

where we have integrated c2te
−t by parts. Simplifying yields

y(t) = −c1e−t − c2te
−t + c3 cos t+ c4 sin t+ c5 .

To determine the five constants, we will use the four initial conditions and the second equation

in system (5.34). (We used the first equation to determine y). Substituting into the second

equation in (5.34) gives

− [(−c1 + c2)e
−t − c2te

−t − c3 sin t+ c4 cos t
]

+
[
(−c1 + 2c2)e

−t − c2te
−t − c3 cos t− c4 sin t

]
+
[
(c1 − c2)e

−t + c2te
−t − c3 sin t+ c4 cos t

]
+
[−c1e−t − c2te

−t + c3 cos t+ c4 sin t+ c5
]

= 0,

which reduces to c5 = 0. Using the initial conditions and the fact that c5 = 0, we see that

x(0) = c1 + c3 = −2,

y(0) = −c1 + c3 = 0,

x′(0) = (−c1 + c2) + c4 = 0,

y′(0) = (c1 − c2) + c4 = 0 .
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By solving these equations simultaneously, we find

c1 = −1, c2 = −1, c3 = −1, and c4 = 0.

Therefore, the solution to this spring-mass-dashpot system is

x(t) = −e−t − te−t − cos t, y(t) = e−t + te−t − cos t.

7. In operator notations, (
D2 + 5

)
[x] − 2y = 0,

−2x+
(
D2 + 2

)
[y] = 3 sin 2t.

Multiplying the first equation by (D2 + 2) and the second equation by 2, and adding the

results, we obtain {(
D2 + 2

) (
D2 + 5

)− 4
}

[x] = 6 sin 2t

⇒ (
D4 + 7D2 + 6

)
[x] = 6 sin 2t

⇒ (
D2 + 1

) (
D2 + 6

)
[x] = 6 sin 2t . (5.35)

Since the characteristic equation, (r2 + 1)(r2 + 6) = 0, has the roots r = ±i and r = ±i√6, a

general solution to the corresponding homogeneous equation is given by

xh(t) = c1 cos t+ c2 sin t+ c3 cos
√

6t+ c4 sin
√

6t .

Due to the right-hand side in (5.35), a particular solution has the form

xp(t) = A cos 2t+B sin 2t .

In order to simplify computations, we note that both functions, cos 2t and sin 2t, and so xp(t),

satisfy the differential equation (D2 + 4)[x] = 0. Thus,(
D2 + 1

) (
D2 + 6

)
[xh] =

{
(D2 + 4) − 3

}{
(D2 + 4) + 2

}
[xh] = 2

{
(D2 + 4) − 3

}
[xh]

= −6xh = −6A cos 2t− 6B sin 2t = 6 sin 2t
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⇒ A = 0, B = −1 ⇒ xh(t) = − sin 2t

and

x(t) = xh(t) + xp(t) = c1 cos t+ c2 sin t+ c3 cos
√

6t+ c4 sin
√

6t− sin 2t .

From the first equation in the original system, we have

y(t) =
1

2
(x′′ + 5x)

= 2c1 cos t+ 2c2 sin t− 1

2
c3 cos

√
6t− 1

2
c4 sin

√
6t− 1

2
sin 2t .

We determine constants c1 and c3 using the initial conditions x(0) = 0 and y(0) = 1.

0 = x(0) = c1 + c3 ,

1 = y(0) = 2c1 − c3/2
⇒ c3 = −c1 ,

2c1 − (−c1) /2 = 1
⇒ c3 = −2/5,

c1 = 2/5.

To find c2 and c4, compute x′(t) and y′(t), evaluate these functions at t = 0, and use the other

two initial conditions, x′(0) = y′(0) = 0. This yields

0 = x′(0) = c2 +
√

6c4 − 2,

0 = y′(0) = 2c2 −
√

6c4/2 − 1
⇒ c4 =

√
6/5,

c2 = 4/5.

Therefore, the required solution is

x(t) =
2

5
cos t+

4

5
sin t− 2

5
cos

√
6t+

√
6

5
sin

√
6t− sin 2t ,

y(t) =
4

5
cos t+

8

5
sin t+

1

5
cos

√
6t−

√
6

10
sin

√
6t− 1

2
sin 2t .

9. Writing the equations of this system in operator form we obtain{
mD2 +

(mg
l

+ k
)}

[x1] − kx2 = 0,

−kx1 +
{
mD2 +

(mg
l

+ k
)}

[x2] = 0.

Applying {mD2 + (mg/l + k)} to the first equation, multiplying the second equation by k,

and then adding, results in{[
mD2 +

(mg
l

+ k
)]2

− k2

}
[x1] = 0.
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This equation has the auxiliary equation(
mr2 +

mg

l
+ k
)2

− k2 =
(
mr2 +

mg

l

)(
mr2 +

mg

l
+ 2k

)
= 0

with roots ±i√g/l and ±i√(g/l) + (2k/m). As discussed on page 211 of the text
√
g/l

and
√

(g/l) + (2k/m) are the normal angular frequencies. To find the normal frequencies we

divide each one by 2π and obtain(
1

2π

)√
g

l
and

(
1

2π

)√
g

l
+

2k

m
.

EXERCISES 5.6: Electrical Circuits, page 291

1. In this problem, R = 100 Ω, L = 4 H, C = 0.01 F, and E(t) = 20 V. Therefore, the equation

(4) on page 287 of the text becomes

4
d2I

dt2
+ 100

dI

dt
+ 100I =

d(20)

dt
= 0 ⇒ d2I

dt2
+ 25

dI

dt
+ 25I = 0.

The roots of the characteristic equation, r2 + 25r + 25 = 0, are

r =
−25 ±√(25)2 − 4(25)(1)

2
=

−25 ± 5
√

21

2
,

and so a general solution is

I(t) = c1e
(−25−5

√
21)t/2 + c2e

(−25+5
√

21)t/2 .

To determine constants c1 and c2, first we find the initial value I ′(0) using given I(0) = 0 and

q(0) = 4. Substituting t = 0 into equation (3) on page 287 of the text (with dq/dt replaced

by I(t)), we obtain

L
d[I(t)]

dt
+RI(t) +

1

C
q(t) = E(t)

⇒ 4I ′(0) + 100(0) +
1

0.01
(4) = 20

⇒ I ′(0) = −95.
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Thus, I(t) satisfies I(0) = 0, I ′(0) = −95. Next, we compute

I ′(t) =
c1(−25 − 5

√
21)

2
e(−25−5

√
21)t/2 +

c2(−25 + 5
√

21)

2
e(−25+5

√
21)t/2 ,

substitute t = 0 into formulas for I(t) and I ′(t), and obtain the system

0 = I(0) = c1 + c2 ,

−95 = I ′(0) = c1(−25 − 5
√

21)/2 + c2(−25 + 5
√

21)/2
⇒ c1 = 19/

√
21 ,

c2 = −19/
√

21.

So, the solution is

I(t) =
19√
21

(
e(−25−5

√
21)t/2 − e(−25+5

√
21)t/2

)
.

3. In this problem L = 4, R = 120, C = (2200)−1, and E(t) = 10 cos 20t. Therefore, we see

that 1/C = 2200 and E ′(t) = −200 sin 20t. By substituting these values into equation (4) on

page 287 of the text, we obtain the equation

4
d2I

dt2
+ 120

dI

dt
+ 2200I = −200 sin 20t.

By simplifying, we have
d2I

dt2
+ 30

dI

dt
+ 550I = −50 sin 20t. (5.36)

The auxiliary equation associated with the homogeneous equation corresponding to (5.36)

above is r2 + 30r + 550 = 0. This equation has roots r = −15 ± 5
√

13i. Therefore, the

transient current, that is Ih(t), is given by

Ih(t) = e−15t
[
C1 cos

(
5
√

13t
)

+ C2 sin
(
5
√

13t
)]
.

By the method of undetermined coefficients, a particular solution, Ip(t), of equation (5.36) will

be of the form Ip(t) = ts[A cos 20t+B sin 20t]. Since neither y(t) = cos 20t nor y(t) = sin 20t

is a solution to the homogeneous equation (that is the system is not at resonance), we can let

s = 0 in Ip(t). Thus, we see that Ip(t), the steady-state current, has the form

Ip(t) = A cos 20t+B sin 20t.
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To find the steady-state current, we must, therefore, find A and B. To accomplish this, we

observe that

I ′p(t) = −20A sin 20t+ 20B cos 20t,

I ′′p (t) = −400A cos 20t− 400B sin 20t.

Plugging these expressions into equation (5.36) yields

I ′′p (t) + 30I ′p(t) + 550I(t) = −400A cos 20t− 400B sin 20t− 600A sin 20t+ 600B cos 20t

+550A cos 20t+ 550B sin 20t = −50 sin 20t

⇒ (150A+ 600B) cos 20t+ (150B − 600A) sin 20t = −50 sin 20t.

By equating coefficients we obtain the system of equations

15A+ 60B = 0,

−60A+ 15B = −5.

By solving these equations simultaneously for A and B, we obtain A = 4/51 and B = −1/51.

Thus, we have the steady-state current given by

Ip(t) =
4

51
cos 20t− 1

51
sin 20t.

As was observed on page 290 of the text, there is a correlation between the RLC series circuits

and mechanical vibration. Therefore, we can discuss the resonance frequency of the RLC series

circuit. To do so we associate the variable L with m, R with b, and 1/C with k. Thus, we see

that the resonance frequency for an RLC series circuit is given by γr/(2π), where

γr =

√
1

CL
− R2

2L2
,

provided that R2 < 2L/C. For this problem

R2 = 14, 400 < 2L/C = 17, 600 .

Therefore, we can find the resonance frequency of this circuit. To do so we first find

γr =

√
1

CL
− R2

2L2
=

√
2200

4
− 14400

32
= 10.

Hence the resonance frequency of this circuit is 10/(2π) = 5/π.
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5. In this problem, C = 0.01 F, L = 4 H, and R = 10 Ω. Hence, the equation governing the RLC

circuit is

4
d2I

dt2
+ 10

dI

dt
+

1

0.01
I =

d

dt
(E0 cos γt) = −E0γ

4
sin γt .

The frequency response curve M(γ) for an RLC curcuit is determined by

M(γ) =
1√

[(1/C) − Lγ2]2 +R2γ2
,

which comes from the comparison Table 5.3 on page 290 of the text and equation (13) in

Section 4.9. Therefore

M(γ) =
1√

[(1/0.01) − 4γ2]2 + (10)2γ2
=

1√
(100 − 4γ2)2 + 100γ2

.

The graph of this function is shown in Figure B.43 in the answers of the text. M(γ) has its

maximal value at the point γ0 =
√
x0, where x0 is the point where the quadratic function

(100 − 4x)2 + 100x attains its minimum (the first coordinate of the vertex). We find that

γ0 =

√
175

8
and M(γ0) =

2

25
√

15
≈ 0.02 .

7. This spring system satisfies the differential equation

7
d2x

dt2
+ 2

dx

dt
+ 3x = 10 cos 10t.

Since we want to find an RLC series circuit analog for the spring system with R = 10 ohms,

we must find L, 1/C, and E(t) so that the differential equation

L
d2q

dt2
+ 10

dq

dt
+

1

C
q = E(t)

corresponds to the one above. Thus, we want E(t) = 50 cos 10t volts, L = 35 henrys, and

C = 1/15 farads.

11. For this electric network, there are three loops. Loop 1 is through a 10V battery, a 10Ω resistor,

and a 20H inductor. Loop 2 is through a 10V battery, a 10Ω resistor, a 5Ω resistor, and a

(1/30)F capacitor. Loop 3 is through a 5Ω resistor, a (1/30)F capacitor, and a 20H inductor.
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Therefore, applying Kirchhoff’s second law to this network yields the three equations given

by

Loop 1 : 10I1 + 20
dI2
dt

= 10,

Loop 2 : 10I1 + 5I3 + 30q3 = 10,

Loop 3 : 5I3 + 30q3 − 20
dI2
dt

= 0.

Since the equation for Loop 2 minus the equation for Loop 1 yields the remaining equation,

we will use the first and second equations above for our calculations. By examining a junction

point, we see that we also have the equation I1 = I2+I3. Thus, we have I ′1 = I ′2+I ′3. We begin

by dividing the equation for Loop 1 by 10 and the equation for Loop 2 by 5. Differentiating

the equation for Loop 2 yields the system

I1 + 2
dI2
dt

= 1,

2
dI1
dt

+
dI3
dt

+ 6I3 = 0,

where I3 = q′3. Since I1 = I2 + I3 and I ′1 = I ′2 + I ′3, we can rewrite the system using operator

notation in the form
(2D + 1)[I2] + I3 = 1,

(2D)[I2] + (3D + 6)[I3] = 0.

If we multiply the first equation above by (3D + 6) and then subtract the second equation,

we obtain

{(3D + 6)(2D + 1) − 2D} [I2] = 6 ⇒ (
6D2 + 13D + 6

)
[I2] = 6.

This last differential equation is a linear equation with constant coefficients whose associated

equation, 6r2+13r+6 = 0, has roots −3/2, −2/3. Therefore, the solution to the homogeneous

equation corresponding to the equation above is given by

I2h(t) = c1e
−3t/2 + c2e

−2t/3.

By the method of undetermined coefficients, the form of a particular solution to the differential

equation above will be I2p(t) = A. By substituting this function into the differential equation,
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we see that a particular solution is given by

I2p(t) = 1.

Thus, the current, I2, will satisfy the equation

I2(t) = c1e
−3t/2 + c2e

−2t/3 + 1.

As we noticed above, I3 can now be found from the first equation

I3(t) = −(2D + 1)[I2] + 1 = −2

[
−3

2
c1e

−3t/2 − 2

3
c2e

−2t/3

]
− [c1e−3t/2 + c2e

−2t/3 + 1
]
+ 1

⇒ I3(t) = 2c1e
−3t/2 +

1

3
c2e

−2t/3 .

To find I1, we will use the equation I1 = I2 + I3. Therefore, we have

I1(t) = c1e
−3t/2 + c2e

−2t/3 + 1 + 2c1e
−3t/2 +

1

3
c2e

−2t/3

⇒ I1(t) = 3c1e
−3t/2 +

4

3
c2e

−2t/3 + 1.

We will use the initial condition I2(0) = I3(0) = 0 to find the constants c1 and c2. Thus, we

have

I2(0) = c1 + c2 + 1 = 0 and I3(0) = 2c1 +
1

3
c2 = 0.

Solving these two equations simultaneously yields c1 = 1/5 and c2 = −6/5. Therefore, the

equations for the currents for this electric network are given by

I1(t) =
3

5
e−3t/2 − 8

5
e−2t/3 + 1,

I2(t) =
1

5
e−3t/2 − 6

5
e−2t/3 + 1,

I3(t) =
2

5
e−3t/2 − 2

5
e−2t/3.

13. In this problem, there are three loops. Loop 1 is through a 0.5 H inductor and a 1 Ω resistor.

Loop 2 is through is through a 0.5 H inductor, a 0.5 F capacitor, and a voltage source supplying

the voltage cos 3tV at time t. Loop 3 is through a 1 Ω resistor, a 0.5 F capacitor, and the
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voltage source. We apply Kirchhoff’s voltage law, EL + ER + EC = E(t), to Loop 1 and

Loop 2 to get two equations connecting currents in the network. (Similarly to Example 2 and

Problem 11, there is no need to apply Kirchhoff’s voltage law to Loop 3 because the resulting

equation is just a linear combination of those for other two loops.)

Loop 1:

EL + ER = 0 ⇒ 0.5
dI1
dt

+ 1 · I2 = 0 ⇒ dI1
dt

+ 2I2 = 0. (5.37)

Loop 2:

EL + EC = cos 3t ⇒ 0.5
dI1
dt

+
q3
0.5

= cos 3t ⇒ dI1
dt

+ 4q3 = 2 cos 3t. (5.38)

Additionally, at joint points, by Kirchhoff’s current law,

−I1 + I2 + I3 = 0 ⇒ −I1 + I2 +
dq3
dt

= 0. (5.39)

Putting (5.37)–(5.39) together yields the following system:

dI1
dt

+ 2I2 = 0,

dI1
dt

+ 4q3 = 2 cos 3t,

−I1 + I2 +
dq3
dt

= 0

or, in operator form,

D[I1] + 2I2 = 0,

D[I1] + 4q3 = 2 cos 3t,

−I1 + I2 +D[q3] = 0

with the initial condition I1(0) = I2(0) = I3(0) = 0 (I3 = dq3/dt).

From the first equation, I2 = −(1/2)D[I1], which (when substituted into the third equation)

leads to the system

D[I1] + 4q3 = 2 cos 3t,

−(D + 2)[I1] + 2D[q3] = 0.
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Multiplying the first equation by D, the second equation – by 2, and subtracting the results,

we eliminate q3:{
D2 + 2(D + 2)

}
[I1] = −6 sin 3t ⇒ (

D2 + 2D + 4
)
[I1] = −6 sin 3t.

The roots of the characteristic equation, r2 + 2r + 4 = 0, are r = −1 ±√
3i, and so a general

solution to the corresponding homogeneous equation is

I1h = C1e
−t cos

√
3t+ C2e

−t sin
√

3t.

A particular solution has the form I1p = A cos 3t + B sin 3t. Substitution into the equation

yields

(−5A + 6B) cos 3t+ (−6A− 5B) sin 3t = −6 sin 3t

⇒ −5A + 6B = 0,

−6A− 5B = −6
⇒ A = 36/61,

B = 30/61.

Therefore,

I1 = I1h + I1p

= C1e
−t cos

√
3t+ C2e

−t sin
√

3t+
36

61
cos 3t+

30

61
sin 3t.

Substituting this solution into (5.37)we find that

I2 = −1

2

dI1
dt

=
C1 − C2

√
3

2
e−t cos

√
3t+

C1

√
3 + C2

2
e−t sin

√
3t− 45

61
cos 3t+

54

61
sin 3t.

The initial condition, I1(0) = I2(0) = 0 yields

C1 + 36/61 = 0,

(C1 − C2

√
3)/2 − 45/61 = 0

⇒ C1 = −36/61,

C2 = −42
√

3/61.

Thus

I1 = −36

61
e−t cos

√
3t− 42

√
3

61
e−t sin

√
3t+

36

61
cos 3t+

30

61
sin 3t,

I2 =
45

61
e−t cos

√
3t− 39

√
3

61
e−t sin

√
3t− 45

61
cos 3t+

54

61
sin 3t,

I3 = I1 − I2 = −81

61
e−t cos

√
3t− 3

√
3

61
e−t sin

√
3t+

81

61
cos 3t− 24

61
sin 3t.
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EXERCISES 5.7: Dynamical Systems, Poincarè Maps, and Chaos, page 301

1. Let ω = 3/2. Using system (3) on page 294 of the text with A = F = 1, φ = 0, and ω = 3/2,

we define the Poincaré map

xn = sin(3πn) +
1

(9/4) − (4/4)
= sin(3πn) +

4

5
=

4

5
,

vn =
3

2
cos(3πn) = (−1)n 3

2
,

for n = 0, 1, 2, . . . . Calculating the first few values of (xn, vn), we find that they alternate

between (4/5, 3/2) and (4/5,−3/2). Consequently, we can deduce that there is a subharmonic

solution of period 4π. Let ω = 3/5. Using system (3) on page 294 of the text with A = F = 1,

φ = 0, and ω = 3/5, we define the Poincaré map

xn = sin

(
6πn

5

)
+

1

(9/25) − 1
= sin

(
6πn

5

)
− 1.5625 ,

vn =
3

5
cos

(
6πn

5

)
= (0.6) cos

(
6πn

5

)
,

for n = 0, 1, 2, . . . . Calculating the first few values of (xn, vn), we find that the Poincaré map

cycles through the points

(−1.5625, 0.6), n = 0, 5, 10, . . . ,

(−2.1503,−0.4854), n = 1, 6, 11, . . . ,

(−0.6114, 0.1854), n = 2, 7, 12, . . . ,

(−2.5136, 0.1854), n = 3, 8, 13, . . . ,

(−0.9747,−0.4854), n = 4, 9, 14, . . . .

Consequently, we can deduce that there is a subharmonic solution of period 10π.

3. With A = F = 1, φ = 0, ω = 1, b = −0.1, and θ = 0 (because tan θ = (ω2 − 1)/b = 0) the

solution (5) to equation (4) becomes

x(t) = e0.05t sin

√
3.99

2
t+ 10 sin t.

Thus

v(t) = x′(t) = e0.05t

(
0.05 sin

√
3.99

2
t+

√
3.99

2
cos

√
3.99

2
t

)
+ 10 cos t
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Figure 5–A: Poincaré section for Problem 3.

and, therefore,

xn = x(2πn) ≈ e0.1πn sin(1.997498πn),

vn = v(2πn) ≈ e0.1πn (0.05 sin(1.997498πn) + 0.998749 cos(1.997498πn)) + 10.

The values of xn and vn for n = 0, 1, . . . , 20 are listed in Table 5-F, and points (xn, vn) are

shown in Figure 5-A. When n→ ∞, the points (xn, vn) become unbounded because of e0.1πn

term.

5. We want to construct the Poincaré map using t = 2πn for x(t) given in equation (5) on

page 295 of the text with A = F = 1, φ = 0, ω = 1/3, and b = 0.22. Since

tan θ =
ω2 − 1

b
= −4.040404 ,

we take θ = tan−1(−4.040404) = −1.328172 and get

xn = x(2πn) = e−0.22πn sin(0.629321πn)− (1.092050) sin(1.328172),

vn = x′(2πn) = −0.11e−0.22πn sin(0.629321πn) + (1.258642)e−0.22πn cos(0.629321πn)

+(1.092050) cos(1.328172).
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Table 5–F: Poincaré map for Problem 3.

nnn xnxnxn vnvnvn nnn xnxnxn vnvnvn

0 0 10.998749 11 −2.735915 41.387469
1 −0.010761 11.366815 12 −4.085318 52.925111
2 −0.029466 11.870407 13 −6.057783 68.700143
3 −0.060511 12.559384 14 −8.929255 90.267442
4 −0.110453 13.501933 15 −13.09442 119.75193
5 −0.189009 14.791299 16 −19.11674 160.05736
6 −0.310494 16.554984 17 −27.79923 215.15152
7 −0.495883 18.967326 18 −40.28442 290.45581
8 −0.775786 22.266682 19 −58.19561 393.37721
9 −1.194692 26.778923 20 −83.83579 534.03491

10 −1.817047 32.949532

In Table 5-G we have listed the first 21 values of the Poincaré map.

As n gets large, we see that

xn ≈ −(1.092050) sin(1.328172) ≈ −1.060065 ,

vn ≈ (1.092050) cos(1.328172) ≈ 0.262366 .

Hence, as n→ ∞, the Poincaré map approaches the point (−1.060065, 0.262366).

7. Let A, φ and A∗, φ∗ denote the values of constants A, φ in solution formula (2), corresponding

to initial values (x0, v0) and (x∗0, v
∗
0), respectively.

(i) From recursive formulas (3) we conclude that

xn − F/(ω2 − 1) = A sin(2πωn+ φ),

vn/ω = A cos(2πωn+ φ),

and so (A, 2πωn+φ) are polar coordinates of the point (vn/ω, xn−F/(ω2−1)) in vx-plane.

Similarly, (A∗, 2πωn+φ∗) represent polar coordinates of the point (v∗n/ω, x
∗
n−F/(ω2−1)).
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Table 5–G: Poincaré map for Problem 5.

nnn xnxnxn vnvnvn nnn xnxnxn vnvnvn

0 −1.060065 1.521008 11 −1.059944 0.261743
1 −0.599847 0.037456 12 −1.060312 0.262444
2 −1.242301 0.065170 13 −1.059997 0.262491
3 −1.103418 0.415707 14 −1.060030 0.262297
4 −0.997156 0.251142 15 −1.060096 0.262362
5 −1.074094 0.228322 16 −1.060061 0.262385
6 −1.070300 0.278664 17 −1.060058 0.262360
7 −1.052491 0.264458 18 −1.060068 0.262364
8 −1.060495 0.257447 19 −1.060065 0.262369
9 −1.061795 0.263789 20 −1.060064 0.262366

10 −1.059271 0.263037

Therefore,

(v∗n/ω, x
∗
n − F/(ω2 − 1)) → (vn/ω, xn − F/(ω2 − 1))

as A∗ → A and φ∗ → φ if A �= 0 or as A∗ → 0 (regardless of φ∗) if A = 0. Note that

the convergence is uniform with respect to n. (One can easily see this from the distance

formula in polar coordinates.) This is equivalent to

x∗n − F/(ω2 − 1) → xn − F/(ω2 − 1),

v∗n/ω → vn/ω
⇔ x∗n → xn ,

v∗n → vn

uniformly with respect to n.

(ii) On the other hand, A∗ and φ∗ satisfy

A∗ sinφ∗ + F/(ω2 − 1) = x∗0 ,

ωA∗ cosφ∗ = v∗0
⇒ A∗ =

√
(x∗0 − F/(ω2 − 1))2 + (v∗0/ω)2 ,

cosφ∗ = v∗0/ (ωA∗) .

Therefore, A∗ is a continuous function of (x∗0, v
∗
0) and so A∗ → A as (x∗0, v

∗
0) → (x0, v0).

If (x0, v0) is such that A �= 0, then φ∗, as a function of (x∗0, v
∗
0), is also continuous at

(x0, v0) and, therefore, φ∗ → φ as (x∗0, v
∗
0) → (x0, v0).
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Combining (i) and (ii) we conclude that

(x∗n, v
∗
n) → (xn, vn) as (x∗0, v

∗
0) → (x0, v0)

uniformly with respect to n. Thus, if (x∗0, v
∗
0) is close to (x0, v0), (x∗n, v

∗
n) is close to (xn, vn)

for all n.

9. (a) When x0 = 1/7, the doubling modulo 1 map gives

x1 =
2

7
(mod 1) =

2

7
,

x3 =
8

7
(mod 1) =

1

7
,

x2 =
4

7
(mod 1) =

4

7
,

x4 =
2

7
(mod 1) =

2

7
,

x5 =
4

7
(mod 1) =

4

7
,

x7 =
2

7
(mod 1) =

2

7
,

x6 =
8

7
(mod 1) =

1

7
,

etc.

This is the sequence

{
1

7
,
2

7
,
4

7
,
1

7
, . . .

}
. For x0 =

k

7
, k = 2, . . . , 6, we obtain

{
2

7
,
4

7
,
1

7
,
2

7
, . . .

}
,

{
3

7
,
6

7
,
5

7
,
3

7
, . . .

}
,{

4

7
,
1

7
,
2

7
,
4

7
, . . .

}
,

{
5

7
,
3

7
,
6

7
,
5

7
, . . .

}
,{

6

7
,
5

7
,
3

7
,
6

7
, . . .

}
.

These sequences fall into two classes. The first has the repeating sequence
1

7
,
2

7
,
4

7
and

the second has the repeating sequence
3

7
,
6

7
,
5

7
.

(c) To see what happens, when x0 =
k

2j
, let’s consider the special case when x0 =

3

22
=

3

4
.

Then,

x1 = 2

(
3

4

)
(mod 1) =

3

2
(mod 1) =

1

2
,
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x2 = 2

(
1

2

)
(mod 1) = 1 (mod 1) = 0,

x3 = 0,

x4 = 0,

etc.

Observe that

x2 = 22

(
3

22

)
(mod 1) = 3 (mod 1) = 0.

In general,

xj = 2j

(
k

2j

)
(mod 1) = k (mod 1) = 0.

Consequently, xn = 0 for n ≥ j.

11. (a) A general solution to equation (6) is given by x(t) = xh(t) + xp(t), where

xh(t) = Ae−0.11t sin
(√

9879t+ φ
)

is the transient term (a general solution to the corresponding homogeneous equation)

and

xp(t) =
1

0.22
sin t+

1√
1 + 2(0.22)2

sin
(√

2t+ ψ
)
, tanψ = − 1

0.22
√

2
,

is the steady-state term (a particular solution to (6)). (xp(t) can be found, say, by

applying formula (7), Section 4.12, and using Superposition Principle of Section 4.7.)

Differentiating x(t) we get

v(t) = x′h(t) + x′p(t) = x′h(t) +
1

0.22
cos t+

√
2√

1 + 2(0.22)2
cos
(√

2t+ ψ
)
.

The steady-state solution does not depend on initial values x0 and v0; these values affect

only constants A and φ in the transient part. But, as t→ ∞, xh(t) and x′h(t) tend to zero

and so the values of x(t) and v(t) approach the values of xp(t) and x′p(t), respectively.

Thus the limit set of points (x(t), v(t)) is the same as that of (xp(t), x
′
p(t)) which is

independent of initial values.
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(b) Substitution t = 2πn into xp(t) and x′p(t) yields

xn = x(2πn) = xh(2πn) +
1√

1 + 2(0.22)2
sin
(√

22πn+ ψ
)
,

vn = v(2πn) = x′h(2πn) +
1

0.22
+

√
2√

1 + 2(0.22)2
cos
(√

22πn+ ψ
)
.

As n→ ∞, xh(2πn) → 0 and x′h(2πn) → 0. Therefore, for n large,

xn ≈ 1√
1 + 2(0.22)2

sin
(√

22πn+ ψ
)

= a sin
(
2
√

2πn+ ψ
)
,

vn ≈ 1

0.22
+

√
2√

1 + 2(0.22)2
cos
(√

22πn+ ψ
)

= c+
√

2a cos
(
2
√

2πn+ ψ
)
.

(c) From part (b) we conclude that, for n large

x2
n ≈ a2 sin2

(
2
√

2πn+ ψ
)

and (vn − c)2 ≈ 2a2 cos2
(
2
√

2πn + ψ
)
.

Dividing the latter by 2 and summing yields

x2
n +

(vn − c)2

2
≈ a2

[
sin2

(
2
√

2πn + ψ
)

+ cos2
(
2
√

2πn+ ψ
)]

= a2,

and the error (coming from the transient part) tends to zero as n → ∞. Thus any

limiting point of the sequence (xn, vn) satisfies the equation

x2 +
(v − c)2

2
= a2,

which is an ellipse centered at (0, c) with semiaxes a and a
√

2.

REVIEW PROBLEMS: page 304

1. Expressing the system in the operator notation gives

D[x] +
(
D2 + 1

)
[y] = 0,

D2[x] +D[y] = 0.
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Eliminating x by applying D to the first equation and subtracting the second equation from

it yields {
D
(
D2 + 1

)−D
}

[y] = 0 ⇒ D3[y] = 0.

Thus on integrating 3 times we get

y(t) = C3 + C2t+ C1t
2.

We substitute this solution into the first equation of given system to get

x′ = − (y′′ + y) = − [(2C1) + (C3 + C2t+ C1t
2)
]

= − [(C3 + 2C1) + C2t+ C1t
2
]
.

Integrating we obtain

x(t) = −
∫ [

(C3 + 2C1) + C2t+ C1t
2
]
dt = C4 − (C3 + 2C1)t− 1

2
C2t

2 − 1

3
C1t

3 .

Thus the general solution of the given system is

x(t) = C4 − (C3 + 2C1)t− 1

2
C2t

2 − 1

3
C1t

3 ,

y(t) = C3 + C2t+ C1t
2 .

3. Writing the system in operator form yields

(2D − 3)[x] − (D + 1)[y] = et ,

(−4D + 15)[x] + (3D − 1)[y] = e−t .
(5.40)

We eliminate y by multiplying the first equation by (3D − 1), the second – by (D + 1), and

summing the results.

{(2D − 3)(3D − 1) + (−4D + 15)(D + 1)} [x] = (3D − 1)[et] + (D + 1)[e−t]

⇒ (D2 + 9)[x] = et.

Since the characterictic equation, r2 + 9 = 0, has roots r = ±3i, a general solution to the

corresponding homogeneous equation is

xh(t) = c1 cos 3t+ c2 sin 3t.
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We look for a particular solution of the form xp(t) = Aet. Substituting this function into the

equation, we obtain

Aet + 9Aet = et ⇒ A =
1

10
⇒ xp(t) =

et

10
,

and so

x(t) = xh(t) + xp(t) = c1 cos 3t+ c2 sin 3t+
et

10
.

To find y, we multiply the first equation in (5.40) by 3 and add to the second equation. This

yields

2(D + 3)[x] − 4y = 3et + e−t.

Thus

y =
1

2
(D + 3)[x] − 3

4
et − 1

4
e−t

=
3(c1 + c2)

2
cos 3t− 3(c1 − c2)

2
sin 3t− 11

20
et − 1

4
e−t .

5. Differentiating the second equation, we obtain y′′ = z′. We eliminate z from the first and the

third equations by substituting y′ for z and y′′ for z′ into them:

x′ = y′ − y,

y′′ = y′ − x
⇒ x′ − y′ + y = 0,

y′′ − y′ + x = 0
(5.41)

or, in operator notation,

D[x] − (D − 1)[y] = 0,

x+ (D2 −D)[y] = 0.

We eliminate y by applying D to the first equation and adding the result to the second

equation:{
D2[x] −D(D − 1)[y]

}
+
{
x+ (D2 −D)[y]

}
= 0 ⇒ (

D2 + 1
)
[x] = 0.

This equation is the simple harmonic equation, and its general solution is given by

x(t) = C1 cos t+ C2 sin t.
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Substituting x(t) into the first equation of the system (5.41) yields

y′ − y = −C1 sin t+ C2 cos t. (5.42)

The general solution to the corresponding homogeneous equation, y′ − y = 0, is

yh(t) = C3e
t .

We look for a particular solution to (5.42) of the form yp(t) = C4 cos t+C5 sin t. Differentiating,

we obtain y′p(t) = −C4 sin t+ C5 cos t. Thus the equation (5.42) becomes

−C1 sin t+ C2 cos t = y′p − y = (−C4 sin t+ C5 cos t) − (C4 cos t+ C5 sin t)

= (C5 − C4) cos t− (C5 + C4) sin t.

Equating the coefficients yields

C5 − C4 = C2 ,

C5 + C4 = C1

(5.43)

⇒ (by adding the equations) 2C5 = C1 + C2 ⇒ C5 =
C1 + C2

2
.

From the second equation in (5.43), we find

C4 = C1 − C5 =
C1 − C2

2
.

Therefore, the general solution to the equation (5.42) is

y(t) = yh(t) + yp(t) = C3e
t +

C1 − C2

2
cos t+

C1 + C2

2
sin t.

Finally, we find z(t) from the second equation:

z(t) = y′(t) =

(
C3e

t +
C1 − C2

2
cos t+

C1 + C2

2
sin t

)′

= C3e
t − C1 − C2

2
sin t+

C1 + C2

2
cos t.

Hence, the general solution to the given system is

x(t) = C1 cos t+ C2 sin t,
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y(t) = C3e
t +

C1 − C2

2
cos t+

C1 + C2

2
sin t,

z(t) = C3e
t − C1 − C2

2
sin t+

C1 + C2

2
cos t.

To find constants C1, C2, and C3, we use the initial conditions. So we get

0 = x(0) = C1 cos 0 + C2 sin 0 = C1 ,

0 = y(0) = C3e
0 +

C1 − C2

2
cos 0 +

C1 + C2

2
sin 0 = C3 +

C1 − C2

2
,

2 = z(0) = C3e
0 − C1 − C2

2
sin 0 +

C1 + C2

2
cos 0 = C3 +

C1 + C2

2
,

which simplifies to

C1 = 0,

C1 − C2 + 2C3 = 0,

C1 + C2 + 2C3 = 4.

Solving we obtain C1 = 0, C2 = 2, C3 = 1 and so

x(t) = 2 sin t, y(t) = et − cos t+ sin t, z(t) = et + cos t+ sin t.

7. Let x(t) and y(t) denote the mass of salt in tanks A and B, respectively. The only difference

between this problem and the problem in Section 5.1 is that a brine solution flows in tank A

instead of pure water. This change affects the input rate for tank A only, adding

6 L/min × 0.2 kg/L = 1.2 kg/min

to the original (y/12) kg/min. Thus the system (1) on page 242 becomes

x′ = −1

3
x+

1

12
y + 1.2 ,

y′ =
1

3
x− 1

3
y.

Following the solution in Section 5.1, we express x = 3y′ + y from the second equation and

substitute it into the first equation.

(3y′ + y)
′
= −1

3
(3y′ + y) +

1

12
y + 1.2 ⇒ 3y′′ + 2y′ +

1

4
y = 1.2 .
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A general solution to the corresponding homogeneous equation is given in (3) on page 243 of

the text:

yh(t) = c1e
−t/2 + c2e

−t/6 .

A particular solution has the form yp(t) ≡ C, which results

3(C)′′ + 2(C)′ +
1

4
C = 1.2 ⇒ C = 4.8 .

Therefore, yp(t) ≡ 4.8, and a general solution to the system is

y(t) = yh(t) + yp(t) = c1e
−t/2 + c2e

−t/6 + 4.8 ,

x(t) = 3y′(t) + y(t) = −c1
2
e−t/2 +

c2
2
e−t/6 + 4.8 .

We find constants c1 and c2 from the initial conditions, x(0) = 0.1 and y(0) = 0.3 . Substitu-

tion yields the system

−c1
2

+
c2
2

+ 4.8 = 0.1 ,

c1 + c2 + 4.8 = 0.3 .

Solving, we obtain c1 = 49/20, c2 = −139/20, and so

x(t) = −49

40
e−t/2 − 139

40
e−t/6 + 4.8 ,

y(t) =
49

20
e−t/2 − 139

20
e−t/6 + 4.8 .

9. We first rewrite the given differential equation in an equivalent form as

y′′′ =
1

3

(
5 + ety − 2y′

)
.

Denoting x1(t) = y(t), x2(t) = y′(t), and x3(t) = y′′(t), we conclude that

x′1 = y′ = x2 ,

x′2 = (y′)′ = y′′ = x3 ,

x′3 = (y′′)′ = y′′′ =
1

3

(
5 + etx1 − 2x2

)
,
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that is,

x′1 = x2 ,

x′2 = x3 ,

x′3 =
1

3

(
5 + etx1 − 2x2

)
.

11. This system is equivalent to

x′′′ = t− y′ − y′′ ,

y′′′ = x′ − x′′ .

Next, we introduce, as additional unknowns, derivatives of x(t) and y(t):

x1(t) := x(t), x2(t) := x′(t), x3(t) := x′′(t),

x4(t) := y(t), x5(t) := y′(t), x6(t) := y′′(t).

With new variables, the system becomes

x′′′ = (x′′)′ =: x′3 = t− y′ − y′′ =: t− x5 − x6 ,

y′′′ = (y′′)′ =: x′6 = x′ − x′′ =: x2 − x3 .

Also, we have four new equations connecting xj ’s:

x′1 = x′ =: x2 ,

x′2 = (x′)′ = x′′ =: x3 ,

x′4 = y′ =: x5 ,

x′5 = (y′)′ = y′′ =: x6 .

Therefore, the answer is

x′1 = x2 ,

x′2 = x3 ,

x′3 = t− x5 − x6 ,

337



Chapter 5

x′4 = x5 ,

x′5 = x6 ,

x′6 = x2 − x3 .

13. With the notation used in (1) on page 264 of the text,

f(x, y) = 4 − 4y,

g(x, y) = −4x,

and the phase plane equation (see equation (2) on page 265 of the text) can be written as

dy

dx
=
g(x, y)

f(x, y)
=

−4x

4 − 4y
=

x

y − 1
.

This equation is separable. Separating variables yields

(y − 1) dy = x dx ⇒
∫

(y − 1) dy =

∫
x dx ⇒ (y − 1)2 + C = x2

or x2 − (y− 1)2 = C, where C is an arbitrary constant. We find the critical points by solving

the system

f(x, y) = 4 − 4y = 0,

g(x, y) = −4x = 0
⇒ y = 1,

x = 0.

So, (0, 1) is the unique critical point. For y > 1,

dx

dt
= 4(1 − y) < 0,

which implies that trajectories flow to the left. Similarly, for y < 1, trajectories flow to the

right. Comparing the phase plane diagram with those given on Figure 5.12 on page 270 of

the text, we conclude that the critical point (0, 1) is a saddle (unstable) point.

15. Some integral curves and the direction field for the given system are shown in Figure 5-B.

Comparing this picture with Figure 5.12 on page 270 of the text, we conclude that the origin

is an asymptotically stable spiral point.
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–1
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Figure 5–B: Integral curves and the direction field for Problem 15.

17. A trajectory is a path traced by an actual solution pair (x(t), y(t)) as t increases; thus it is

a directed (oriented) curve. An integral curve is the graph of a solution to the phase plane

equation; it has no direction. All trajectories lie along (parts of) integral curves. A given

integral curve can be the underlying point set for several different trajectories.

19. We apply Kirchhoff’s voltage law to Loops 1 and 2.

Loop 1 contains a capacitor C and a resistor R2; note that the direction of the loop is

opposite to that of I2. Thus we have

q

C
− R2I2 = 0 ⇒ q

C
= R2I2 ,

where q denotes the charge of the capacitor.

Loop 2 consists of an inductor L and two resistors R1 and R2; note that the loop direction

is opposite to the direction of I3. Therefore,

R2I2 −R1I3 − LI ′3 = 0 ⇒ R2I2 = R1I3 + LI ′3 .
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For the top juncture, all the currents flow out, and the Kirchhoff’s current law gives

−I1 − I2 − I3 = 0 ⇒ I1 + I2 + I3 = 0.

Therefore, the system, describing the current in RLC, is

q

C
= R2I2 ,

R2I2 = R1I3 + LI ′3 ,

I1 + I2 + I3 = 0.

With given data, R1 = R2 = 1 Ω, L = 1 H, and C = 1 F, and the relation I1 = dq/dt, this

system becomes

q = I2 ,

I2 = I3 + I ′3 ,

q′ + I2 + I3 = 0.

Replacing in the last two equations I2 by q, we get

I ′3 + I3 − q = 0,

q′ + q + I3 = 0.

We eliminate q by substituting q = I ′3 + I3 into the second equation and obtain

I ′′3 + 2I ′3 + 2I3 = 0.

The characteristic equation, r2 + 2r + 2 = 0, has roots r = −1 ± i and so, a general solution

to this homogeneous equation is I3 = e−t(A cos t+B sin t). Thus

I2 = q = I ′3 + I3

= −e−t(A cos t+B sin t) + e−t(−A sin t+B cos t) + e−t(A cos t+B sin t)

= e−t(B cos t−A sin t)

and

I1 =
dq

dt
= −e−t(B cos t− A sin t) + e−t(−B sin t− A cos t)

= e−t[(A− B) sin t− (A+B) cos t].
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CHAPTER 6: Theory of Higher Order Linear
Differential Equations

EXERCISES 6.1: Basic Theory of Linear Differential Equations, page 324

1. Putting the equation in standard form,

y′′′ − 3

x
y′ +

ex

x
y =

x2 − 1

x
,

we find that

p1(x) ≡ 0, p2(x) = −3

x
, p3(x) =

ex

x
, and q(x) =

x2 − 1

x
.

Functions p2(x), p3(x), and q(x) have only one point of discontinuity, x = 0, while p1(x) is

continuous everywhere. Therefore, all these functions are continuous on (−∞, 0) and (0,∞).

Since the initial point, x0 = 2, belongs to (−∞, 0), Theorem 1 guarantees the existence of a

unique solution to the given initial value problem on (−∞, 0).

3. For this problem, p1(x) = −1, p2(x) =
√
x− 1, and g(x) = tan x. Note that p1(x) is contin-

uous everywhere, p2(x) is continuous for x ≥ 1, and g(x) is continuous everywhere except at

odd multiples of π/2. Therefore, these three functions are continuous simultaneously on the

intervals [
1,
π

2

)
,

(
π

2
,
3π

2

)
,

(
3π

2
,
5π

2

)
, . . . .

Because 5, the initial point, is in the interval (3π/2, 5π/2), Theorem 1 guarantees that we

have a unique solution to the initial value problem on this interval.

5. Dividing the equation by x
√
x+ 1, we obtain

y′′′ − 1

x
√
x+ 1

y′ +
1√
x+ 1

y = 0.
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Thus p1(x) ≡ 0, p2(x) = 1/(x
√
x+ 1), p3(x) = 1/

√
x+ 1, and g(x) ≡ 0. Functions p1(x) and

q(x) are continuous on whole real line; p3(x) is defined and continuous for x > −1; p2(x) is

defined and continuous for x > −1 and x �= 0. Therefore, all these function is continuous on

(−1, 0) and (0,∞). The initial point lies on (0,∞), and so, by Theorem 1, the given initial

value problem has a unique solution on (0,∞).

7. Assume that c1, c2, and c3 are constants for which

c1e
3x + c2e

5x + c3e
−x ≡ 0 on (−∞,∞). (6.1)

If we show that this is possible only if c1 = c2 = c3 = 0, then linear independence will follow.

Evaluating the linear combination in (6.1) at x = 0, x = ln 2, and x = − ln 2, we find that

constants c1, c2, and c3 satisfy

c1 + c2 + c3 = 0,

8c1 + 32c2 +
1

2
c3 = 0,

1

8
c1 +

1

32
c2 + 2c3 = 0.

This system is a homogeneous system of linear equations whose determinant∣∣∣∣∣∣∣∣
1 1 1

8 32 1/2

1/8 1/32 2

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣ 32 1/2

1/32 2

∣∣∣∣∣−
∣∣∣∣∣ 8 1/2

1/8 2

∣∣∣∣∣+
∣∣∣∣∣ 8 32

1/8 1/32

∣∣∣∣∣ = 2827

64
�= 0.

Hence it has the unique trivial solution, that is, c1 = c2 = c3 = 0.

9. Let y1 = sin2 x, y2 = cos2 x, and y3 = 1. We want to find c1, c2, and c3, not all zero, such that

c1y1 + c2y2 + c3y3 = c1 sin2 x+ c2 cos2 x+ c3 · 1 = 0,

for all x in the interval (−∞,∞). Since sin2 x + cos2 x = 1 for all real numbers x, we can

choose c1 = 1, c2 = 1, and c3 = −1. Thus, these functions are linearly dependent.
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11. Let y1 = x−1, y2 = x1/2, and y3 = x. We want to find constants c1, c2, and c3 such that

c1y1 + c2y2 + c3y3 = c1x
−1 + c2x

1/2 + c3x = 0,

for all x on the interval (0,∞). This equation must hold if x = 1, 4, or 9 (or any other values

for x in the interval (0,∞)). By plugging these values for x into the equation above, we see

that c1, c2, and c3 must satisfy the three equations

c1 + c2 + c3 = 0,
c1
4

+ 2c2 + 4c3 = 0,

c1
9

+ 3c2 + 9c3 = 0.

Solving these three equations simultaneously yields c1 = c2 = c3 = 0. Thus, the only way for

c1x
−1 + c2x

1/2 + c3x = 0 for all x on the interval (0,∞), is for c1 = c2 = c3 = 0. Therefore,

these three functions are linearly independent on (0,∞).

13. A linear combination, c1x+ c2x
2 + c3x

3 + c4x
4, is a polynomial of degree at most four, and so,

by the fundamental theorem of algebra, it cannot have more than four zeros unless it is the

zero polynomial (that is, it has all zero coefficients). Thus, if this linear combination vanishes

on an interval, then c1 = c2 = c3 = c4 = 0. Therefore, the functions x, x2, x3, and x4 are

linearly independent on any interval, in particular, on (−∞,∞).

15. Since, by inspection, r = 3, r = −1, and r = −4 are the roots of the characteristic equation,

r3 + 2r2 − 11r − 12 = 0, the functions e3x, e−x, and e−4x form a solution set. Next, we check

that these functions are linearly independent by showing that their Wronskian is never zero.

W
[
e3x, e−x, e−4x

]
(x) =

∣∣∣∣∣∣∣∣
e3x e−x e−4x

3e3x −e−x −4e−4x

9e3x e−x 16e−4x

∣∣∣∣∣∣∣∣ = e3xe−xe−4x

∣∣∣∣∣∣∣∣
1 1 1

3 −1 −4

9 1 16

∣∣∣∣∣∣∣∣ = −84e−2x,

which does not vanish. Therefore, {e3x, e−x, e−4x} is a fundamental solution set and, by

Theorem 4, a general solution to the given differential equation is

y = C1e
3x + C2e

−x + C3e
−4x .
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17. Writing the given differential equation,

x3y′′′ − 3x2y′′ + 6xy′ − 6y = 0,

in standard form (17), we see that its coefficients, −3/x, 6/x2, and −6/x3 are continuous on

the specified interval, which is x > 0.

Next, substituting x, x2, and x3 into the differential equation, we verify that these functions

are indeed solutions.

x3(x)′′′ − 3x2(x)′′ + 6x(x)′ − 6(x) = 0 − 0 + 6x− 6x = 0,

x3(x2)′′′ − 3x2(x2)′′ + 6x(x2)′ − 6(x2) = 0 − 6x2 + 12x2 − 6x2 = 0,

x3(x3)′′′ − 3x2(x3)′′ + 6x(x3)′ − 6(x3) = 6x3 − 18x3 + 18x3 − 6x3 = 0.

Evaluating the Wronskian yields

W
[
x, x2, x3

]
(x) =

∣∣∣∣∣∣∣∣
x x2 x3

1 2x 3x2

0 2 6x

∣∣∣∣∣∣∣∣
= x

∣∣∣∣∣ 2x 3x2

2 6x

∣∣∣∣∣−
∣∣∣∣∣ x2 x3

2 6x

∣∣∣∣∣ = x
(
6x2
)− (4x3

)
= 2x3 .

Thus W [x, x2, x3] (x) �= 0 on (0,∞) and so {x, x2, x3} is a fundamental solution set for the

given differential equation. We involve Theorem 2 to conclude that

y = C1x+ C2x
2 + C3x

3

is a general solution.

19. (a) Since {ex, e−x cos 2x, e−x sin 2x, } is a fundamental solution set for the associated homo-

geneous differential equation and since yp = x2 is a solution to the nonhomogeneous

equation, by the superposition principle, we have a general solution given by

y(x) = C1e
x + C2e

−x cos 2x+ C3e
−x sin 2x+ x2.

344



Exercises 6.1

(b) To find the solution that satisfies the initial conditions, we must differentiate the general

solution y(x) twice with respect to x. Thus, we have

y′(x) = C1e
x − C2e

−x cos 2x− 2C2e
−x sin 2x− C3e

−x sin 2x+ 2C3e
−x cos 2x+ 2x

= C1e
x + (−C2 + 2C3) e

−x cos 2x+ (−2C2 − C3) e
−x sin 2x+ 2x ,

y′′(x) = C1e
x + (C2 − 2C3) e

−x cos 2x− 2 (−C2 + 2C3) e
−x sin 2x

− (−2C2 − C3) e
−x sin 2x+ 2 (−2C2 − C3) e

−x cos 2x+ 2

= C1e
x + (−3C2 − 4C3) e

−x cos 2x+ (4C2 − 3C3) e
−x sin 2x+ 2 .

Plugging the initial conditions into these formulas, yields the equations

y(0) = C1 + C2 = −1,

y′(0) = C1 − C2 + 2C3 = 1,

y′′(0) = C1 − 3C2 − 4C3 + 2 = −3.

By solving these equations simultaneously, we obtain C1 = −1, C2 = 0, and C3 = 1.

Therefore, the solution to the initial value problem is given by

y(x) = −ex + e−x sin 2x+ x2.

21. In the standard form, given equation becomes

y′′′ +
1

x2
y′ − 1

x3
y =

3 − ln x

x3
.

Since its coefficients are continuous on (0,∞), we can apply Theorems 2 and 4 to conclude

that a general solution to the corresponding homogeneous equation is

yh(x) = C1x+ C2x ln x+ C3x(ln x)
2

and a general solution to the given nonhomogeneous equation is

y(x) = yp(x) + yh(x) = lnx+ C1x+ C2x ln x+ C3x(ln x)
2 .
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To satisfy the initial conditions, first we find

y′(x) =
1

x
+ C1 + C2(ln x+ 1) + C3

[
(lnx)2 + 2 ln x

]
,

y′′(x) = − 1

x2
+
C2

x
+ C3

[
2 lnx

x
+

2

x

]
.

Substituting the initial conditions, y(1) = 3, y′(1) = 3, and y′′(1) = 0, we get the system

3 = y(1) = C1 ,

3 = y′(1) = 1 + C1 + C2 ,

0 = y′′(1) = −1 + C2 + 2C3

⇒
C1 = 3,

C1 + C2 = 2,

C2 + 2C3 = 1

⇒
C1 = 3,

C2 = −1,

C3 = 1.

Thus,

y(x) = ln x+ 3x− x ln x+ x(ln x)2

is the desired solution.

23. Substituting y1(x) = sin x and y2(x) = x into the given differential operator yields

L[sin x] = (sin x)′′′ + (sinx)′ + x(sin x) = − cosx+ cos x+ x sin x = x sin x,

L[x] = (x)′′′ + (x)′ + x(x) = 0 + 1 + x2 = x2 + 1.

Note that L[y] is a linear operator of the form (7). So, we can use the superposition principle.

(a) Since 2x sin x− x2 − 1 = 2(x sin x) − (x2 + 1), by the superposition principle,

y(x) = 2y1(x) − y2(x) = 2 sin x− x

is a solution to L[y] = 2x sin x− x2 − 1.

(b) We can express 4x2 + 4 − 6x sin x = 4(x2 + 1) − 6(x sin x). Hence,

y(x) = 4y2(x) − 6y1(x) = 4x− 6 sin x

is a solution to L[y] = 4x2 + 4 − 6x sin x.
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25. Clearly, it is sufficient to prove (9) just for two functions, y1 and y2. Using the linear property

of differentiation, we have

L [y1 + y2] = [y1 + y2]
(n) + p1 [y1 + y2]

(n−1) + · · · + pn [y1 + y2]

=
[
y

(n)
1 + y

(n)
2

]
+ p1

[
y

(n−1)
1 + y

(n−1)
2

]
+ · · · + pn [y1 + y2]

=
[
y

(n)
1 + p1y

(n−1)
1 + · · · + pny1

]
+
[
y

(n)
2 + p1y

(n−1)
2 + · · ·+ pny2

]
= L [y1] + L [y1] .

Next, we verify (10).

L [cy] = [cy](n) + p1 [cy](n−1) + · · ·+ pn [cy] = cy(n) + p1cy
(n−1) + · · · + pncy

= c
[
y(n) + p1y

(n−1) + · · ·+ pny
]

= cL [y] .

27. A linear combination

c0 + c1x+ c2x
2 + · · ·+ cnx

n

of the functions from the given set is a polynomial of degree at most n and so, by the funda-

mental theorem of algebra, it cannot have more than n zeros unless it is the zero polynomial,

i.e., it has all zero coefficients. Thus, if this linear combination vanishes on a whole interval

(a, b), then it follows that c0 = c1 = c2 = . . . = cn = 0. Therefore, the set of functions

{1, x, x2, . . . , xn} is linearly independent on any interval (a, b).

29. (a) Assuming that functions f1 , f2 , . . . , fm are linearly dependent on (−∞,∞), we can find

their nontrivial linear combination vanishing identically on (−∞,∞), i.e.,

c1f1 + c2f2 + · · · + cmfm ≡ 0 on (−∞,∞),

where not all cj’s are zeros. In particular, this linear combination vanishes on (−1, 1),

which contradicts the assumption that f1 , f2 , . . . , fm are linearly independent on (−1, 1).

(b) Let

f1(x) := |x− 1| , f2(x) := x− 1 .
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On (−1, 1) (even on (−∞, 1) ) we have f1(x) ≡ −f2(x) or, equivalently, f1(x)+f2(x) ≡ 0

and so these functions are linearly dependent on (−1, 1). However, their linear combina-

tion

c1f1(x) + c2f2(x) =

{
(c2 − c1) (x− 1), x ≤ 1;

(c1 + c2) (x− 1), x > 1

cannot vanish identically on (−∞,∞) unless c1 − c2 = 0 and c1 + c2 = 0, which implies

c1 = c2 = 0.

31. (a) Linearity of differentiation and the product rule yield

y′(x) = (v(x)ex)′ = v′(x)ex + v(x) (ex)′ = [v′(x) + v(x)] ex ,

y′′(x) = [v′(x) + v(x)]
′
ex + [v′(x) + v(x)] (ex)′ = [v′′(x) + 2v′(x) + v(x)] ex ,

y′′′(x) = [v′′(x) + 2v′(x) + v(x)]
′
ex + [v′′(x) + 2v′(x) + v(x)] (ex)′

= [v′′′(x) + 3v′′(x) + 3v′(x) + v(x)] ex .

(b) Substituting y, y′, y′′, and y′′′ into the differential equation (32), we obtain

[v′′′ + 3v′′ + 3v′ + v] ex − 2 [v′′ + 2v′ + v] ex − 5 [v′ + v] ex + 6vex = 0

⇒ [(v′′′ + 3v′′ + 3v′ + v) − 2 (v′′ + 2v′ + v) − 5 (v′ + v) + 6v] ex = 0

⇒ v′′′ + v′′ − 6v′ = 0,

where we have used the fact that the function ex is never zero. Let v′ =: w. Then

v′′ = w′, v′′′ = w′′, and so the above equation becomes

w′′ + w′ − 6w = 0. (6.2)

(c) The auxiliary equation for (6.2), r2 + r − 6 = 0, has the roots r = −3 and r = 2.

Therefore, a general solution to this differential equation is

w(x) = C1e
−3x + C2e

2x ,

where C1 and C2 are arbitrary constants. Choosing, say, C1 = −3, C2 = 0 and C1 = 0,

C2 = 2, we find two linearly independent solutions,

w1(x) = −3e−3x and w2(x) = 2e2x .
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Integration yields

v1(x) =

∫
w1(x) dx =

∫ (−3e−3x
)
dx = e−3x ,

v2(x) =

∫
w2(x) dx =

∫ (
2e2x
)
dx = e2x ,

where we have chosen zero integration constants.

(d) With functions v1(x) and v2(x) obtained in (c), we have

y1(x) = v1(x)e
x = e−3xex = e−2x , y2(x) = v2(x)e

x = e2xex = e3x .

To show that the functions ex, e−2x, and e3x are linearly independent on (−∞,∞), we

can use the approach similar to that in Problem 7. Alternatively, since these functions

are solutions to the differential equation (32), one can apply Theorem 3, as we did in

Problem 15. To this end,

W
[
ex, e−2x, e3x

]
(x) =

∣∣∣∣∣∣∣∣
ex e−2x e3x

ex −2e−2x 3e3x

ex 4e−2x 9e3x

∣∣∣∣∣∣∣∣ = exe−2xe3x

∣∣∣∣∣∣∣∣
1 1 1

1 −2 3

1 4 9

∣∣∣∣∣∣∣∣ = −30e2x �= 0

on (−∞,∞) and so the functions ex, e−2x, and e3x are linearly independent on (−∞,∞).

33. Let y(x) = v(x)e2x. Differentiating y(x), we obtain

y′(x) = [v′(x) + 2v(x)] e2x ,

y′′(x) = [v′′(x) + 4v′(x) + 4v(x)] e2x ,

y′′′(x) = [v′′′(x) + 6v′′(x) + 12v′(x) + 8v(x)] e2x .

Substituting these expressions into the given differential equation yields

[(v′′′ + 6v′′ + 12v′ + 8v) − 2 (v′′ + 4v′ + 4v) + (v′ + 2v) − (2v)] e2x = 0

⇒ [v′′′ + 4v′′ + 5v′] e2x = 0 ⇒ v′′′ + 4v′′ + 5v′ = 0.

With w(x) := v′(x), the above equation becomes

w′′(x) + 4w′(x) + 5w(x) = 0.
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The roots of the auxiliary equation, r2 + 4r + 5 = 0, for this second order equation are

r = −2 ± i. Therefore,

{w1(x), w2(x)} =
{
e−2x cosx, e−2x sin x

}
form a fundamental solution set. Integrating, we get

v1(x) =

∫
w1(x) =

∫
e−2x cosx dx =

e−2x(sin x− 2 cosx)

5
,

v2(x) =

∫
w2(x) =

∫
e−2x sin x dx = −e

−2x(2 sin x+ cosx)

5
,

where we have chosen integration constants to be zero. Thus, functions

f(x) = e2x ,

y1(x) = v1(x)f(x) =
e−2x(sin x− 2 cosx)

5
e2x =

sin x− 2 cosx

5
,

y2(x) = v2(x)f(x) =
e−2x(2 sin x+ cos x)

5
e2x =

2 sin x+ cos x

5

are three linearly independent solutions to the given differential equation.

35. First, let us evaluate the Wronskian of the system {x, sin x, cosx} to make sure that the result

of Problem 34 can be applied.

W [x, sin x, cosx] =

∣∣∣∣∣∣∣∣
x sin x cosx

1 cos x − sin x

0 − sin x − cosx

∣∣∣∣∣∣∣∣
= x

∣∣∣∣∣ cosx − sin x

− sin x − cosx

∣∣∣∣∣−
∣∣∣∣∣ sin x cosx

− sin x − cos x

∣∣∣∣∣
= x

(− cos2 x− sin2 x
) − (− sin x cosx+ sin x cosx) = −x.

Thus, W [x, sin x, cosx] �= 0 on (−∞, 0) and (0,∞). Therefore, on either of these two intervals,

{x, sin x, cos x} is a fundamental solution set for the third order linear differential equation
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given in Problem 34. Expanding the determinant over its last column yields∣∣∣∣∣∣∣∣∣∣
x sin x cosx y

1 cos x − sin x y′

0 − sin x − cosx y′′

0 − cos x sin x y′′′

∣∣∣∣∣∣∣∣∣∣
= y′′′W [x, sin x, cosx] − y′′

∣∣∣∣∣∣∣∣
x sin x cosx

1 cosx − sin x

0 − cosx sin x

∣∣∣∣∣∣∣∣
+y′

∣∣∣∣∣∣∣∣
x sin x cosx

0 − sin x − cos x

0 − cosx sin x

∣∣∣∣∣∣∣∣− y

∣∣∣∣∣∣∣∣
1 cosx − sin x

0 − sin x − cosx

0 − cosx sin x

∣∣∣∣∣∣∣∣
= −xy′′′ − y′′

[
x

∣∣∣∣∣ cosx − sin x

− cosx sin x

∣∣∣∣∣−
∣∣∣∣∣ sin x cosx

− cos x sin x

∣∣∣∣∣
]

+y′x

∣∣∣∣∣ − sin x − cos x

− cosx sin x

∣∣∣∣∣− y

∣∣∣∣∣ − sin x − cosx

− cosx sin x

∣∣∣∣∣
= −xy′′′ + y′′ − xy′ + y = 0.

EXERCISES6.2: Homogeneous Linear Equations with Constant Coefficients, page 331

1. The auxiliary equation

r3 + 2r2 − 8r = 0 ⇒ r
(
r2 + 2r − 8

)
= r(r − 2)(r + 4) = 0

has the roots r = 0, 2, and −4. Thus a general solutions to the differential equation has the

form

y = c1 + c2e
2x + c3e

−4x .

3. The auxiliary equation for this problem is 6r3 + 7r2 − r − 2 = 0. By inspection we see that

r = −1 is a root to this equation and so we can factor it as follows

6r3 + 7r2 − r − 2 = (r + 1)(6r2 + r − 2) = (r + 1)(3r + 2)(2r − 1) = 0.

Thus, we see that the roots to the auxiliary equation are r = −1, −2/3, and 1/2. These roots

are real and non-repeating. Therefore, a general solution to this problem is given by

z(x) = c1e
−x + c2e

−2x/3 + c3e
x/2 .
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5. We can factor the auxiliary equation, r3 + 3r2 + 28r + 26 = 0, as follows:

r3 + 3r2 + 28r + 26 = (r3 + r2) + (2r2 + 2r) + (26r + 26)

= r2(r + 1) + 2r(r + 1) + 26(r + 1) = (r + 1)(r2 + 2r + 26) = 0.

Thus either r + 1 = 0 ⇒ r = −1 or r2 + 2r + 26 = 0 ⇒ r = −1 ± 5i. Therefore, a

general solution is given by

y(x) = c1e
−x + c2e

−x cos 5x+ c3e
−x sin 5x .

7. Factoring the characteristic polynomial yields

2r3 − r2 − 10r − 7 = (2r3 + 2r2) + (−3r2 − 3r) + (−7r − 7)

= 2r2(r + 1) − 3r(r + 1) − 7(r + 1) = (r + 1)(2r2 − 3r − 7).

Thus the roots of the characteristic equation, 2r3 − r2 − 10r − 7 = 0, are

r + 1 = 0 ⇒ r = −1 ,

2r2 − 3r − 7 = 0 ⇒ r =
3 ±√32 − 4(2)(−7)

4
=

3 ±√
65

4
,

and a general solution is

y(x) = c1e
−x + c2e

(3+
√

65)x/4 + c3e
(3−√

65)x/4 .

9. In the characteristic equation, r3 − 9r2 +27r− 27 = 0, we recognize a complete cube, namely,

(r − 3)3 = 0. Thus, it has just one root, r = 3, of multiplicity three. Therefore, a general

solution to the given differential equation is given by

u(x) = c1e
3x + c2xe

3x + c3x
2e3x .

11. Since r4 +4r3+6r2+4r+1 = (r+1)4, the characteristic equation becomes (r+1)4 = 0, and it

has the root r = −1 of multiplicity four. Therefore, the functions e−x, xe−x, x2e−x, and x3e−x

form a fundamental solution set and a general solution to the given differential equation is

y(x) = c1e
−x + c2xe

−x + c3x
2e−x + c4x

3e−x =
(
c1 + c2x+ c3x

2 + c4x
3
)
e−x .
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13. The auxiliary equation in this problem is r4+4r2+4 = 0. This can be factored as (r2 + 2)
2

= 0.

Therefore, this equation has roots r =
√

2i, −√
2i,

√
2i, −√

2i, which we see are repeated and

complex. Therefore, a general solution to this problem is given by

y(x) = c1 cos
(√

2x
)

+ c2x cos
(√

2x
)

+ c3 sin
(√

2x
)

+ c4x sin
(√

2x
)
.

15. The roots to this auxiliary equation, (r − 1)2(r + 3)(r2 + 2r + 5)2 = 0, are

r = 1, 1, −3, −1 ± 2i, −1 ± 2i ,

where we note that 1 and −1 ± 2i are repeated roots. Therefore, a general solution to the

differential equation with the given auxiliary equation is

y(x) = c1e
x + c2xe

x + c3e
−3x + (c4 + c5x)e

−x cos 2x+ (c6 + c7x)e
−x sin 2x .

17. From the differential operator, replacing D by r, we obtain the characteristic equation

(r + 4)(r − 3)(r + 2)3(r2 + 4r + 5)2r5 = 0 ,

whose roots
r + 4 = 0 ⇒ r = −4,

r − 3 = 0 ⇒ r = 3,

(r + 2)3 = 0 ⇒ r = −2 of multiplicity 3,

(r2 + 4r + 5)2 = 0 ⇒ r = −2 ± i of multiplicity 2,

r5 = 0 ⇒ r = 0 of multiplicity 5.

Therefore, a general solution is given by

y(x) = c1e
−4x + c2e

3x +
(
c3 + c4x+ c5x

2
)
e−2x + (c6 + c7x) e

−2x cosx+ (c8 + c9x) e
−2x sin x

+c10 + c11x+ c12x
2 + c13x

3 + c14x
4 .

19. First, we find a general solution to the given equation. Solving the auxiliary equation,

r3 − r2 − 4r + 4 = (r3 − r2) − (4r − 4) = (r − 1)(r2 − 4) = (r − 1)(r + 2)(r − 2) = 0,
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yields the roots r = 1, −2, and 2. Thus a general solution has the form

y(x) = c1e
x + c2e

−2x + c3e
2x .

Next, we find constants c1, c2, and c3 such that the solution satisfies the initial conditions.

Differentiating y(x) and substituting the initial conditions, we obtain the system

y(0) =
(
c1e

x + c2e
−2x + c3e

2x
)∣∣

x=0
= c1 + c2 + c3 = −4,

y′(0) =
(
c1e

x − 2c2e
−2x + 2c3e

2x
)∣∣

x=0
= c1 − 2c2 + 2c3 = −1,

y′′(0) =
(
c1e

x + 4c2e
−2x + 4c3e

2x
)∣∣

x=0
= c1 + 4c2 + 4c3 = −19.

Solving yields

c1 = 1, c2 = −2, c3 = −3.

With these coefficients, the solution to the given initial problem is

y(x) = ex − 2e−2x − 3e2x .

21. By inspection, r = 2 is a root of the characteristic equation, r3 − 4r2 + 7r− 6 = 0. Factoring

yields

r3 − 4r2 + 7r − 6 = (r − 2)(r2 − 2r + 3) = 0.

Therefore, the other two roots are the roots of r2 − 2r + 3 = 0, which are r = 1 ±√
2i, and

so a general solution to the given differential equation is given by

y(x) = c1e
2x +

(
c2 cos

√
2x+ c3 sin

√
2x
)
ex .

Differentiating, we obtain

y′ = 2c1e
2x +

[(
c2 + c3

√
2
)

cos
√

2x+
(
c3 − c2

√
2
)

sin
√

2x
]
ex ,

y′′ = 4c1e
2x +

[(
2c3

√
2 − c2

)
cos

√
2x−

(
2c2

√
2 + c3

)
sin

√
2x
]
ex .

Hence, the initial conditions yield

y(0) = c1 + c2 = 1,

y′(0) = 2c1 + c2 + c3
√

2 = 0,

y′′(0) = 4c1 − c2 + 2c3
√

2 = 0

⇒
c1 = 1,

c2 = 0,

c3 = −√
2 .
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Substituting these constants into the general solution, we get the answer

y(x) = e2x −
√

2ex sin
√

2x .

23. Rewriting the system in operator form yields

(D3 − 1) [x] + (D + 1)[y] = 0,

(D − 1)[x] + y = 0.

Multiplying the second equation in this sytem by (D+1) and subtracting the result from the

first equation, we get

{(
D3 − 1

)− (D + 1)(D − 1)
}

[x] = D2(D − 1)[x] = 0.

Since the roots of the characteristic equation, r2(r − 1) = 0 are r = 0 of multiplicity two and

r = 1, a general solution x(t) is given by

x(t) = c1 + c2t+ c3e
t .

From the second equation in the original system, we obtain

y(t) = x(t) − x′(t) =
(
c1 + c2t+ c3e

t
)− (c1 + c2t+ c3e

t
)′

= (c1 − c2) + c2t.

25. A linear combination of the given functions

c0e
rx + c1xe

rx + c2x
2erx + · · · + cm−1x

m−1erx =
(
c0 + c1x+ c2x

2 + · · ·+ cmx
m
)
erx (6.3)

vanishes on an interval if and only if its polynomial factor, c0 + c1x+ c2x
2 + · · ·+ cm−1x

m−1,

vanishes on this interval (the exponential factor, erx, is never zero). But, as we have proved

in Problem 27, Section 6.1, the system of monomials {1, x, . . . , xn} is linearly independent on

any interval. Thus, the linear combination (6.3) vanishes on an inteval if and only if it has all

zero coefficients, i.e., c0 = c1 = . . . = cm−1 = 0. Therefore, the system {erx, xerx, . . . , xm−1erx}
is linearly independent on any interval, in particular, on (−∞,∞).
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27. Solving the auxiliary equation, r4 + 2r3 − 3r2 − r+ (1/2) = 0, using computer software yields

the roots

r1 = 1.119967680, r2 = 0.2963247800, r3 = −0.5202201098, r4 = −2.896072350 .

Thus, all the roots are real and distinct. A general solution to the given equation is, therefore,

y(x) = c1e
r1x + c2e

r2x + c3e
r3x + c4e

r4x ≈ c1e
1.120x + c2e

0.296x + c3e
−0.520x + c4e

−2.896x .

29. The auxiliary equation in this problem is r4 + 2r3 + 4r2 + 3r + 2 = 0. Let

g(r) = r4 + 2r3 + 4r2 + 3r + 2

⇒ g′(r) = 4r3 + 6r2 + 8r + 3.

Then the Newton’s recursion formula (2) in Appendix A of the text becomes

rn+1 = rn − r4
n + 2r3

n + 4r2
n + 3rn + 2

4r3
n + 6r2

n + 8rn + 3
.

With initial guess r0 = 1 + i, this formula yields

r1 = (1 + i) − (1 + i)4 + 2(1 + i)3 + 4(1 + i)2 + 3(1 + i) + 2

4(1 + i)3 + 6(1 + i)2 + 8(1 + i) + 3
≈ 0.481715 + 0.837327i ,

r2 = r1 − r4
1 + 2r3

1 + 4r2
1 + 3r1 + 2

4r3
1 + 6r2

1 + 8r1 + 3
≈ 0.052833 + 0.763496i ,

r3 = r2 − r4
2 + 2r3

2 + 4r2
2 + 3r2 + 2

4r3
2 + 6r2

2 + 8r2 + 3
≈ −0.284333 + 0.789859i ,

...

r7 = r6 − r4
6 + 2r3

6 + 4r2
6 + 3r6 + 2

4r3
6 + 6r2

6 + 8r6 + 3
≈ −0.500000 + 0.866025i ,

r8 = r7 − r4
7 + 2r3

7 + 4r2
7 + 3r7 + 2

4r3
7 + 6r2

7 + 8r7 + 3
≈ −0.500000 + 0.866025i .

Therefore, first two roots of the auxiliary equation are

r ≈ −0.5 + 0.866i and r = −0.5 + 0.866i = −0.5 − 0.866i .
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Similarly, we find other two roots. With the initial guess r0 = −1 − 2i, we find that

r1 = (−1 − 2i) − (−1 − 2i)4 + 2(−1 − 2i)3 + 4(−1 − 2i)2 + 3(−1 − 2i) + 2

4(−1 − 2i)3 + 6(−1 − 2i)2 + 8(−1 − 2i) + 3
≈ −0.830703 − 1.652798i ,

...

r6 ≈ −0.499994 − 1.322875i ,

r7 ≈ −0.500000 − 1.322876i ,

r8 ≈ −0.500000 − 1.322876i .

Therefore, the other two roots are

r ≈ −0.5 − 1.323i and r = −0.5 − 1.323i = −0.5 + 1.323i .

Thus, the auxiliary equation has four complex roots, and a general solution to the given

differential equation is given by

y(x) ≈ c1e
−0.5x cos(0.866x) + c2e

−0.5x sin(0.866x) + c3e
−0.5x cos(1.323x) + c4e

−0.5x sin(1.323x) .

31. (a) If we let y(x) = xr, then we see that

y′ = rxr−1 ,

y′′ = r(r − 1)xr−2 = (r2 − r)xr−2 ,

y′′′ = r(r − 1)(r − 2)xr−3 = (r3 − 3r2 + 2r)xr−3 .

(6.4)

Thus, if y = xr is a solution to this third order Cauchy-Euler equation, then we must

have

x3(r3 − 3r2 + 2r)xr−3 + x2(r2 − r)xr−2 − 2xrxr−1 + 2xr = 0

⇒ (r3 − 3r2 + 2r)xr + (r2 − r)xr − 2rxr + 2xr = 0

⇒ (r3 − 2r2 − r + 2)xr = 0. (6.5)

Therefore, in order for y = xr to be a solution to the equation with x > 0, we must have

r3 − 2r2 − r + 2 = 0. Factoring this equation yields

r3 − 2r2 − r + 2 = (r3 − 2r2) − (r − 2) = (r − 2)(r2 − 1) = (r − 2)(r + 1)(r − 1) = 0.
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Equation (6.5) will equal zero and, therefore, the differential equation will be satisfied for

r = ±1 and r = 2. Thus, three solutions to the differential equation are y = x, y = x−1,

and y = x2. Since these functions are linearly independent, they form a fundamental

solution set.

(b) Let y(x) = xr. In addition to (6.4), we need the fourth derivative of y(x).

y(4) = (y′′′)′ = r(r − 1)(r − 2)(r − 3)xr−4 = (r4 − 6r3 + 11r2 − 6r)xr−4 .

Thus, if y = xr is a solution to this fourth order Cauchy-Euler equation, then we must

have

x4(r4 − 6r3 + 11r2 − 6r)xr−4 + 6x3(r3 − 3r2 + 2r)xr−3

+2x2(r2 − r)xr−2 − 4xrxr−1 + 4xr = 0

⇒ (r4 − 6r3 + 11r2 − 6r)xr + 6(r3 − 3r2 + 2r)xr + 2(r2 − r)xr − 4rxr + 4xr = 0

⇒ (r4 − 5r2 + 4)xr = 0. (6.6)

Therefore, in order for y = xr to be a solution to the equation with x > 0, we must have

r4 − 5r2 + 4 = 0. Factoring this equation yields

r4 − 5r2 + 4 = (r2 − 4)(r2 − 1) = (r − 2)(r + 2)(r − 1)(r + 1) = 0.

Equation (6.6) will be satisfied if r = ±1, ±2. Thus, four solutions to the differential

equation are y = x, y = x−1, y = x2, and y = x−2. These functions are linearly

independent, and so form a fundamental solution set.

(c) Substituting y = xr into this differential equation yields

(r3 − 3r2 + 2r)xr − 2(r2 − r)xr + 13rxr − 13xr = 0

⇒ (r3 − 5r2 + 17r − 13)xr = 0.

Thus, in order for y = xr to be a solution to this differential equation with x > 0, we

must have r3 − 5r2 + 17r − 13 = 0. By inspection we find that r = 1 is a root to this

equation. Therefore, we can factor this equation as follows

(r − 1)(r2 − 4r + 13) = 0.
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We find the remaining roots by using the quadratic formula. Thus, we obtain the roots

r = 1, 2 ± 3i. From the root r = 1, we obtain the solution y = x. From the roots

r = 2 ± 3i, by applying the hint given in the problem, we see that a solution is given by

y(x) = x2+3i = x2 {cos(3 lnx) + i sin(3 ln x)} .

Therefore, by Lemma 2 on page 172 of the text, we find that two real-valued solutions to

this differential equation are y(x) = x2 cos(3 ln x) and y(x) = x2 sin(3 ln x). Since these

functions and the function y(x) = x are linearly independent, we obtain the fundamental

solution set {
x, x2 cos(3 lnx), x2 sin(3 ln x)

}
.

33. With suggested values of parameters m1 = m2 = 1, k1 = 3, and k2 = 2, the system (34)–(35)

becomes
x′′ + 5x− 2y = 0,

y′′ − 2x+ 2y = 0.
(6.7)

(a) Expressing y = (x′′ + 5x) /2 from the first equation and substituting this expression into

the second equation, we obtain

1

2
(x′′ + 5x)

′′ − 2x+ (x′′ + 5x) = 0

⇒ (
x(4) + 5x′′

)− 4x+ 2 (x′′ + 5x) = 0

⇒ x(4) + 7x′′ + 6x = 0, (6.8)

as it is stated in (36).

(b) The characteristic equation corresponding to (6.8) is r4 + 7r2 + 6 = 0. This equation is

of quadratic type. Substitution s = r2 yields

s2 + 7s+ 6 = 0 ⇒ s = −1, −6.

Thus

r = ±√−1 = ±i and r = ±√−6 = ±i
√

6 ,

and a general solution to (6.8) is given by

x(t) = c1 cos t+ c2 sin t+ c3 cos
√

6t+ c4 sin
√

6t .
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(c) As we have mentioned in (a), the first equation in (6.7) implies that y = (x′′ + 5x) /2.

Substituting the solution x(t) yields

y(t) =
1

2

[ (
c1 cos t+ c2 sin t+ c3 cos

√
6t+ c4 sin

√
6t
)′′

+5
(
c1 cos t+ c2 sin t+ c3 cos

√
6t+ c4 sin

√
6t
) ]

=
1

2

[ (
−c1 cos t− c2 sin t− 6c3 cos

√
6t− 6c4 sin

√
6t
)

+5
(
c1 cos t+ c2 sin t+ c3 cos

√
6t+ c4 sin

√
6t
) ]

= 2c1 cos t+ 2c2 sin t− c3
2

cos
√

6t− c4
2

sin
√

6t .

(d) Initial conditions x(0) = y(0) = 1 and x′(0) = y′(0) = 0 imply the system of linear

equations for c1, c2, c3, and c4. Namely,

x(0) = c1 + c3 = 1,

y(0) = 2c1 − (c3/2) = 1,

x′(0) = c2 + c4
√

6 = 0,

y′(0) = 2c2 − (c4
√

6/2) = 0

⇒

c1 = 3/5,

c3 = 2/5,

c2 = 0,

c4 = 0.

Thus, the solution to this initial value problem is

x(t) =
3

5
cos t+

2

5
cos

√
6t , y(t) =

6

5
cos t− 1

5
cos

√
6t .

35. Solving the characteristic equation yields

EIr4 − k = 0 ⇒ r4 =
k

EI

⇒ r2 =

√
k

EI
or r2 = −

√
k

EI

⇒ r = ± 4

√
k

EI
or r = ± 4

√
− k

EI
= ±i 4

√
k

EI
.

The first two roots are real numbers, the other two are pure imaginary numbers. Therefore,

a general solution to the vibrating beam equation is

y(x) = C1e
√

k/(EI)x + C2e
−
√

k/(EI)x + C3 sin

(
4

√
k

EI
x

)
+ C4 cos

(
4

√
k

EI
x

)
.
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Using the identities

eax = cosh ax+ sinh ax, e−ax = cosh ax− sinh ax,

we can express the solution in terms of hyperbolic and trigonometric functions as follows.

y(x) = C1e
√

k/(EI)x + C2e
−
√

k/(EI)x + C3 sin

(
4

√
k

EI
x

)
+ C4 cos

(
4

√
k

EI
x

)

= C1

[
cosh

(
4

√
k

EI
x

)
+ sinh

(
4

√
k

EI
x

)]
+ C2

[
cosh

(
4

√
k

EI
x

)
− sinh

(
4

√
k

EI
x

)]

+C3 sin

(
4

√
k

EI
x

)
+ C4 cos

(
4

√
k

EI
x

)

= c1 cosh

(
4

√
k

EI
x

)
+ c2 sinh

(
4

√
k

EI
x

)
+ c3 sin

(
4

√
k

EI
x

)
+ c4 cos

(
4

√
k

EI
x

)
,

where c1 := C1 + C2, c2 := C1 − C2, c3 := C3, and c4 := C4 are arbitrary constants.

EXERCISES 6.3: Undetermined Coefficients and the Annihilator Method, page 337

1. The corresponding homogeneous equation for this problem is y′′′ − 2y′′ − 5y′ + 6y = 0 which

has the associated auxiliary equation given by r3 − 2r2 − 5r + 6 = 0. By inspection we see

that r = 1 is a root to this equation. Therefore, this equation can be factored as follows

r3 − 2r2 − 5r + 6 = (r − 1)(r2 − r − 6) = (r − 1)(r − 3)(r + 2) = 0.

Thus, the roots to the auxiliary equation are given by r = 1, 3, and −2, and a general solution

to the homogeneous equation is

yh(x) = c1e
x + c2e

3x + c3e
−2x.

The nonhomogeneous term, g(x) = ex+x2, is the sum of an exponential term and a polynomial

term. Therefore, according to Section 4.5, this equation has a particular solution of the form

yp(x) = xs1C1e
x + xs2

(
C2 + C3x+ C4x

2
)
.
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Since ex is a solution to the associated homogeneous equation and xex is not, we set s1 = 1.

Since none of the terms x2, x, or 1 is a solution to the associated homogeneous equation, we

set s2 = 0. Thus, the form of a particular solution is

yp(x) = C1xe
x + C2 + C3x+ C4x

2 .

3. The associated homogeneous equation for this equation is y′′′ + 3y′′ − 4y = 0. This equation

has the corresponding auxiliary equation y3 + 3r2 − 4 = 0, which, by inspection, has r = 1 as

one of its roots. Thus, the auxiliary equation can be factored as follows

(r − 1)(r2 + 4r + 4) = (r − 1)(r + 2)2 = 0.

From this we see that the roots to the auxiliary equation are r = 1, −2, −2. Therefore, a

general solution to the homogeneous equation is

yh(x) = c1e
x + c2e

−2x + c3xe
−2x .

The nonhomogeneous term is g(x) = e−2x. Therefore, a particular solution to the original

differential equation has the form yp(x) = xsc1e
−2x. Since both e−2x and xe−2x are solutions

to the associated homogeneous equation, we set s = 2. (Note that this means that r = −2 will

be a root of multiplicity three of the auxiliary equation associated with the operator equation

A[L[y]](x) = 0, where A is an annihilator of the nonhomogeneous term g(x) = e−2x and L

is the linear operator L := D3 + 3D2 − 4.) Thus, the form of a particular solution to this

equation is

yp(x) = C1x
2e−2x .

5. In the solution to Problem 1, we determined that a general solution to the homogeneous

differential equation associated with this problem is

yh(x) = c1e
x + c2e

3x + c3e
−2x,

and that a particular solution has the form

yp(x) = C1xe
x + C2 + C3x+ C4x

2 .
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By differentiating yp(x), we find

y′p(x) = C1xe
x + C1e

x + C3 + 2C4x

⇒ y′′p(x) = C1xe
x + 2C1e

x + 2C4

⇒ y′′′p (x) = C1xe
x + 3C1e

x.

Substituting these expressions into the original differential equation, we obtain

y′′′p (x) − 2y′′p(x) − 5y′p(x) + 6yp(x) = C1xe
x + 3C1e

x − 2C1xe
x − 4C1e

x − 4C4

−5C1xe
x − 5C1e

x − 5C3 − 10C4x+ 6C1xe
x + 6C2 + 6C3x+ 6C4x

2 = ex + x2

⇒ −6C1e
x + (−4C4 − 5C3 + 6C2) + (−10C4 + 6C3)x+ 6C4x

2 = ex + x2 .

Equating coefficients yields

−6C1 = 1 ⇒ C1 =
−1

6
,

6C4 = 1 ⇒ C4 =
1

6
,

−10C4 + 6C3 = 0 ⇒ C3 =
10C4

6
=

10

36
=

5

18
,

−4C4 − 5C3 + 6C2 = 0 ⇒ C2 =
4C4 + 5C3

6
=

4(1/6) + 5(5/18)

6
=

37

108
.

Thus, a general solution to the nonhomogeneous equation is given by

y(x) = yh(x) + yp(x) = c1e
x + c2e

3x + c3e
−2x − 1

6
xex +

1

6
x2 +

5

18
x+

37

108
.

7. In Problem 3, a general solution to the associated homogeneous equation was found to be

yh(x) = c1e
x + c2e

−2x + c3xe
−2x,

and the form of a particular solution to the nonhomogeneous equation was

yp(x) = C1x
2e−2x.
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Differentiating yp(x) yields

y′p(x) = 2C1xe
−2x − 2C1x

2e−2x = 2C1(x− x2)e−2x

⇒ y′′p(x) = −4C1(x− x2)e−2x + 2C1(1 − 2x)e−2x = 2C1(2x
2 − 4x+ 1)e−2x

⇒ y′′′p (x) = −4C1(2x
2 − 4x+ 1)e−2x + 2C1(4x− 4)e−2x = 4C1(−2x2 + 6x− 3)e−2x .

By substituting these expressions into the nonhomogeneous equation, we obtain

y′′′p (x) + 3y′′p(x) − 4yp(x) = 4C1(−2x2 + 6x− 3)e−2x

+6C1(2x
2 − 4x+ 1)e−2x − 4C1x

2e−2x = e−2x

⇒ −6C1e
−2x = e−2x .

By equating coefficients, we see that C1 = −1/6. Thus, a general solution to the nonhomoge-

neous differential equation is given by

y(x) = yh(x) + yp(x) = c1e
x + c2e

−2x + c3xe
−2x − 1

6
x2e−2x .

9. Solving the auxiliary equation, r3 − 3r2 + 3r− 1 = (r− 1)3 = 0, we find that r = 1 is its root

of multiplicity three. Therefore, a general solution to the associated homogeneous equation is

given by

yh(x) = c1e
x + c2xe

x + c3x
2ex .

The nonhomogeneous term, ex, suggests a particular solution of the form yp(x) = Axsex,

where we have to choose s = 3 since the root r = 1 of the auxiliary equation is of multiplicity

three. Thus

yp(x) = Ax3ex .

Differentiating yp(x) yields

y′p(x) = A
(
x3 + 3x2

)
ex ,

y′′p(x) = A
(
x3 + 6x2 + 6x

)
ex ,

y′′′p (x) = A
(
x3 + 9x2 + 18x+ 6

)
ex .
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By substituting these expressions into the original equation, we obtain

y′′′p − 3y′′p + 3y′p − y = ex

⇒ [
A
(
x3 + 9x2 + 18x+ 6

)
ex
]− 3

[
A
(
x3 + 6x2 + 6x

)
ex
]

+3
[
A
(
x3 + 3x2

)
ex
]− Ax3ex = ex

⇒ 6Aex = ex ⇒ A =
1

6
,

and so yp(x) = x3ex/6. A general solution to the given equation then has the form

y(x) = yh(x) + yp(x) = c1e
x + c2xe

x + c3x
2ex +

1

6
x3ex .

11. The operator D5, that is, the fifth derivative operator, annihilates any polynomial of degree

at most four. In particular, D5 annihilates the polynomial x4 − x2 + 11.

13. According to (i) on page 334 of the text, the operator [D − (−7)] = (D + 7) annihilates the

exponential function e−7x .

15. The operator (D−2) annihilates the function f1(x) := e2x and the operator (D−1) annihilates

the function f2(x) := ex. Thus, the composition of these operators, namely, (D − 2)(D − 1),

annihilates both of these functions and so, by linearity, it annihilates their algebraic sum.

17. This function has the same form as the functions given in (iv) on page 334 of the text. Here

we see that α = −1, β = 2, and m− 1 = 2. Thus, the operator[
(D − {−1})2 + 22

]3
=
[
(D + 1)2 + 4

]3
annihilates this function.

19. Given function as a sum of two functions. The first term, xe−2x, is of the type (ii) on the

page 334 of the text with m = 2 and r = −2; so [D − (−2)]2 = (D + 2)2 annihilates this

function. The second term, xe−5x sin 3x, is annihilated by[
(D − (−5))2 + 32

]2
=
[
(D + 5)2 + 9

]2
according to (iv). Therefore, the composition [(D + 2)2(D + 5)2 + 9]

2
annihilates the function

xe−2x + xe−5x sin 3x.
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21. In operator form, the given equation can be written as(
D2 − 5D + 6

)
[u] = cos 2x+ 1.

The function g(x) = cos 2x+1 is a sum of two functions: cos 2x is of the type (iii) on page 334

of the text with β = 2, and so it is innihilated by (D2 + 4); 1, as a constant, is annihilated

by D. Therefore, the operator D(D2 + 4) innihilates the right-hand side, g(x). Applying this

operator to both sides of the differential equation given in this problem yields

D
(
D2 + 4

) (
D2 − 5D + 6

)
[u] = D

(
D2 + 4

)
[cos 2x+ 1] = 0

⇒ D
(
D2 + 4

)
(D − 3)(D − 2)[u] = 0.

This last equation has the associated auxiliary equation r (r2 + 4) (r − 3)(r − 2) = 0, which

has roots r = 2, 3, 0, ±2i. Thus, a general solution to the differential equation associated

with this auxiliary equation is

u(x) = c1e
2x + c2e

3x + c3 cos 2x+ c4 sin 2x+ c5 .

The homogeneous equation, u′′ − 5u′ + 6u = 0, associated with the original problem, has as

its corresponding auxiliary equation r2 − 5r + 6 = (r− 2)(r− 3) = 0. Therefore, the solution

to the homogeneous equation associated with the original problem is uh(x) = c1e
2x + c2e

3x.

Since a general solution to this original problem is given by

u(x) = uh(x) + up(x) = c1e
2x + c2e

3x + up(x)

and since u(x) must be of the form

u(x) = c1e
2x + c2e

3x + c3 cos 2x+ c4 sin 2x+ c5 ,

we see that

up(x) = c3 cos 2x+ c4 sin 2x+ c5 .

23. The function g(x) = e3x − x2 is annihilated by the operator A := D3(D − 3). Applying the

operator A to both sides of the differential equation given in this problem yields

A [y′′ − 5y′ + 6y] = A
[
e3x − x2

]
= 0
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⇒ D3(D − 3)(D2 − 5D + 6)[y] = D3(D − 3)2(D − 2)[y] = 0.

This last equation has the associated auxiliary equation

r3(r − 3)2(r − 2) = 0,

which has roots r = 0, 0, 0, 3, 3, 2. Thus, a general solution to the differential equation

associated with this auxiliary equation is

y(x) = c1e
2x + c2e

3x + c3xe
3x + c4x

2 + c5x+ c6 .

The homogeneous equation, y′′ − 5y′ + 6y = 0, associated with the original problem, is the

same as in Problem 21 (with u replaced by y). Therefore, the solution to the homogeneous

equation associated with the original problem is yh(x) = c1e
2x +c2e

3x. Since a general solution

to this original problem is given by

y(x) = yh(x) + yp(x) = c1e
2x + c2e

3x + yp(x)

and since y(x) must be of the form

y(x) = c1e
2x + c2e

3x + c3xe
3x + c4x

2 + c5x+ c6 ,

we see that

yp(x) = c3xe
3x + c4x

2 + c5x+ c6 .

25. First, we rewrite the equation in operator form, that is,

(
D2 − 6D + 9

)
[y] = sin 2x+ x ⇒ (D − 3)2[y] = sin 2x+ x .

In this problem, the right-hand side is a sum of two functions. The first function, sin 2x, is

annihilated by (D2 + 4), and the operator D2 annihilates the term x. Thus A := D2(D2 + 4)

annihilates the function sin 2x+x. Applying this operator to the original equation (in operator

form) yields

D2(D2 + 4)(D − 3)2[y] = D2(D2 + 4)[sin 2x+ x] = 0. (6.9)
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This homogeneous equation has associated characteristic equation

r2(r2 + 4)(r − 3)2 = 0

with roots ±2i, and double roots r = 0 and r = 3. Therefore, a general solution to (6.9) is

given by

y(x) = c1e
3x + c2xe

3x + c3 + c4x+ c5 cos 2x+ c6 sin 2x . (6.10)

Since the homogeneous equation, (D−3)2[y] = 0, which corresponds to the original equation,

has a general solution yh(x) = c1e
3x +c2xe

3x, the “tail” in (6.10) gives the form of a particular

solution to the given equation.

27. Since

y′′ + 2y′ + 2y =
(
D2 + 2D + 2

)
[y] =

{
(D + 1)2 + 1

}
[y],

the auxiliary equation in this problm is (r+1)2+1 = 0, whose roots are r = −1±i. Therefore,

a general solution to the homogeneous equation, corresponding to the original equation, is

yh(x) = (c1 cosx+ c2 sin x) e−x .

Applying the operator D3{(D+1)2+1} to the given equation, which annihilates its right-hand

side, yields

D3
{
(D + 1)2 + 1

}{
(D + 1)2 + 1

}
[y] = D3

{
(D + 1)2 + 1

} [
e−x cosx+ x2

]
= 0

⇒ D3
[
(D + 1)2 + 1

]2
[y] = 0. (6.11)

The corresponding auxiliary equation, r3[(r + 1)2 + 1]2 = 0 has a root r = 0 of multiplicity

three and double roots r = −1 ± i. Therefore, a general solution to (6.11) is given by

y(x) = (c1 cos x+ c2 sin x) e−x + (c3 cosx+ c4 sin x) xe−x + c5x
2 + c6x+ c7 .

Since y(x) = yh(x) + yp(x), we conclude that

yp(x) = (c3 cosx+ c4 sin x) xe−x + c5x
2 + c6x+ c7 .
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29. In operator form, the equation becomes(
D3 − 2D2 +D

)
[z] = D(D − 1)2[z] = x− ex . (6.12)

Solving the corresponding auxiliary equation, r(r − 1)2 = 0, we find that r = 0, 1, and 1.

Thus

zh(x) = C1 + C2e
x + C3xe

x

is a general solution to the homogeneous equation associated with the original equation. To

annihilate the right-hand side in (6.12), we apply the operator D2(D − 1) to this equation.

Thus we obtain

D2(D − 1)D(D − 1)2[z] = D2(D − 1) [x− ex] ⇒ D3(D − 1)3 = 0.

Solving the corresponding auxiliary equation, r3(r− 1)3 = 0, we see that r = 0 and r = 1 are

its roots of multiplicity three. Hence, a general solution is given by

z(x) = c1 + c2x+ c3x
2 + c4e

x + c5xe
x + c6x

2ex .

This general solution, when compared with zh(x), gives

zp(x) = c2x+ c3x
2 + c6x

2ex .

31. Writing this equation in operator form yields(
D3 + 2D2 − 9D − 18

)
[y] = −18x2 − 18x+ 22 . (6.13)

Since,

D3 + 2D2 − 9D− 18 = D2(D + 2) − 9(D + 2) = (D + 2)
(
D2 − 9

)
= (D + 2)(D− 3)(D + 3),

(6.13) becomes

(D + 2)(D − 3)(D + 3)[y] = −18x2 − 18x+ 22 .

The auxiliary equation in this problem is (r + 2)(r− 3)(r + 3) = 0 with roots r = −2, 3, and

−3. Hence, a general solution to the corresponding homogeneous equation has the form

yh(x) = c1e
−2x + c2e

3x + c3e
−3x .

369



Chapter 6

Since the operator D3 annihilates the nonhomogeneous term in the original equation and

r = 0 is not a root of the auxiliary equation, we seek for a particular solution of the form

yp(x) = C0x
2 + C1x+ C2 .

Substituting yp into the given equation (for convenience, in operator form) yileds(
D3 + 2D2 − 9D − 18

) [
C0x

2 + C1x+ C2

]
= −18x2 − 18x+ 22

⇒ 0 + 2 (2C0) − 9 [2C0x+ C1] − 18
[
C0x

2 + C1x+ C2

]
= −18x2 − 18x+ 22

⇒ −18C0x
2 + (−18C1 − 18C0)x+ (−18C2 − 9C1 + 4C0) = −18x2 − 18x+ 22.

Equating coefficients, we obtain the system

−18C0 = −18,

−18C1 − 18C0 = −18,

−18C2 − 9C1 + 4C0 = 22

⇒
C0 = 1,

C1 = 0,

C2 = −1.

Thus, yp(x) = x2 − 1 and

y(x) = yh(x) + yp(x) = c1e
−2x + c2e

3x + c3e
−3x + x2 − 1

is a general solution to the original nonhomogeneous equation. Next, we satisfy the initial

conditions. Differentiation yields

y′(x) = −2c1e
−2x + 3c2e

3x − 3c3e
−3x + 2x,

y′′(x) = 4c1e
−2x + 9c2e

3x + 9c3e
−3x + 2.

Therefore,

−2 = y(0) = c1 + c2 + c3 − 1,

−8 = y′(0) = −2c1 + 3c2 − 3c3,

−12 = y′′(0) = 4c1 + 9c2 + 9c3 + 2

⇒
c1 + c2 + c3 = −1,

−2c1 + 3c2 − 3c3 = −8,

4c1 + 9c2 + 9c3 = −14.

Solving this system, we find that c1 = 1, c2 = −2, and c3 = 0, and so

y(x) = e−2x − 2e3x + x2 − 1

gives the solution to the given initial value problem.
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33. Let us write given equation in operator form.(
D3 − 2D2 − 3D + 10

)
[y] = (34x− 16)e−2x − 10x2 + 6x+ 34 .

By inspection, r = −2 is a root of the characteristic equation, r3 − 2r2 − 3r + 10 = 0. Using,

say, long division we find that

r3 − 2r2 − 3r + 10 = (r + 2)
(
r2 − 4r + 5

)
= (r + 2)

[
(r − 2)2 + 1

]
and so the other two roots of the auxiliary equation are r = 2±i. This gives a general solution

to the corresponding homogeneous equation

yh(x) = c1e
−2x + (c2 cosx+ c3 sin x) e2x .

According to the nonhomogeneous term, we look for a particular solution to the original

equation of the form

yp(x) = x (C0x+ C1) e
−2x + C2x

2 + C3x+ C4 ,

where the factor x in the exponential term appears due to the fact that r = −2 is a root of

the characteristic equation. Substituting yp(x) into the given equation and simplifying yield(
D3 − 2D2 − 3D + 10

)
[yp(x)] = (34x− 16)e−2x − 10x2 + 6x+ 34

⇒ (34C0x+ 17C1 − 16C0) e
−2x + 10C2x

2 + (10C3 − 6C2)x

+10C4 − 3C3 − 4C2 = (34x− 16)e−2x − 10x2 + 6x+ 34.

Equating corresponding coefficients, we obtain the system

34C0 = 34,

17C1 − 16C0 = −16,

10C2 = −10,

10C3 − 6C2 = 6,

10C4 − 3C3 − 4C2 = 34

⇒

C0 = 1,

C1 = 0,

C2 = −1,

C3 = 0,

C4 = 3.

Thus, yp(x) = x2e−2x − x2 + 3 and

y(x) = yh(x) + yp(x) = c1e
−2x + (c2 cosx+ c3 sin x) e2x + x2e−2x − x2 + 3
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is a general solution to the given nonhomogeneous equation. Next, we find constants c1, c2,

and c3 such that the initial conditions are satisfied. Differentiation yields

y′(x) = −2c1e
−2x + [(2c2 + c3) cosx+ (2c3 − c2) sin x] e2x + (2x− 2x2)e−2x − 2x,

y′′(x) = 4c1e
−2x + [(3c2 + 4c3) cosx+ (3c3 − 4c2) sin x] e2x + (2 − 8x+ 4x2)e−2x − 2.

Therefore,

3 = y(0) = c1 + c2 + 3,

0 = y′(0) = −2c1 + 2c2 + c3,

0 = y′′(0) = 4c1 + 3c2 + 4c3

⇒
c1 + c2 = 0,

−2c1 + 2c2 + c3 = 0,

4c1 + 3c2 + 4c3 = 0.

The solution of this homogeneous linear system is c1 = c2 = c3 = 0. Hence, the answer is

y(x) = x2e−2x − x2 + 3.

35. If a0 = 0, then equation (4) becomes

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ = f(x)

or, in operator form, (
anD

n + an−1D
n−1 + · · ·+ a1D

)
[y] = f(x)

⇒ D
(
anD

n−1 + an−1D
n−2 + · · ·+ a1

)
[y] = f(x). (6.14)

Since the operator Dm+1 annihilates any polynomial f(x) = bmx
m + · · ·+ b0, applying Dm+1

to both sides in (6.14) yields

Dm+1D
(
anD

n−1 + an−1D
n−2 + · · · + a1

)
[y] = Dm+1[f(x)] = 0

⇒ Dm+2
(
anD

n−1 + an−1D
n−2 + · · ·+ a1

)
[y] = 0. (6.15)

The auxiliary equation, corresponding to this homogeneous equation is,

rm+2
(
anr

n−1 + an−1r
n−2 + · · ·+ a1

)
= 0. (6.16)

Since a1 �= 0, (
anr

n−1 + an−1r
n−2 + · · · + a1

)∣∣
r=0

= a1 �= 0,
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which means that r = 0 is not a root of this polynomial. Thus, for the auxiliary equation

(6.16), r = 0 is a root of exact multiplicity m+ 2, and so a general solution to (6.15) is given

by

y(x) = c0 + c1x+ · · ·+ cm+1x
m+1 + Y (x), (6.17)

where Y (x), being associated with roots of anr
n−1 + an−1r

n−2 + · · · + a1 = 0, is a general

solution to (anD
n−1 + an−1D

n−2 + · · ·+ a1) [y] = 0. (One can write down Y (x) explicitly but

there is no need in doing this.)

On the other hand, the auxiliary equation for the homogeneous equation, associated with

(6.14), is r(anr
n−1 + an−1r

n−2 + · · · + a1) = 0, and r = 0 is its simple root. Hence, a general

solution yh(x) to the homogeneous equation is given by

yh(x) = c0 + Y (x), (6.18)

where Y (x) is the same as in (6.17). Since y(x) = yh(x) + yp(x), it follows from (6.17) and

(6.18) that

yp(x) = c1x+ · · ·+ cm+1x
m+1 = x (c1 + · · ·+ cm+1x

m) ,

as stated.

37. Writing equation (4) in operator form yields(
anD

n + an−1D
n−1 + · · · + a0

)
[y] = f(x). (6.19)

The characteristic equation, corresponding to the associated homogeneous equation, is

anr
n + an−1r

n−1 + · · ·+ a0 = 0. (6.20)

Suppose that r = βi is a root of (6.20) of multiplicity s ≥ 0. (s = 0 means that r = βi is not

a root.) Then (6.20) can be factored as

anr
n + an−1r

n−1 + · · · + a0 =
(
r2 + β2

)s (
anr

n−2s + · · ·+ a0/β
2s
)

= 0

and so a general solution to the homogeneous equation is given by

yh(x) = (c1 cosβx+ c2 sin βx) + x(c3 cosβx+ c4 sin βx)

+ · · ·+ xs−1(c2s−1 cosβx+ c2s sin βx) + Y (x),
(6.21)
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where Y (x) is the part of yh(x) corresponding to the roots of anr
n−2s + · · · + a0/β

2s = 0.

Since the operator (D2 + β2) annihilates f(x) = a cosβx+ b sin βx, applying this operator to

both sides in (6.19), we obtain

(D2 + β2)
(
anD

n + an−1D
n−1 + · · ·+ a0

)
[y] = (D2 + β2)[f(x)] = 0.

The corresponding auxiliary equation,

(r2 + β2)
(
anr

n + an−1r
n−1 + · · ·+ a0

)
= 0 ⇒ (

r2 + β2
)s+1 (

anr
n−2s + · · · + a0/β

2s
)

= 0

has r = βi as its root of multiplicity s + 1. Therefore, a general solution to this equation is

given by

y(x) = (c1 cosβx+ c2 sin βx) + x(c3 cos βx+ c4 sin βx)

+ · · ·+ xs−1(c2s−1 cosβx+ c2s sin βx) + xs(c2s+1 cosβx+ c2s+2 sin βx) + Y (x).

Since, y(x) = yh(x) + yp(x), comparing y(x) with yh(x) given in (6.21), we conclude that

yp(x) = xs(c2s+1 cos βx+ c2s+2 sin βx).

All that remains is to note that, for any m < s, the functions xm cosβx and xm sin βx are

presented in (6.21), meaning that they are solutions to the homogeneous equation correspond-

ing to (6.19). Thus s is the smallest number m such that xm cosβx and xm sin βx are not

solutions to the corresponding homogeneous equation.

39. Writing the system in operator form yields

(D2 − 1) [x] + y = 0,

x+ (D2 − 1) [y] = e3t .

Subtracting the first equation from the second equation multiplied by (D2 − 1), we get{(
D2 − 1

)
[x] +

(
D2 − 1

)2
[y]
}
− {(D2 − 1

)
[x] + y

}
=
(
D2 − 1

) [
e3t
]− 0 = 8e3t

⇒
{(
D2 − 1

)2 − 1
}

[y] = 8e3t ⇒ D2
(
D2 − 2

)
[y] = 8e3t . (6.22)
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The auxiliary equation, r2(r2 − 2) = 0, has roots r = ±√
2 and a double root r = 0. Hence,

yh(t) = c1 + c2t+ c3e
√

2t + c4e
−√

2t

is a general solution to the homogeneous equation coresponding to (6.22). A particular solution

to (6.22) has the form yp(t) = Ae3t. Substitution yields

D2
(
D2 − 2

) [
Ae3x

]
=
(
D4 − 2D2

) [
Ae3x

]
= 81Ae3x − (2)9Ae3x = 63Ae3x = 8e3x

⇒ yp(t) = Ae3x =
8e3x

63
,

and so

y(t) = yp(t) + yh(t) =
8e3x

63
+ c1 + c2t+ c3e

√
2t + c4e

−√
2t

is a general solution to (6.22). We find x(t) from the second equation in the original system.

x(t) = e3t + y(t) − y′′(t)

= e3t +

(
8e3x

63
+ c1 + c2t+ c3e

√
2t + c4e

−√
2t

)
−
(

72e3x

63
+ 2c3e

√
2t + 2c4e

−√
2t

)
= −e

3x

63
+ c1 + c2t− c3e

√
2t − c4e

−√
2t .

EXERCISES 6.4: Method of Variation of Parameters, page 341

1. To apply the method of variation of parameters, first we have to find a fundamental solution

set for the corresponding homogeneous equation, which is

y′′′ − 3y′′ + 4y = 0.

Factoring the auxiliary polynomial, r3 − 3r2 + 4, yields

r3 − 3r2 + 4 =
(
r3 + r2

)− (4r2 − 4
)

= r2(r + 1) − 4(r − 1)(r + 1) = (r + 1)(r − 2)2.

Therefore, r = −1, 2, and 2 are the roots of the auxiliary equation, and y1 = e−x, y2 = e2x,

and y3 = xe2x form a fundamental solution set. According to the variation of parameters

method, we seek for a particular solution of the form

yp(x) = v1(x)y1(x) + v2(x)y2(x) + v3(x)y3(x) = v1(x)e
−x + v2(x)e

2x + v3(x)xe
2x .
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To find functions vj ’s we need four determinants, the Wronskian W [y1, y2, y3](x) and W1(x),

W2(x), and W3(x) given in (10) on page 340 of the text. Thus we compute

W
[
e−x, e2x, xe2x

]
(x) =

∣∣∣∣∣∣∣∣
e−x e2x xe2x

−e−x 2e2x (1 + 2x)e2x

e−x 4e2x (4 + 4x)e2x

∣∣∣∣∣∣∣∣ = e−xe2xe2x

∣∣∣∣∣∣∣∣
1 1 x

−1 2 1 + 2x

1 4 4 + 4x

∣∣∣∣∣∣∣∣ = 9e3x,

W1(x) = (−1)3−1W
[
e2x, xe2x

]
(x) =

∣∣∣∣∣ e2x xe2x

2e2x (1 + 2x)e2x

∣∣∣∣∣ = e4x ,

W2(x) = (−1)3−2W
[
e−x, xe2x

]
(x) = −

∣∣∣∣∣ e−x xe2x

−e−x (1 + 2x)e2x

∣∣∣∣∣ = −(1 + 3x)ex ,

W3(x) = (−1)3−3W
[
e−x, e2x

]
(x) =

∣∣∣∣∣ e−x e2x

−e−x 2e2x

∣∣∣∣∣ = 3ex .

Substituting these expressions into the formula (11) for determining vj ’s, we obtain

v1(x) =

∫
g(x)W1(x)

W [e−x, e2x, xe2x]
dx =

∫
e2xe4x

9e3x
dx =

1

27
e3x ,

v2(x) =

∫
g(x)W2(x)

W [e−x, e2x, xe2x]
dx =

∫ −e2x(1 + 3x)ex

9e3x
dx = −1

9

∫
(1 + 3x) dx = −x

9
− x2

6
,

v3(x) =

∫
g(x)W3(x)

W [e−x, e2x, xe2x]
dx =

∫
e2x3ex

9e3x
dx =

x

3
,

where we have chosen zero integration constants. Then formula (12), page 340 of the text,

gives a particular solution

yp(x) =
1

27
e3xe−x −

(
x

9
+
x2

6

)
e2x +

x

3
xe2x =

1

27
e2x − xe2x

9
+
x2e2x

6
.

Note that the first two terms in yp(x) are solutions to the corresponding homogeneous equa-

tion. Thus, another (and simpler) answer is yp(x) = x2e2x/6.

3. Let us find a fundamental solution set for the corresponding homogeneous equation,

z′′′ + 3z′′ − 4z = 0.

Factoring the auxiliary polynomial, r3 + 3r2 − 4, yields

r3 + 3r2 − 4 =
(
r3 − r2

)
+
(
4r2 − 4

)
= r2(r − 1) + 4(r + 1)(r − 1) = (r − 1)(r + 2)2.
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Therefore, r = 1, −2, and −2 are the roots of the auxiliary equation, and so the functions

z1 = ex, z2 = e−2x, and z3 = xe−2x form a fundamental solution set. A particular solution

then has the form

zp(x) = v1(x)z1(x) + v2(x)z2(x) + v3(x)z3(x) = v1(x)e
x + v2(x)e

−2x + v3(x)xe
−2x . (6.23)

To find functions vj’s we need four determinants, the Wronskian W [z1, z2, z3](x) and W1(x),

W2(x), and W3(x) given in (10) on page 340 of the text. Thus we compute

W
[
ex, e−2x, xe−2x

]
(x) =

∣∣∣∣∣∣∣∣
ex e−2x xe−2x

ex −2e−2x (1 − 2x)e−2x

ex 4e−2x (4x− 4)e−2x

∣∣∣∣∣∣∣∣ = e−3x

∣∣∣∣∣∣∣∣
1 1 x

1 −2 1 − 2x

1 4 4x− 4

∣∣∣∣∣∣∣∣ = 9e−3x,

W1(x) = (−1)3−1W
[
e−2x, xe−2x

]
(x) =

∣∣∣∣∣ e−2x xe−2x

−2e−2x (1 − 2x)e−2x

∣∣∣∣∣ = e−4x ,

W2(x) = (−1)3−2W
[
ex, xe−2x

]
(x) = −

∣∣∣∣∣ ex xe−2x

ex (1 − 2x)e−2x

∣∣∣∣∣ = (3x− 1)e−x ,

W3(x) = (−1)3−3W
[
ex, e−2x

]
(x) =

∣∣∣∣∣ ex e−2x

ex −2e−2x

∣∣∣∣∣ = −3e−x .

Substituting these expressions into the formula (11) on page 340 of the text, we obtain

v1(x) =

∫
g(x)W1(x)

W [ex, e−2x, xe−2x]
dx =

∫
e2xe−4x

9e−3x
dx =

1

9
ex ,

v2(x) =

∫
g(x)W2(x)

W [ex, e−2x, xe−2x]
dx =

∫
e2x(3x− 1)e−x

9e−3x
dx

=
1

9

∫
(3x− 1)e4x dx =

(
x

12
− 7

144

)
e4x ,

v3(x) =

∫
g(x)W3(x)

W [ex, e−2x, xe−2x]
dx =

∫
e2x(−3e−x)

9e−3x
dx = − 1

12
e4x.

Substituting these expressions into (6.23) yields

zp(x) =
1

9
exex +

(
x

12
− 7

144

)
e4xe−2x − 1

12
e4xxe−2x =

1

16
e2x .
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5. Since the nonhomogeneous term, g(x) = tan x, is not a solution to a homogeneous linear

differential equation with constant coefficients, we will find a particular solution by the method

of variation of parameters. To do this, we must first find a fundamental solution set for the

corresponding homogeneous equation, y′′′ + y′ = 0. Its auxiliary equation is r3 + r = 0,

which factors as r3 + r = r(r2 + 1). Thus, the roots to this auxiliary equation are r = 0,±i.
Therefore, a fundamental solution set to the homogeneous equation is {1, cosx, sin x} and

yp(x) = v1(x) + v2(x) cosx+ v3(x) sin x.

To accomplish this, we must find the four determinants W [1, cosx, sin x](x), W1(x), W2(x),

W3(x). That is, we calculate

W [1, cosx, sin x](x) =

∣∣∣∣∣∣∣∣
1 cosx sin x

0 − sin x cosx

0 − cosx − sin x

∣∣∣∣∣∣∣∣ = sin2 x+ cos2 x = 1,

W1(x) = (−1)3−1W [cosx, sin x](x) =

∣∣∣∣∣ cosx sin x

− sin x cos x

∣∣∣∣∣ = (cos2 x+ sin2 x
)

= 1,

W2(x) = (−1)3−2W [1, sin x](x) = −
∣∣∣∣∣ 1 sin x

0 cos x

∣∣∣∣∣ = − cosx,

W3(x) = (−1)3−3W [1, cosx](x) =

∣∣∣∣∣ 1 cos x

0 − sin x

∣∣∣∣∣ = − sin x.

By using formula (11) on page 340 of the text, we can now find v1(x), v2(x), and v3(x). Since

g(x) = tanx, we have (assuming that all constants of integration are zero)

v1(x) =

∫
g(x)W1(x)

W [1, cosx, sin x](x)
dx =

∫
tanx dx = ln(sec x),

v2(x) =

∫
g(x)W2(x)

W [1, cosx, sin x](x)
dx =

∫
tanx(− cos x) dx = −

∫
sin x dx = cosx,

v3(x) =

∫
g(x)W3(x)

W [1, cosx, sin x](x)
dx =

∫
tanx(− sin x) dx = −

∫
sin2 x

cosx
dx

= −
∫

1 − cos2 x

cosx
dx =

∫
(cosx− sec x) dx = sin x− ln(sec x+ tanx).
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Therefore, we have

yp(x) = v1(x) + v2(x) cosx+ v3(x) sin x

= ln(sec x) + cos2 x+ sin2 x− sin x ln(sec x+ tan x)

⇒ yp(x) = ln(sec x) − sin x ln(sec x+ tan x) + 1.

Since y ≡ 1 is a solution to the homogeneous equation, we may choose

yp(x) = ln(secx) − sin x ln(sec x+ tan x).

Note: We left the absolute value signs off ln(sec x) and ln(sec x+ tan x) because of the stated

domain: 0 < x < π/2.

7. First, we divide the differential equation by x3 to obtain the standard form

y′′′ − 3x−1y′′ + 6x−2 y′ − 6x−3 y = x−4 , x > 0,

from which we see that g(x) = x−4. Given that {x, x2, x3} is a fundamental solution set for

the corresponding homogeneous equation, we are looking for a particular solution of the form

yp(x) = v1(x)x+ v3(x)x
2 + v3(x)x

3 . (6.24)

Evaluating determinants W [x, x2, x3](x), W1(x), W2(x), and W3(x) yileds

W [x, x2, x3](x) =

∣∣∣∣∣∣∣∣
x x2 x3

1 2x 3x2

0 2 6x

∣∣∣∣∣∣∣∣ = x

∣∣∣∣∣ 2x 3x2

2 6x

∣∣∣∣∣−
∣∣∣∣∣ x2 x3

2 6x

∣∣∣∣∣ = 2x3 ,

W1(x) = (−1)3−1W [x2, x3](x) =

∣∣∣∣∣ x2 x3

2x 3x2

∣∣∣∣∣ = x4 ,

W2(x) = (−1)3−2W [x, x3](x) = −
∣∣∣∣∣ x x3

1 3x2

∣∣∣∣∣ = −2x3,

W3(x) = (−1)3−3W [x, x2](x) =

∣∣∣∣∣ x x2

1 2x

∣∣∣∣∣ = x2.
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So,

v1(x) =

∫
g(x)W1(x)

W [x, x2, x3](x)
dx =

∫
x−4x4

2x3
dx = − 1

4x2
+ c1 ,

v2(x) =

∫
g(x)W2(x)

W [x, x2, x3](x)
dx =

∫
x−4(−2x3)

2x3
dx =

1

3x3
+ c2 ,

v3(x) =

∫
g(x)W3(x)

W [x, x2, x3](x)
dx =

∫
x−4(x2)

2x3
dx = − 1

8x4
+ c3 ,

where c1, c2, and c3 are constants of integration. Substitution back into (6.24) yields

yp(x) =

(
− 1

4x2
+ c1

)
x+

(
1

3x3
+ c2

)
x2 +

(
− 1

8x4
+ c3

)
x3 = − 1

24x
+ c1x+ c2x

2 + c3x
3 .

Since {x, x2, x3} is a fundamental solution set for the homogeneous equation, taking c1, c2,

and c3 to be arbitrary constants, we obtain a general solution to the original nonhomogeneous

equation. That is,

y(x) = − 1

24x
+ c1x+ c2x

2 + c3x
3 .

9. To find a particular solution to the nonhomogeneous equation, we will use the method of

variation of parameters. We must first calculate the four determinants W [ex, e−x, e2x](x),

W1(x), W2(x), W3(x). Thus, we have

W [ex, e−x, e2x](x) =

∣∣∣∣∣∣∣∣
ex e−x e2x

ex −e−x 2e2x

ex e−x 4e2x

∣∣∣∣∣∣∣∣ = −4e2x + 2e2x + e2x + e2x − 2e2x − 4e2x = −6e2x,

W1(x) =

∣∣∣∣∣∣∣∣
0 e−x e2x

0 −e−x 2e2x

1 e−x 4e2x

∣∣∣∣∣∣∣∣ = (−1)3−1

∣∣∣∣∣ e−x e2x

−e−x 2e2x

∣∣∣∣∣ = 2ex + ex = 3ex,

W2(x) =

∣∣∣∣∣∣∣∣
ex 0 e2x

ex 0 2e2x

ex 1 4e2x

∣∣∣∣∣∣∣∣ = (−1)3−2

∣∣∣∣∣ ex e2x

ex 2e2x

∣∣∣∣∣ = − (2e3x − e3x
)

= −e3x,

W3(x) =

∣∣∣∣∣∣∣∣
ex e−x 0

ex −e−x 0

ex e−x 1

∣∣∣∣∣∣∣∣ = (−1)3−3

∣∣∣∣∣ ex e−x

ex −e−x

∣∣∣∣∣ = −1 − 1 = −2.
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Therefore, according to formula (12) on page 340 of the text, a particular solution, yp(x), will

be given by

yp(x) = ex

∫
3exg(x)

−6e2x
dx+ e−x

∫ −e3xg(x)

−6e2x
dx+ e2x

∫ −2g(x)

−6e2x
dx

⇒ yp(x) = −1

2
ex

∫
e−xg(x) dx+

1

6
e−x

∫
exg(x) dx+

1

3
e2x

∫
e−2xg(x) dx.

11. First, we find a fundamental solution set to the corresponding homogeneous equation,

x3y′′′ − 3xy′ + 3y = 0. (6.25)

Here we involve the procedure of solving Cauchy-Euler equations discussed in Problem 38,

Section 4.3. Thus, let x = et. Then dx/dt = et = x and so the chain rule yields

dy

dt
=
dy

dx

dx

dt
= x

dy

dx
,

d2y

dt2
=

d

dt

(
dy

dt

)
=

d

dx

(
x
dy

dx

)
dx

dt
=

[
dy

dx
+ x

d2y

dx2

]
x == x

dy

dx
+ x2 d

2y

dx2
=
dy

dt
+ x2 d

2y

dx2
,

⇒ x2 d
2y

dx2
=
d2y

dt2
− dy

dt
,

d3y

dt3
=

d

dt

(
d2y

dt2

)
=

d

dx

(
x
dy

dx
+ x2 d

2y

dx2

)
dx

dt
=

[
dy

dx
+ 3x

d2y

dx2
+ x2 d

3y

dx3

]
x

= x
dy

dx
+ 3x2 d

2y

dx2
+ x3 d

3y

dx3
=
dy

dt
+ 3

(
d2y

dt2
− dy

dt

)
+ x3 d

3y

dx3
= 3

d2y

dt2
− 2

dy

dt
+ x3 d

3y

dx3

⇒ x3 d
3y

dx3
=
d3y

dt3
− 3

d2y

dt2
+ 2

dy

dt
.

Substituting these expressions into (6.25), we obtain[
d3y

dt3
− 3

d2y

dt2
+ 2

dy

dt

]
− 3

[
dy

dt

]
+ 3y = 0 ⇒ d3y

dt3
− 3

d2y

dt2
− dy

dt
+ 3y = 0.

The auxiliary equation corresponding to this linear homogeneous equation with constant co-

efficients is

r3 − 3r2 − r+ 3 = 0 ⇒ r2(r− 3)− (r− 3) = 0 ⇒ (r− 3)(r+ 1)(r− 1) = 0,
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whose roots are r = 1, −1, and 3. Therefore, the functions

y1(t) = et , y2(t) = e−t , and y3(t) = e3t

form a fundamental solution set. Substituting back et = x we find that

y1(x) = et = x ,

y2(x) = e−t = (et)
−1

= x−1 ,

y3(x) = e3t = (et)
3

= x3

form a fundamental solution set for the homogeneous equation (6.25). Next, we apply the

variation of parameters to find a particular solution to the original equation. A particular

solution has the form

yp(x) = v1(x)x+ v2(x)x
−1 + v3(x)x

3 . (6.26)

To find functions v1(x), v2(x), and v3(x) we use formula (11) on page 340 of the text. We

compute

W [x, x−1, x3](x) =

∣∣∣∣∣∣∣∣
x x−1 x3

1 −x−2 3x2

0 2x−3 6x

∣∣∣∣∣∣∣∣ = x

∣∣∣∣∣ −x−2 3x2

2x−3 6x

∣∣∣∣∣−
∣∣∣∣∣ x−1 x3

2x−3 6x

∣∣∣∣∣ = −16 ,

W1(x) = (−1)3−1W [x−1, x3](x) =

∣∣∣∣∣ x−1 x3

−x−2 3x2

∣∣∣∣∣ = 4x ,

W2(x) = (−1)3−2W [x, x3](x) = −
∣∣∣∣∣ x x3

1 3x2

∣∣∣∣∣ = −2x3,

W3(x) = (−1)3−3W [x, x−1](x) =

∣∣∣∣∣ x x−1

1 −x−2

∣∣∣∣∣ = −2x−1.

Also, writing the given equation in standard form,

y′′′ − 3

x2
y′ +

3

x3
y = x cosx,

we see that the nonhomogeneous term is g(x) = x cos x. Thus, by (11),

v1(x) =

∫
x cosx(4x)

−16
dx = −1

4

∫
x2 cosx dx = −1

4

(
x2 sin x+ 2x cosx− 2 sinx

)
+ c1 ,
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v2(x) =

∫
x cosx(−2x3)

−16
dx =

1

8

∫
x4 cos x dx

=
1

8

(
x4 sin x+ 4x3 cos x− 12x2 sin x− 24x cosx+ 24 sinx

)
+ c2 ,

v3(x) =

∫
x cosx(−2x−1)

−16
dx =

1

8

∫
cosx dx =

1

8
sin x+ c3 ,

where c1, c2, c3 are constants of integration, and we have used integration by parts to evaluate

v1(x) and v2(x). Substituting these functions into (6.26) and simplifying yields

yp(x) = −(x2 sin x+ 2x cosx− 2 sin x) x

4
+ c1x

+
(x4 sin x+ 4x3 cosx− 12x2 sin x− 24x cosx+ 24 sinx) x−1

8
+ c2x

−1 +
x3 sin x

8
+ c3x

3

= c1x+ c2x
−1 + c3x

3 − x sin x− 3 cosx+ 3x−1 sin x .

If we allow c1, c2, and c3 in the above formula to be arbitrary constants, we obtain a general

solution to the original Cauchy-Euler equation. Thus, the answer is

y(x) = c1x+ c2x
−1 + c3x

3 − x sin x− 3 cosx+ 3x−1 sin x .

13. Since

Wk(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 . . . yk−1 0 yk+1 . . . yn

y′1 . . . y′k−1 0 y′k+1 . . . y′n
...

...
...

...
...

y
(n−2)
1 . . . y

(n−2)
k−1 0 y

(n−2)
k+1 . . . y

(n−2)
n

y
(n−1)
1 . . . y

(n−1)
k−1 1 y

(n−1)
k+1 . . . y

(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

the kth column of this determinant consists of all zeros except the last entry, which is 1.

Therefore, expanding Wk(x) by the cofactors in the kth column, we get

Wk(x) = (0)C1,k + (0)C2,k + · · ·+ (0)Cn−1,n + (1)Cn,k

= (1)(−1)n+k

∣∣∣∣∣∣∣∣∣∣∣

y1 . . . yk−1 yk+1 . . . yn

y′1 . . . y′k−1 y′k+1 . . . y′n
...

...
...

...

y
(n−2)
1 . . . y

(n−2)
k−1 y

(n−2)
k+1 . . . y

(n−2)
n

∣∣∣∣∣∣∣∣∣∣∣
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= (−1)n+kW [y1, . . . , yk−1, yk+1, . . . , yn] (x).

Finally,

(−1)n+k = (−1)(n−k)+(2k) = (−1)n−k .

REVIEW PROBLEMS: page 344

1. (a) In notation of Theorem 1, we have p1(x) ≡ 0, p2(x) = − ln x, p3(x) = x, p4(x) ≡ 2,

and g(x) = cos 3x. All these functions, except p2(x), are continuous on (−∞,∞), and

p2(x) is defined and continuous on (0,∞). Thus, Theorem 1 guarantees the existence of

a unique solution on (0,∞).

(b) By dividing both sides of the given differential equation by x2−1, we rewrite the equation

in standard form, that is,

y′′′ +
sin x

x2 − 1
y′′ +

√
x+ 4

x2 − 1
y′ +

ex

x2 − 1
y =

x2 + 3

x2 − 1
.

Thus we see that

p1(x) =
sin x

x2 − 1
, p2(x) =

√
x+ 4

x2 − 1
, p3(x) =

ex

x2 − 1
, and g(x) =

x2 + 3

x2 − 1
.

Functions p1(x), p3(x), and g(x) are defined and continuous on (−∞,∞) except x = ±1;

p2(x) is defined and continuous on {x ≥ −4, x �= ±1}. Thus, the common domain for

p1(x), p2(x), p3(x), and g(x) is {x ≥ −4, x �= ±1}, and, in addition, these functions are

continuous there. This set consists of three intervals,

[−4,−1), (−1, 1), and (1,∞).

Theorem 1 guarantees the existence of a unique solution on each of these intervals.

3. A linear combination,

c1 sin x+ c2x sin x+ c3x
2 sin x+ c4x

3 sin x =
(
c1 + c2x+ c3x

2 + c4x
3
)
sin x (6.27)

vanishes identically on (−∞,∞) if and only if the polynomial c1 + c2x+ c3x
2 + c4x

3 vanishes

identically on (−∞,∞). Since the number of real zeros of a polynomial does not exceed
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its degree, unless it’s the zero polynomial, we conclude that the linear combination (6.27)

vanishes identically on (−∞,∞) if and only if c1 = c2 = c3 = c4 = 0. This means that the

given functions are linearly independent on (−∞,∞).

5. (a) Solving the auxiliary equation yields

(r + 5)2(r − 2)3(r2 + 1)2 = 0 ⇒
(r + 5)2 = 0 or

(r − 2)3 = 0 or

(r2 + 1)2 = 0.

Thus, the roots of the auxiliary equation are

r = −5 of multiplicity 2,

r = 2 of multiplicity 3,

r = ±i of multiplicity 2.

According to (22) on page 329 and (28) on page 330 of the text, the set of functions

(assuming that x is the independent variable)

e−5x , xe−5x , e2x , xe2x , x2e2x , cosx, x cosx, sin x, x sin x

forms an independent solution set. Thus, a general solution is given by

c1e
−5x + c2xe

−5x + c3e
2x + c4xe

2x + c5x
2e2x + c6 cosx+ c7x cosx+ c8 sin x+ c9x sin x .

(b) Solving the auxiliary equation yields

r4(r − 1)2(r2 + 2r + 4)2 = 0 ⇒
r4 = 0 or

(r − 1)2 = 0 or

(r2 + 2r + 4)2 = 0.

Thus, the roots of the auxiliary equation are

r = 0 of multiplicity 4,

r = 1 of multiplicity 2,

r = −1 ±√
3i of multiplicity 2.
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Using (22) on page 329 and (28) on page 330 of the text, we conclude that the set of

functions (with x as the independent variable)

1 , x , x2 , x3 , ex , xex , e−x cos
√

3x, xe−x cos
√

3x, sin
√

3x, xe−x sin
√

3x

forms an independent solution set. A general solution is given then by

c1 + c2x+ c3x
2 + c4x

3 + c5e
x + c6xe

x + c7e
−x cos

√
3x+ c8xe

−x cos
√

3x

+c9 sin
√

3x+ c10xe
−x sin

√
3x

= c1 + c2x+ c3x
2 + c4x

3 + (c5 + c6x)e
x + (c7 + c8x)e

−x cos
√

3x

+(c9 + c10x)e
−x sin

√
3x .

7. (a) D3, since the third derivative of a quadratic polynomial is identically zero.

(b) The function e3x +x−1 is the sum of e3x and x−1. The function x−1 is annihilated by

D2, the second derivative operator, and, according to (i) on page 334 of the text, (D−3)

annihilates e3x. Therefore, the composite operator

D2(D − 3) = (D − 3)D2

annihilates both functions and, hence, there sum.

(c) The function x sin 2x is of the form given in (iv) on page 334 of the text with m = 2,

α = 0, and β = 2. Thus, the operator

[
(D − 0)2 + 22

]2
=
(
D2 + 4

)2
annihilates this function.

(d) We again use (iv) on page 334 of the text, this time with m = 3, α = −2, and β = 3, to

conclude that the given function is annihilated by

{
[D − (−2)]2 + 32

}3
=
[
(D + 2)2 + 9

]3
.
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(e) Representing the given function as a linear combination,(
x2 − 2x

)
+
(
xe−x

)
+ (sin 2x) − (cos 3x),

we find an annihilator for each term. Thus, we have:

x2 − 2x is annihilated by D3 ,

xe−x is annihilated by [D − (−1)]2 = (D + 1)2 (by (ii), page 334) ,

sin 2x is annihilated by D2 + 22 = D2 + 4 (by (iii), page 334) ,

cos 3x is annihilated by D2 + 32 = D2 + 9 (by (iii), page 334) .

Therefore, the product D3(D + 1)2(D2 + 4)(D2 + 9) annihilates the given function.

9. A general solution to the corresponding homogeneous equation,

x3y′′′ − 2x2y′′ − 5xy′ + 5y = 0,

is given by yh(x) = c1x + c2x
5 + c3x

−1. We now apply the variation of parameters method

described in Section 6.4, and seek for a particular solution to the original nonhomogeneous

equation in the form

yp(x) = v1(x)x+ v2(x)x
5 + v3(x)x

−1 .

Since
(x)′ = 1, (x)′′ = 0 ,

(x5)′ = 5x4, (x5)′′ = 20x3 ,

(x−1)′ = −x−2, (x−1)′′ = 2x−3 ,

the Wronskian W [x, x5, x−1](x) and determinants Wk(x) given in (10) on page 340 of the text

become

W [x, x5, x−1](x) =

∣∣∣∣∣∣∣∣
x x5 x−1

1 5x4 −x−2

0 20x3 2x−3

∣∣∣∣∣∣∣∣ = (x)

∣∣∣∣∣ 5x4 −x−2

20x3 2x−3

∣∣∣∣∣− (1)

∣∣∣∣∣ x5 x−1

20x3 2x−3

∣∣∣∣∣
= (x)(30x) − (−18x2) = 48x2 ,

W1(x) = (−1)3−1

∣∣∣∣∣ x5 x−1

5x4 −x−2

∣∣∣∣∣ = −6x3 ,
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W2(x) = (−1)3−2

∣∣∣∣∣ x x−1

1 −x−2

∣∣∣∣∣ = 2x−1 ,

W3(x) = (−1)3−3

∣∣∣∣∣ x x5

1 5x4

∣∣∣∣∣ = 4x5 .

Now we divide both sides of the given equation by x3 to obtain an equation in standard form,

that is,

y′′′ − 2x−1y′′ − 5x−2y′ + 5x−3y = x−5 .

Hence, the right-hand side, g(x), in formula (1) on page 339 of the text equals to x−5. Applying

formula (11), page 340 of the text, yields

v1(x) =

∫
x−5(−6x3)

48x2
dx = −1

8

∫
x−4 dx =

1

24
x−3 ,

v2(x) =

∫
x−5(2x−1)

48x2
dx =

1

24

∫
x−8 dx = − 1

168
x−7 ,

v3(x) =

∫
x−5(4x5)

48x2
dx =

1

12

∫
x−2 dx = − 1

12
x−1 .

Therefore,

yp(x) =

(
1

24
x−3

)
x+

(
− 1

168
x−7

)
x5 +

(
− 1

12
x−1

)
x−1

=

(
1

24
− 1

168
− 1

12

)
x−2 = − 1

21
x−2 ,

and a general solution to the given equation is given by

y(x) = yh(x) + yp(x) = c1x+ c2x
5 + c3x

−1 − 1

21
x−2 .
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CHAPTER 7: Laplace Transforms

EXERCISES 7.2: Definition of the Laplace Transform, page 359

1. For s > 0, using Definition 1 on page 351 and integration by parts, we compute

L{t} (s) =

∞∫
0

e−stt dt = lim
N→∞

N∫
0

e−stt dt = lim
N→∞

N∫
0

t d

(
−e

−st

s

)

= lim
N→∞

−te−st

s

∣∣∣N
0

+
1

s

N∫
0

e−st dt

 = lim
N→∞

[
−te

−st

s

∣∣∣N
0
−e

−st

s2

∣∣∣N
0

]

= lim
N→∞

[
−Ne

−sN

s
+ 0 − e−sN

s2
+

1

s2

]
=

1

s2

because, for s > 0, e−sN → 0 and Ne−sN = N/esN → 0 as N → ∞.

3. For s > 6, we have

L{t} (s) =

∞∫
0

e−ste6t dt =

∞∫
0

e(6−s)t dt = lim
N→∞

N∫
0

e(6−s)t dt

= lim
N→∞

[
e(6−s)t

6 − s

∣∣∣N
0

]
= lim

N→∞

[
e(6−s)N

6 − s
− 1

6 − s

]
= 0 − 1

6 − s
=

1

s− 6
.

5. For s > 0,

L{cos 2t} (s) =

∞∫
0

e−st cos 2t dt = lim
N→∞

N∫
0

e−st cos 2t dt

= lim
N→∞

[
e−st (−s cos 2t+ 2 sin 2t)

s2 + 4

∣∣∣N
0

]
= lim

N→∞

[
e−sN (−s cos 2N + 2 sin 2N)

s2 + 4
− −s
s2 + 4

]
=

s

s2 + 4
,

where we have used integration by parts to find an antiderivative of e−st cos 2t.
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7. For s > 2,

L{e2t cos 3t
}

(s) =

∞∫
0

e−ste2t cos 3t dt =

∞∫
0

e(2−s)t cos 3t dt

= lim
N→∞

[
e(2−s)t ((2 − s) cos 3t+ 3 sin 3t)

(2 − s)2 + 9

∣∣∣N
0

]
= lim

N→∞
e(2−s)N [(2 − s) cos 3N + 3 sin 3N ] − (2 − s)

(2 − s)2 + 9
=

s− 2

(s− 2)2 + 9
.

9. As in Example 4 on page 353 in the text, we first break the integral into separate parts. Thus,

L{f(t)} (s) =

∞∫
0

e−stf(t) dt =

2∫
0

e−st · 0 dt+
∞∫

2

te−st dt =

∞∫
2

te−st dt .

An antiderivative of te−st was, in fact, obtained in Problem 1 using integration by parts. Thus,

we have
∞∫

2

te−st dt = lim
N→∞

[(
−te

−st

s
− e−st

s2

) ∣∣∣N
2

]
= lim

N→∞

[
−Ne

−sN

s
− e−sN

s2
+

2e−2s

s
+
e−2s

s2

]

=
2e−2s

s
+
e−2s

s2
= e−2s

(
2

s
+

1

s2

)
= e−2s

(
2s+ 1

s2

)
.

11. In this problem, f(t) is also a piecewise defined function. So, we split the integral and obtain

L{f(t)} (s) =

∞∫
0

e−stf(t) dt =

π∫
0

e−st sin t dt+

∞∫
π

e−st · 0 dt =

π∫
0

e−st sin t dt

=
e−st (−s sin t− cos t)

s2 + 1

∣∣∣π
0
=
e−πs − (−1)

s2 + 1
=
e−πs + 1

s2 + 1
,

which is valid for all s.

13. By the linearity of the Laplace transform,

L{6e−3t − t2 + 2t− 8
}

(s) = 6L{e−3t
}

(s) − L{t2} (s) + 2L{t} (s) − 8L{1} (s).

From Table 7.1 on page 358 in the text, we see that

L{e−3t
}

(s) =
1

s− (−3)
=

1

s+ 3
, s > −3;
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L{t2} (s) =
2!

s2+1
=

2

s3
, L{t} (s) =

1!

s1+1
=

1

s2
, L{1} (s) =

1

s
, s > 0.

Thus the formula

L{6e−3t − t2 + 2t− 8
}

(s) = 6
1

s+ 3
− 2

s3
+ 2

1

s2
− 8

1

s
=

6

s+ 3
− 2

s3
+

2

s2
− 8

s
,

is valid for s in the intersection of the sets s > −3 and s > 0, which is s > 0.

15. Using the linearity of Laplace transform and Table 7.1 on page 358 in the text, we get

L{t3 − tet + e4t cos t
}

(s) = L{t3} (s) −L{tet
}

(s) + L{e4t cos t
}

(s)

=
3!

s3+1
− 1!

(s− 1)1+1
+

s− 4

(s− 4)2 + 12

=
6

s4
− 1

(s− 1)2
+

s− 4

(s− 4)2 + 1
,

which is valid for s > 4.

17. Using the linearity of Laplace transform and Table 7.1 on page 358 in the text, we get

L{e3t sin 6t− t3 + et
}

(s) = L{e3t sin 6t
}

(s) − L{t3} (s) + L{et
}

(s)

=
6

(s− 3)2 + 62
− 3!

s3+1
+

1

s− 1
=

6

(s− 3)2 + 36
− 6

s4
+

1

s− 1
,

valid for s > 3.

19. For s > 5, we have

L
{
t4e5t − et cos

√
7t
}

(s) = L{t4e5t
}

(s) − L
{
et cos

√
7t
}

(s)

=
4!

(s− 5)4+1
− s− 1

(s− 1)2 + (
√

7)2
=

24

(s− 5)5
− s− 1

(s− 1)2 + 7
.

21. Since the function g1(t) ≡ 1 is continuous on (−∞,∞) and f(t) = g1(t) for t in [0, 1], we

conclude that f(t) is continuous on [0, 1) and continuous from the left at t = 1. The function

g2(t) ≡ (t − 2)2 is also continuous on (−∞,∞), and so f(t) (which is the same as g2(t) on

(1, 10]) is continuous on (1, 10]. Moreover,

lim
t→1+

f(t) = lim
t→1+

g2(t) = g2(1) = (1 − 2)2 = 1 = f(1),
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which implies that f(t) is continuous from the right at t = 1. Thus f(t) is continuous at t = 1

and, therefore, is continuous at any t in [0, 10].

23. All the functions involved in the definition of f(t), that is, g1(t) ≡ 1, g2(t) = t − 1, and

g3(t) = t2 − 4, are continuous on (−∞,∞). So, f(t), being a restriction of these functions, on

[0, 1), (1, 3), and (3, 10], respectively, is continuous on these three intervals. At points t = 1

and 3, f(t) is not defined and so is not continuous. But one-sided limits

lim
t→1−

f(t) = lim
t→1−

g1(t) = g1(1) = 1,

lim
t→1+

f(t) = lim
t→1+

g2(t) = g2(1) = 0,

lim
t→3−

f(t) = lim
t→3−

g2(t) = g2(3) = 2,

lim
t→3+

f(t) = lim
t→3+

g3(t) = g3(3) = 5,

exist and pairwise different. Therefore, f(t) has jump discontinuities at t = 1 and t = 3, and

hence piecewise continuous on [0, 10].

25. Given function is a rational function and, therefore, continuous on its domain, which is all

reals except zeros of the denominator. Solving t2 + 7t+ 10 = 0, we conclude that the points

of discontinuity of f(t) are t = −2 and t = −5. These points are not in [0, 10]. So, f(t) is

continuous on [0, 10].

27. Since

lim
t→0+

f(t) = lim
t→0+

1

t
= ∞,

f(t) has infinite discontinuity at t = 0, and so neither continuous nor piecewise continuous

[0, 10].

29. (a) First observe that |t3 sin t| ≤ |t3| for all t. Next, three applications of L’Hospital’s rule

show that

lim
t→∞

t3

eαt
= lim

t→∞
3t2

αeαt
= lim

t→∞
6t

α2eαt
= lim

t→∞
6

α3eαt
= 0
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for all α > 0. Thus, fixed α > 0, for some T = T (α) > 0, we have |t3| < eαt for all t > T ,

and so ∣∣t3 sin t
∣∣ ≤ ∣∣t3∣∣ < eαt, t > T.

Therefore, t3 sin t is of exponential order α, for any α > 0.

(b) Clearly, for any t, |f(t)| = 100e49t, and so Definition 3 is satisfied with M = 100, α = 49,

and any T . Hence, f(t) is of exponential order 49.

(c) Since

lim
t→∞

f(t)

eαt
= lim

t→∞
et3−αt = lim

t→∞
e(t

2−α)t = ∞,

we see that f(t) grows faster than eαt for any α. Thus f(t) is not of exponential order.

(d) Similarly to (a), for any α > 0, we get

lim
t→∞

|t ln t|
eαt

= lim
t→∞

t ln t

eαt
= lim

t→∞
ln t+ 1

αeαt
= lim

t→∞
1/t

α2eαt
= 0 ,

and so f(t) is of exponential order α for any positive α.

(e) Since,

f(t) = cosh
(
t2
)

=
et2 + e−t2

2
>

1

2
et2

and et2 grows faster than eαt for any fixed α (see page 357 in the text), we conclude that

cosh (t2) is not of exponential order.

(f) This function is bounded:

|f(t)| =

∣∣∣∣ 1

t2 + 1

∣∣∣∣ = fr1t2 + 1 ≤ 1

0 + 1
= 1,

and so Definition 3 is satisfied with M = 1 and α = 0. Hence, f(t) is of exponential

order 0.

(g) The function sin (t2) is bounded, namely, |sin (t2)| ≤ 1. For any fixed β > 0, the limit of

t4/eβt, as t→ ∞, is 0, which implies that t4 ≤ eβt for all t > T = T (β). Thus,∣∣sin (t2)+ t4e6t
∣∣ ≤ 1 + eβte6t = 2eβ+6t .

This means that f(t) is of exponential order α for any α > 6.
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(h) The function 3 + cos 4t is bounded because

|3 + cos 4t| ≤ 3 + | cos 4t| ≤ 4.

Therefore, by the triangle inequality,

|f(t)| ≥
∣∣∣et2
∣∣∣− |3 + cos 4t| ≥ et2 − 4,

and, therefore, for any fixed α, f(t) grows faster than eαt (because et2 does, and the other

term is bounded). So, f(t) is not of exponential order.

(i) Clearly, for any t > 0,
t2

t+ 1
=

t

t+ 1
t < (1)t = t.

Therefore,

et2/(t+1) < et,

and Definition 3 holds with M = 1, α = 1, and T = 0.

(j) Since, for any x, −1 ≤ sin x ≤ 1, the given function is bounded. Indeed,∣∣∣sin(et2
)

+ esin t
∣∣∣ ≤ ∣∣∣sin(et2

)∣∣∣ + esin t ≤ 1 + e

Thus it is of exponential order 0.

31. (a)

L{e(a+ib)t
}

(s) :=

∞∫
0

e−ste(a+ib)t dt =

∞∫
0

e(a+ib−s)t dt = lim
N→∞

N∫
0

e(a+ib−s)t dt

= lim
N→∞

(
e(a+ib−s)t

a + ib− s

∣∣∣N
0

)
=

1

a+ ib− s
lim

N→∞
(
e(a−s+ib)N − 1

)
. (7.1)

Since

e(a−s+ib)x = e(a−s)xeibx,

where the first factor vanishes at ∞ if a − s < 0 while the second factor is a bounded

(
∣∣eibx

∣∣ ≡ 1) and periodic function, the limit in (7.1) exists if and only if a − s < 0.

Assuming that s > a, we get

1

a + ib− s
lim

N→∞
(
e(a−s+ib)N − 1

)
=

1

a+ ib− s
(0 − 1) =

1

s− (a + ib)
.
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(b) Note that s − (a + ib) = (s − a) − ib. Multiplying the result in (a) by the complex

conjugate of the denominator, that is, (s− a) + bi, we get

1

s− (a+ ib)
=

(s− a) + ib

[(s− a) − ib] · [(s− a) + ib]
=

(s− a) + ib

(s− a)2 + b2
,

where we used the fact that, for any complex number z, zz = |z|2.
(c) From (a) and (b) we klnow that

L{e(a+ib)t
}

(s) =
(s− a) + ib

(s− a)2 + b2
.

Writing
(s− a) + ib

(s− a)2 + b2
=

s− a

(s− a)2 + b2
+

b

(s− a)2 + b2
i,

we see that

Re
[L{e(a+ib)t

}
(s)
]

= Re

[
s− a

(s− a)2 + b2
+

b

(s− a)2 + b2
i

]
=

s− a

(s− a)2 + b2
, (7.2)

Im
[L{e(a+ib)t

}
(s)
]

= Im

[
s− a

(s− a)2 + b2
+

b

(s− a)2 + b2
i

]
=

b

(s− a)2 + b2
. (7.3)

On the other hand, by Euler’s formulas,

Re
[
e−ste(a+ib)t

]
= e−stRe

[
eat(cos bt+ i sin bt)

]
= e−steat cos bt

and so

Re
[L{e(a+ib)t

}
(s)
]

= Re

 ∞∫
0

e−ste(a+ib)t dt

 = Re

 ∞∫
0

e−se(a+ib)t dt


=

∞∫
0

Re
[
e−se(a+ib)t

]
dt =

∞∫
0

e−steat cos bt dt = L{eat cos bt
}

(s),

which together with (7.2) gives the last entry in Table 7.1. Similarly,

Im
[L{e(a+ib)t

}
(s)
]

= L{eat sin bt
}

(s),

and so (7.3) gives the Laplace transform of eat sin bt.

395



Chapter 7

33. Let f(t) be a piecewise continuous function on [a, b], and let a function g(t) be continuous on

[a, b]. At any point of continuity of f(t), the function (fg)(t) is continuous as the product of

two continuous functions at this point. Suppose now that c is a point of discontinuity of f(t).

Then one-sided limits

lim
t→c−

f(t) = L− and lim
t→c+

f(t) = L+

exist. At the same time, continuity of g(t) yields

lim
t→c−

g(t) = lim
t→c+

g(t) = lim
t→c

g(t) = g(c).

Thus, the product rule implies that one-sided limits

lim
t→c−

(fg)(t) = lim
t→c−

f(t) · lim
t→c−

g(t) = L−g(c)

lim
t→c+

(fg)(t) = lim
t→c+

f(t) lim
t→c+

g(t) = L+g(c)

exist. So, fg has a jump (even removable if g(c) = 0) discontinuity at t = c.

Therefore, the product (fg)(t) is continuous at any point on [a, b] except possibly a finite

number of points (namely, points of discontinuity of f(t)).

EXERCISES 7.3: Properties of the Laplace Transform, page 365

1. Using the linearity of the Laplace transform we get

L{t2 + et sin 2t
}

(s) = L{t2} (s) + L{et sin 2t
}

(s).

From Table 7.1 in Section 7.2 we know that

L{t2} (s) =
2!

s3
=

2

s3
, L{et sin 2t

}
(s) =

2

(s− 1)2 + 22
=

2

(s− 1)2 + 4
.

Thus

L{t2 + et sin 2t
}

(s) =
2

s3
+

2

(s− 1)2 + 4
.
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3. By the linearity of the Laplace transform,

L{e−t cos 3t+ e6t − 1
}

(s) = L{e−t cos 3t
}

(s) + L{e6t
}

(s) − L{1} (s).

From Table 7.1 of the text we see that

L{e−t cos 3t
}

(s) =
s− (−1)

[s− (−1)]2 + 32
=

s+ 1

(s+ 1)2 + 9
, s > −1; (7.4)

L{e6t
}

(s) =
1

s− 6
, s > 6; (7.5)

L{1} (s) =
1

s
, s > 0. (7.6)

Since (7.4), (7.5), and (7.6) all hold for s > 6, we see that our answer,

L{e−t cos 3t+ e6t − 1
}

(s) =
s+ 1

(s+ 1)2 + 9
+

1

s− 6
− 1

s
,

is valid for s > 6. Note that (7.4) and (7.5) could also be obtained from the Laplace transforms

for cos 3t and 1, respectively, by applying the translation Theorem 3.

5. We use the linearity of the Laplace transform and Table 7.1 to get

L{2t2e−t − t+ cos 4t
}

(s) = 2L{t2e−t
}

(s) −L{t} (s) + L{cos 4t} (s)

= 2 · 2

(s+ 1)3
− 1

s2
+

s

s2 + 42
= · 4

(s+ 1)3
− 1

s2
+

s

s2 + 16
,

which is valid for s > 0.

7. Since (t − 1)4 = t4 − 4t3 + 6t2 − 4t + 1, we have from the linearity of the Laplace transform

that

L{(t− 1)4
}

(s) = L{t4} (s) − 4L{t3} (s) + 6L{t2} (s) − 4L{t} (s) + L{1} (s).

From Table 7.1 of the text, we get that, for s > 0,

L{t4} (s) =
4!

s5
=

24

s5
,

L{t3} (s) =
3!

s4
=

6

s4
,
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L{t2} (s) =
2!

s3
=

2

s3
,

L{t} (s) =
1!

s2
=

1

s2
,

L{1} (s) =
1

s
.

Thus

L{(t− 1)4
}

(s) =
24

s5
− 24

s4
+

12

s3
− 4

s2
+

1

s
, s > 0.

9. Since

L{e−t sin 2t
}

(s) =
2

(s + 1)2 + 4
,

we use Theorem 6 to get

L{e−tt sin 2t
}

(s) = L{t (e−t sin 2t
)}

(s) = − [L{e−t sin 2t
}

(s)
]′

= −
[

2

(s+ 1)2 + 4

]′
= −2(−1)

[
(s+ 1)2 + 4

]−2 [
(s+ 1)2 + 4

]′
=

4(s+ 1)

[(s+ 1)2 + 4]2
.

11. We use the definition of coshx and the linear property of the Laplace transform.

L{cosh bt} (s) = L
{
ebt + e−bt

2

}
(s)

=
1

2

[L{ebt
}

(s) + L{e−bt
}

(s)
]

=
1

2

[
1

s− b
+

1

s+ b

]
=

s

s2 − b2
.

13. In this problem, we need the trigonometric identity sin2 t = (1− cos 2t)/2 and the linearity of

the Laplace transform.

L{sin2 t
}

(s) = L
{

1 − cos 2t

2

}
(s)

=
1

2
[L{1} (s) − L{cos 2t} (s)] =

1

2

[
1

s
− s

s2 + 4

]
=

2

s(s2 + 4)
.

15. From the trigonometric identity cos2 t = (1 + cos 2t)/2, we find that

cos3 t = cos t cos2 t =
1

2
cos t+

1

2
cos t cos 2t .
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Next we write

cos t cos 2t =
1

2
[cos(2t+ t) + cos(2t− t)] =

1

2
cos 3t+

1

2
cos t.

Thus,

cos3 t =
1

2
cos t+

1

4
cos 3t+

1

4
cos t =

3

4
cos t+

1

4
cos 3t.

We now use the linearity of the Laplace transform and Table 7.1 to find that

L{cos3 t
}

(s) =
3

4
L{cos t} (s) +

1

4
L{cos 3t} (s) =

3

4

s

s2 + 1
+

1

4

s

s2 + 9
,

which holds for s > 0.

17. Since sinA sinB = [cos(A− B) − cos(A +B)]/2, we get

L{sin 2t sin 5t} (s) = L
{

cos 3t− cos 7t

2

}
(s) =

1

2
[L{cos 3t} (s) − L{cos 7t} (s)]

=
1

2

[
s

s2 + 9
− s

s2 + 49

]
=

20s

(s2 + 9)(s2 + 49)
.

19. Since sinA cosB = [sin(A+B) + sin(A−B)]/2, we get

L{cosnt sinmt} (s) = L
{

sin[(m+ n)t] + sin[(m− n)t]

2

}
(s)

=
1

2

m+ n

s2 + (m+ n)2
+

1

2

m− n

s2 + (m− n)2
.

21. By the translation property of the Laplace transform (Theorem 3),

L{eat cos bt
}

(s) = L{cos bt} (s− a) =
u

u2 + b2

∣∣∣
u=s−a

=
s− a

(s− a)2 + b2
.

23. Clearly,

(t sin bt)′ = (t)′ sin bt+ t(sin bt)′ = sin bt+ bt cos bt.

Therefore, using Theorem 4 and the entry 30, that is, L{t sin bt} (s) = (2bs)/[(s2 + b2)2], we

obtain

L{sin bt+ bt cos bt} (s) = L{(t sin bt)′} (s) = sL{t sin bt} (s) − (t sin bt)
∣∣
t=0

=
s(2bs)

(s2 + b2)2
− 0 =

2bs2

(s2 + b2)2
.
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25. (a) By property (6) on page 363 of the text,

L{t cos bt} (s) = − [L{cos bt} (s)]′ = −
[

s

s2 + b2

]′
=

s2 − b2

(s2 + b2)2
, s > 0.

(b) Again using the same property, we get

L{t2 cos bt
}

(s) = L{t(t cos bt)} (s) = − [L{t cos bt} (s)]′

= −
[
s2 − b2

(s2 + b2)2

]′
=

2s3 − 6sb2

(s2 + b2)3
, s > 0.

27. First observe that since f(t) is piecewise continuous on [0,∞) and f(t)/t approaches a finite

limit as t → 0+, we conclude that f(t)/t is also piecewise continuous on [0,∞). Next, since

for t ≥ 1 we have |f(t)/t| ≤ |f(t)|, we see that f(t)/t is of exponential order α since f(t) is.

These observations and Theorem 2 on page 357 of the text show that L{f(t)/t} exists. When

the results of Problem 26 are applied to f(t)/t, we see that

lim
N→∞

L
{
f(t)

t

}
(N) = 0.

By Theorem 6, we have that

F (s) =

∞∫
0

e−stf(t) dt =

∞∫
0

te−stf(t)

t
dt = − d

ds
L
{
f(t)

t

}
(s) .

Thus,

∞∫
s

F (u) du =

∞∫
s

[
− d

du
L
{
f(t)

t

}
(u)

]
du =

s∫
∞

d

du
L
{
f(t)

t

}
(u) du

= L
{
f(t)

t

}
(s) − lim

N→∞
L
{
f(t)

t

}
(N) = L

{
f(t)

t

}
(s) .

29. From the linearity properties (2) and (3) on page 354 of the text we have

L{g(t)} (s) = L{y′′(t) + 6y′(t) + 10y(t)} (s) = L{y′′(t)} (s) + 6L{y′(t)} (s) + 10L{y(t)} (s).

Next, applying properties (2) and (4) on pages 361 and 362 yields

L{g} (s) =
[
s2L{y} (s) − sy(0) − y′(0)

]
+ 6 [sL{y} (s) − y(0)] + 10L{y} (s).
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Keeping in mind the fact that all initial conditions are zero the above becomes

G(s) =
(
s2 + 6s+ 10

)
Y (s), where Y (s) = L{y} (s).

Therefore, the transfer function H(s) is given by

H(s) =
Y (s)

G(s)
=

1

s2 + 6s+ 10
.

31. Using Definition 1 of the Laplace transform in Section 7.2, we obtain

L{g(t)} (s) =

∞∫
0

e−stg(t) dt =

c∫
0

(0) dt+

∞∫
c

e−stf(t− c) dt =
(
t− c→ u, dt→ du

)

=

∞∫
0

e−s(u+c)f(u) du = e−cs

∞∫
0

e−suf(u) du = e−csL{f(t)} (s).

33. The graphs of the function f(t) = t and its translation g(t) to the right by c = 1 are shown

in Figure 7-A(a).

We use the result of Problem 31 to find L{g(t)}.

L{g(t)} (s) = e−(1)sL{t} (s) =
e−s

s2
.

35. The graphs of the function f(t) = sin t and its translation g(t) to the right by c = π/2 units

are shown in Figure 7-A(b).

We use the formula in Problem 31 to find L{g(t)}.

L{g(t)} (s) = e−(π/2)sL{sin t} (s) =
e−(π/2)s

s2 + 1
.

37. Since f ′(t) is of exponential order on [0,∞), for some α, M > 0, and T > 0,

|f ′(t)| ≤Meαt, for all t ≥ T. (7.7)

On the other hand, piecewise continuity of f ′(t) on [0,∞) implies that f ′(t) is bounded on

any finite interval, in particular, on [0, T ]. That is,

|f ′(t)| ≤ C, for all t in [0, T ]. (7.8)
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0

2

 

1 2 3
 

f(t)=t

g(t)

(a)

0

 

g(t)

π/2 π

f(t)=sin t

(b)

Figure 7–A: Graphs of functions in Problems 33 and 35.

From (7.7) and (7.8) it follows that, for s > α,

∞∫
0

e−st|f ′(t)| dt =

T∫
0

e−st|f ′(t)| dt+
∞∫

T

e−st|f ′(t)| dt ≤ C

T∫
0

e−st dt+M

∞∫
T

e−steαt dt

=
Ce−st

−s
∣∣∣∣T
0

+ lim
N→∞

[
Me(α−s)t

α− s

∣∣∣∣N
T

]
=
C
[
1 − e−sT

]
s

+
Me(α−s)T

s− α
−→ 0

as s→ ∞. Therefore, (7) yields

0 ≤ |sL{f} (s) − f(0)| =

∣∣∣∣∣∣
∞∫

0

e−stf ′(t) dt

∣∣∣∣∣∣ ≤
∞∫

0

e−st|f ′(t)| dt −→ 0 as s→ ∞.

Hence, by the squeeze theorem,

lim
s→∞

|sL{f} (s) − f(0)| = 0 ⇔ lim
s→∞

[sL{f} (s) − f(0)] = 0 ⇔ lim
s→∞

sL{f} (s) = f(0).

EXERCISES 7.4: Inverse Laplace Transform, page 374

1. From Table 7.1, the function 6/(s− 1)4 = (3!)/(s− 1)4 is the Laplace transform of eαttn with

α = 1 and n = 3. Therefore,

L−1

{
6

(s− 1)4

}
(t) = ett3 .
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3. Writing
s+ 1

s2 + 2s+ 10
=

s+ 1

(s2 + 2s+ 1) + 9
=

s+ 1

(s+ 1)2 + 32
,

we see that this function is the Laplace transform of e−t cos 3t (the last entry in Table 7.1

with α = −1 and b = 3). Hence

L−1

{
s+ 1

s2 + 2s+ 10

}
(t) = e−t cos 3t .

5. We complete the square in the denominator and use the linearity of the inverse Laplace

transform to get

L−1

{
1

s2 + 4s+ 8

}
(t) = L−1

{
1

(s+ 2)2 + 22

}
(t) =

1

2
L−1

{
2

(s+ 2)2 + 22

}
(t) =

1

2
e−2t sin 2t.

(See the Laplace transform formula for eαt sin bt in Table 7.1).

7. By completing the square in the denominator, we can rewrite (2s+ 16)/(s2 + 4s+ 13) as

2s+ 16

s2 + 4s+ 4 + 9
=

2s+ 16

(s+ 2)2 + 32
=

2(s+ 2)

(s+ 2)2 + 32
+

4(3)

(s+ 2)2 + 32
.

Thus, by the linearity of the inverse Laplace transform,

L−1

{
2s+ 16

s2 + 4s+ 13

}
(t) = 2L−1

{
s+ 2

(s+ 2)2 + 32

}
(t) + 4L−1

{
3

(s+ 2)2 + 32

}
(t)

= 2e−2t cos 3t+ 4e−2t sin 3t .

9. We complete the square in the denominator, rewrite the given function as a sum of two entries

in Table 7.1, and use the linearity of the inverse Laplace transform. This yields

3s− 15

2s2 − 4s+ 10
=

3

2
· s− 5

s2 − 2s+ 5
=

3

2
· (s− 1) − 4

(s− 1)2 + 22
=

(3/2)(s− 1)

(s− 1)2 + 22
− 3(2)

(s− 1)2 + 22

⇒ L−1

{
3s− 15

2s2 − 4s+ 10

}
=

3

2
L−1

{
s− 1

(s− 1)2 + 22

}
− 3L−1

{
2

(s− 1)2 + 22

}
=

3

2
et cos 2t− 3et sin 2t.
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11. In this problem, we use the partial fractions decomposition method. Since the denominator,

(s− 1)(s+ 2)(s+ 5), is a product of three nonrepeated linear factors, the expansion has the

form

s2 − 26s− 47

(s− 1)(s+ 2)(s+ 5)
=

A

s− 1
+

B

s+ 2
+

C

s+ 5

=
A(s+ 2)(s+ 5) +B(s− 1)(s+ 5) + C(s− 1)(s+ 2)

(s− 1)(s+ 2)(s+ 5)
.

Therefore,

s2 − 26s− 47 = A(s + 2)(s+ 5) +B(s− 1)(s+ 5) + C(s− 1)(s+ 2). (7.9)

Evaluating both sides of (7.9) for s = 1, s = −2, and s = −5, we find constants A, B, and C.

s = 1 : (1)2 − 26(1) − 47 = A(1 + 2)(1 + 5) ⇒ A = −4,

s = −2 : (−2)2 − 26(−2) − 47 = B(−2 − 1)(−2 + 5) ⇒ B = −1,

s = −5 : (−5)2 − 26(−5) − 47 = C(−5 − 1)(−5 + 2) ⇒ C = 6.

Hence,
s2 − 26s− 47

(s− 1)(s+ 2)(s+ 5)
=

6

s+ 5
− 1

s+ 2
− 4

s− 1
.

13. The denominator has a simple linear factor, s, and a double linear factor, s + 1. Thus, we

look for the decomposition of the form

−2s2 − 3s− 2

s(s+ 1)2
=
A

s
+

B

s+ 1
+

C

(s+ 1)2
=
A(s+ 1)2 +Bs(s+ 1) + Cs

s(s+ 1)2
,

which yields

−2s2 − 3s− 2 = A(s+ 1)2 +Bs(s+ 1) + Cs. (7.10)

Evaluating this equality for s = 0 and s = −1, we find A and C, respectively.

s = 0 : −2 = A(0 + 1)2 ⇒ A = −2,

s = −1 : −2(−1)2 − 3(−1) − 2 = C(−1) ⇒ C = 1.

To find B, we compare the coefficients at s2 in both sides of (7.10).

−2 = A+B ⇒ B = −2 − A = 0.
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Hence,
−2s2 − 3s− 2

s(s+ 1)2
=

1

(s+ 1)2
− 2

s
.

15. First, we complete the square in the quadratic s2 − 2s+ 5 to make sure that this polynomial

is irreducible and to find the form of the decomposition. Since

s2 − 2s+ 5 = (s2 − 2s+ 1) + 4 = (s− 1)2 + 22 ,

we have

−8s− 2s2 − 14

(s+ 1)(s2 − 2s+ 5)
=

A

s+ 1
+
B(s− 1) + C(2)

(s− 1)2 + 22
=
A [(s− 1)2 + 4] + [B(s− 1) + 2C] (s+ 1)

(s+ 1) [(s− 1)2 + 4]

which implies that

−8s− 2s2 − 14 = A
[
(s− 1)2 + 4

]
+ [B(s− 1) + 2C] (s+ 1).

Taking s = −1, s = 1, and s = 0, we find A, B, and C, respectively.

s = −1 : 8(−1) − 2(−1)2 − 14 = A [(−1 − 1)2 + 4] ⇒ A = −3,

s = 1 : 8(1) − 2(1)2 − 14 = A [(1 − 1)2 + 4] + 2C(1 + 1) ⇒ C = 1,

s = 0 : 8(0) − 2(0)2 − 14 = A [(0 − 1)2 + 4] + [B(0 − 1) + 2C] (0 + 1) ⇒ B = 1,

and so
−8s− 2s2 − 14

(s+ 1)(s2 − 2s+ 5)
= − 3

s+ 1
+

(s− 1) + 2

(s− 1)2 + 4

17. First we need to completely factor the denominator. Since s2 + s−6 = (s−2)(s+3), we have

3s+ 5

s(s2 + s− 6)
=

3s+ 5

s(s− 2)(s+ 3)
.

Since the denominator has only nonrepeated linear factors, we can write

3s+ 5

s(s− 2)(s+ 3)
=
A

s
+

B

s− 2
+

C

s + 3

for some choice of A, B and C. Clearing fractions gives us

3s+ 5 = A(s− 2)(s+ 3) +Bs(s + 3) + Cs(s− 2).
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With s = 0, this yields 5 = A(−2)(3) so that A = −5/6. With s = 2, we get 11 = B(2)(5) so

that B = 11/10. Finally, s = −3 yields −4 = C(−3)(−5) so that C = −4/15. Thus,

3s+ 5

s(s2 + s− 6)
= − 5

6s
+

11

10(s− 2)
− 4

15(s+ 3)
.

19. First observe that the quadratic polynomial s2 +2s+2 is irreducible because the discriminant

22 − 4(1)(2) = −4 is negative. Since the denominator has one nonrepeated linear factor and

one nonrepeated quadratic factor, we can write

1

(s− 3)(s2 + 2s+ 2)
=

1

(s− 3)[(s+ 1)2 + 1]
=

A

s− 3
+
B(s+ 1) + C

(s+ 1)2 + 1
,

where we have chosen a form which is more convenient for taking the inverse Laplace trans-

form. Clearing fractions gives us

1 = A
[
(s+ 1)2 + 1

]
+ [B(s + 1) + C] (s− 3). (7.11)

With s = 3, this yields 1 = 17A so that A = 1/17. Substituting s = −1, we see that

1 = A(1)+C(−4), or C = (A−1)/4 = −4/17. Finally, the coefficient A+B at s2 in the right-

hand side of (7.11) must be the same as in the left-hand side, that is, 0. So B = −A = −1/17

and
1

(s− 3)(s2 + 2s+ 2)
=

1

17

[
1

s− 3
− s+ 1

(s+ 1)2 + 1
− 4

(s+ 1)2 + 1

]
.

21. Since the denominator contains only nonrepeated linear factors, the partial fractions decom-

position has the form

6s2 − 13s+ 2

s(s− 1)(s− 6)
=
A

s
+

B

s− 1
+

C

s− 6
=
A(s− 1)(s− 6) +Bs(s− 6) + Cs(s− 1)

s(s− 1)(s− 6)
.

Therefore,

6s2 − 13s+ 2 = A(s− 1)(s− 6) +Bs(s− 6) + Cs(s− 1).

Evaluating both sides of this equation for s = 0, s = 1, and s = 6, we find constants A, B,

and C.
s = 0 : 2 = 6A ⇒ A = 1/3,

s = 1 : −5 = −5B ⇒ B = 1,

s = 6 : 140 = 30C ⇒ C = 14/3.
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Hence,
6s2 − 13s+ 2

s(s− 1)(s− 6)
=

1/3

s
+

1

s− 1
+

14/3

s− 6

and the linear property of the inverse Laplace transform yields

L−1

{
6s2 − 13s+ 2

s(s− 1)(s− 6)

}
=

1

3
L−1

{
1

s

}
+ L−1

{
1

s− 1

}
+

14

3
L−1

{
1

s− 6

}
=

1

3
+ et +

14

3
e6t .

23. In this problem, the denominator of F (s) has a simple linear factor, s+1, and a double linear

factor, s+ 3. Thus, the decomposition is the form

5s2 + 34s+ 53

(s+ 3)2(s+ 1)
=

A

(s+ 3)2
+

B

s+ 3
+

C

s+ 1
=
A(s+ 1) +B(s+ 1)(s+ 3) + C(s+ 3)2

(s+ 3)2(s+ 1)
.

Therefore, we must have

5s2 + 34s+ 53 = A(s+ 1) +B(s+ 1)(s+ 3) + C(s+ 3)2.

Substitutions s = −3 and s = −1 yield values of A and C, respectively.

s = −3 : −4 = −2A ⇒ A = 2,

s = −1 : 24 = 4C ⇒ C = 6.

To find B, we take, say, s = 0 and get

53 = A+ 3B + 9C ⇒ B =
53 − A− 9C

3
= −1.

Hence,

L−1

{
5s2 + 34s+ 53

(s+ 3)2(s+ 1)

}
(t) = 2L−1

{
1

(s+ 3)2

}
(t) −L−1

{
1

s+ 3

}
(t) + 6L−1

{
1

s+ 1

}
(t)

= 2te−3t − e−3t + 6e−t .

25. Observing that the quadratic s2 + 2s + 5 = (s + 1)2 + 22 is irreducible, the partial fractions

decomposition for F (s) has the form

7s2 + 23s+ 30

(s− 2)(s2 + 2s+ 5)
=

A

s− 2
+
B(s+ 1) + C(2)

(s+ 1)2 + 22
.
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Clearing fractions gives us

7s2 + 23s+ 30 = A
[
(s+ 1)2 + 4

]
+ [B(s + 1) + C(2)] (s− 2).

With s = 2, this yields 104 = 13A so that A = 8; s = −1 gives 14 = A(4) +C(−6), or C = 3.

Finally, the coefficient A+B at s2 in the right-hand side must match the one in the left-hand

side, which is 7. So B = 7 −A = −1. Therefore,

7s2 + 23s+ 30

(s− 2)(s2 + 2s+ 5)
=

8

s− 2
+

−(s+ 1) + 3(2)

(s+ 1)2 + 22
,

which yields

L−1

{
7s2 + 23s+ 30

(s− 2)(s2 + 2s+ 5)

}
= 8L−1

{
1

s− 2

}
− L−1

{
s+ 1

(s+ 1)2 + 22

}
+ 3L−1

{
2

(s+ 1)2 + 22

}
= 8e2t − e−t cos 2t+ 3e−t sin 2t .

27. First, we find F (s).

F (s)
(
s2 − 4

)
=

5

s+ 1
⇒ F (s) =

5

(s+ 1)(s2 − 4)
=

5

(s+ 1)(s− 2)(s+ 2)
.

The partial fractions expansion yields

5

(s+ 1)(s− 2)(s+ 2)
=

A

s+ 1
+

B

s− 2
+

C

s+ 2
.

Clearing fractions gives us

5 = A(s− 2)(s+ 2) +B(s+ 1)(s+ 2) + C(s+ 1)(s− 2).

With s = −1, s = 2, and s = −2 this yields A = −5/3, B = 5/12, and C = 5/4. So,

L−1 {F (s)} (t) = −5

3
L−1

{
1

s+ 1

}
(t) +

5

12
L−1

{
1

s− 2

}
(t) +

5

4
L−1

{
1

s+ 2

}
(t)

= −5

3
e−t +

5

12
e2t +

5

4
e−2t .

29. Solving for F (s) yields

F (s) =
10s2 + 12s+ 14

(s+ 2)(s2 − 2s+ 2)
=

10s2 + 12s+ 14

(s+ 2)[(s− 1)2 + 1]
.
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Since, in the denominator, we have nonrepeated linear and quadratic factors, we seek for the

decomposition
10s2 + 12s+ 14

(s+ 2)[(s− 1)2 + 1]
=

A

s+ 2
+
B(s− 1) + C(1)

(s− 1)2 + 1
.

Clearing fractions, we conclude that

10s2 + 12s+ 14 = A[(s− 1)2 + 1] + [B(s− 1) + C] (s+ 2).

Substitution s = −2 into this equation yields 30 = 10A or A = 3. With s = 1, we get

36 = A+3C and so C = (36−A)/3 = 11. Finally, substitution s = 0 results 14 = 2A+2(C−B)

or B = A + C − 7 = 7. Now we apply the linearity of the inverse Laplace transform and

obtain

L−1 {F (s)} (t) = 3L−1

{
1

s+ 2

}
(t) + 7L−1

{
s− 1

(s− 1)2 + 1

}
(t) + 11L−1

{
1

(s− 1)2 + 1

}
(t)

= 3e−2t + 7et cos t+ 11et sin t .

31. Functions f1(t), f2(t), and f3(t) coincide for all t in [0,∞) except a finite number of points.

Since the Laplace transform a function is a definite integral, it does not depend on values of

the function at finite number of points. Therefore, in (a), (b), and (c) we have one and the

same answer, that is

L{f1(t)} (s) = L{f2(t)} (s) = L{f3(t)} (s) = L{t} (s) =
1

s2
.

By Definition 4, the inverse Laplace transform is a continuous function on [0,∞). f3(t) = t

clearly satisfies this condition while f1(t) and f2(t) have removable discontinuities at t = 2

and t = 1, 6, respectively. Therefore,

L−1

{
1

s2

}
(t) = f3(t) = t.

33. We are looking for L−1 {F (s)} (t) = f(t). According to the formula given just before this

problem,

f(t) =
−1

t
L−1

{
dF

ds

}
(t)
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(take n = 1 in the formula). Since

F (s) = ln

(
s + 2

s− 5

)
= ln(s+ 2) − ln(s− 5),

we have

dF (s)

ds
=

d

ds
(ln(s+ 2) − ln(s− 5)) =

1

s+ 2
− 1

s− 5

⇒ L−1

{
dF

ds

}
(t) = L−1

{
1

s+ 2
− 1

s− 5

}
(t) = e−2t − e5t

⇒ L−1 {F (s)} (t) =
−1

t

(
e−2t − e5t

)
=
e5t − e−2t

t
.

35. Taking the derivative of F (s), we get

dF (s)

ds
=

d

ds
ln
s2 + 9

s2 + 1
=

d

ds

[
ln(s2 + 9) − ln(s2 + 1)

]
=

2s

s2 + 9
− 2s

s2 + 1
.

So, using the linear property of the inverse Laplace transform, we obtain

L−1

{
dF (s)

ds

}
(t) = 2L−1

{
s

s2 + 9

}
(t) − 2L−1

{
s

s2 + 1

}
(t) = 2(cos 3t− cos t).

Thus

L−1 {F (s)} (t) =
−1

t
L−1

{
dF (s)

ds

}
(t) =

2(cos t− cos 3t)

t
.

37. By the definition, both, L−1 {F1} (t) and L−1 {F2} (t), are continuous functions on [0,∞).

Therefore, their sum, (L−1 {F1} + L−1 {F2}) (t), is also continuous on [0,∞). Furthermore,

the linearity of the Laplace transform yields

L{(L−1 {F1} + L−1 {F2}
)}

(s) = L{L−1 {F1}
}

(s) + L{L−1 {F2}
}

(s) = F1(s) + F2(s).

Therefore, L−1 {F1} + L−1 {F2} is a continuous function on [0,∞) whose Laplace transform

is F1 + F2. By the definition of the inverse Laplace transform, this function is the inverse

Laplace transform of F1 + F2, that is,

L−1 {F1} (t) + L−1 {F2} (t) = L−1 {F1 + F2} (t),
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and (3) in Theorem 7 is proved.

To show (4), we use the continuity of L−1 {F} to conclude that cL−1 {F} is a continuous

function. Since the linearity of the Laplace transform yields

L{cL−1 {F}} (s) = cL{L−1 {F}} (s) = cF (s),

we have cL−1 {F} (t) = L−1 {cF} (t).

39. In this problem, the denominator Q(s) := s(s− 1)(s+ 2) has only nonrepeated linear factors,

and so the partial fractions decomposition has the form

F (s) :=
2s+ 1

s(s− 1)(s+ 2)
=
A

s
+

B

s− 1
+

C

s+ 2
.

To find A, B, and C, we use the residue formula in Problem 38. This yields

A = lim
s→0

sF (s) = lim
s→0

2s+ 1

(s− 1)(s+ 2)
=

2(0) + 1

(0 − 1)(0 + 2)
= −1

2
,

B = lim
s→1

(s− 1)F (s) = lim
s→1

2s+ 1

s(s+ 2)
=

2(1) + 1

(1)(1 + 2)
= 1 ,

C = lim
s→−2

(s+ 2)F (s) = lim
s→2

2s+ 1

s(s− 1)
=

2(−2) + 1

(−2)(−2 − 1)
= −1

2
.

Therefore,
2s+ 1

s(s− 1)(s+ 2)
= −1/2

s
+

1

s− 1
− 1/2

s+ 2
.

41. In notation of Problem 40,

P (s) = 3s2 − 16s+ 5, Q(s) = (s+ 1)(s− 3)(s− 2).

We can apply the Heaviside’s expansion formula because Q(s) has only nonrepeated linear

factors. We need the values of P (s) and Q′(s) at the points r1 = −1, r2 = 3, and r3 = 2.

Using the product rule, we find that

Q′(s) = (s− 3)(s− 2) + (s+ 1)(s− 2) + (s+ 1)(s− 3),

and so

Q′(−1) = (−1− 3)(−1 − 2) = 12, Q′(3) = (3 + 1)(3− 2) = 4, Q′(2) = (2 + 1)(2− 3) = −3.
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Also, we compute

P (−1) = 24, P (3) = −16, P (2) = −15.

Therefore,

L−1

{
3s2 − 16s+ 5

(s+ 1)(s− 3)(s− 2)

}
(t) =

P (−1)

Q′(−1)
e(−1)t +

P (3)

Q′(3)
e(3)t +

P (2)

Q′(2)
e(2)t = 2e−t−4e3t +5e2t .

43. Since s2 − 2s+ 5 = (s− 1)2 + 22, we see that the denominator of F (s) has nonrepeated linear

factor s + 2 and nonrepeated irreducible quadratic factor s2 − 2s + 5 with α = 1 and β = 2

(in notation of Problem 40). Thus the partial fractions decomposition has the form

F (s) =
6s2 + 28

(s2 − 2s+ 5)(s+ 2)
=
A(s− 1) + 2B

(s− 1)2 + 22
+

C

s+ 2
.

We find C by applying the real residue formula derived in Problem 38.

C = lim
s→−2

(s+ 2)(6s2 + 28)

(s2 − 2s+ 5)(s+ 2)
= lim

s→−2

6s2 + 28

s2 − 2s+ 5
=

52

13
= 4.

Next, we use the complex residue formula given in Problem 42, to find A and B. Since α = 1

and β = 2, the formula becomes

2B + i2A = lim
s→1+2i

(s2 − 2s+ 5)(6s2 + 28)

(s2 − 2s+ 5)(s+ 2)
= lim

s→1+2i

6s2 + 28

s+ 2
=

6(1 + 2i)2 + 28

(1 + 2i) + 2
=

10 + 24i

3 + 2i
.

Dividing we get

2B + i2A =
(10 + 24i)(3 − 2i)

(3 + 2i)(3 − 2i)
=

78 + 52i

13
= 6 + 4i.

Taking the real and imaginary parts yields

2B = 6,

2A = 4
⇒ B = 3,

A = 2.

Therefore,
6s2 + 28

(s2 − 2s+ 5)(s+ 2)
=

2(s− 1) + 2(3)

(s− 1)2 + 22
+

4

s+ 2
.
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EXERCISES 7.5: Solving Initial Value Problems, page 383

1. Let Y (s) := L{y} (s). Taking the Laplace transform of both sides of the given differential

equation and using its linearity, we obtain

L{y′′} (s) − 2L{y′} (s) + 5Y (s) = L{0} (s) = 0. (7.12)

We can express L{y′′} (s) and L{y′} (s) in terms of Y (s) using the initial conditions and

Theorem 5 in Section 7.3.

L{y′} (s) = sY (s) − y(0) = sY (s) − 2,

L{y′′} (s) = s2Y (s) − sy(0) − y′(0) = s2Y (s) − 2s− 4.

Substituting back into (7.12) and solving for Y (s) yield[
s2Y (s) − 2s− 4

]− 2 [sY (s) − 2] + 5Y (s) = 0

⇒ Y (s)
(
s2 − 2s+ 5

)
= 2s

⇒ Y (s) =
2s

s2 − 2s+ 5
=

2s

(s− 1)2 + 22
=

2(s− 1)

(s− 1)2 + 22
+

2

(s− 1)2 + 22
.

Applying now the inverse Laplace transform to both sides, we obtain

y(t) = 2L−1

{
s− 1

(s− 1)2 + 22

}
(t) + L−1

{
2

(s− 1)2 + 22

}
(t) = 2et cos 2t+ et sin 2t.

3. Let Y (s) := L{y} (s). Taking the Laplace transform of both sides of the given differential

equation, y′′ + 6y′ + 9y = 0, and using the linearity of the Laplace transform, we obtain

L{y′′} (s) + 6L{y′} (s) + 9Y (s) = 0.

We use formula (4), page 362, to express L{y′′} (s) and L{y′} (s) in terms of Y (s).

L{y′} (s) = sY (s) − y(0) = sY (s) + 1,

L{y′′} (s) = s2Y (s) − sy(0) − y′(0) = s2Y (s) + s− 6.

Therefore, [
s2Y (s) + s− 6

]
+ 6 [sY (s) + 1] + 9Y (s) = 0
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⇒ Y (s)
(
s2 + 6s+ 9

)
= −s

⇒ Y (s) =
−s

s2 + 6s+ 9
=

−s
(s+ 3)2

=
3

(s+ 3)2
− 1

s+ 3
,

where the last equality comes from the partial fraction expansion of −s/(s + 32). We apply

the inverse Laplace transform to both sides and use Table 7.1 to obtain

y(t) = 3L−1

{
1

(s+ 3)2

}
(t) −L−1

{
1

s+ 3

}
(t) = 3te−3t − e−3t .

5. Let W (s) = L{w} (s). Then taking the Laplace transform of the equation and using linearity

yield

L{w′′} (s) +W (s) = L{t2 + 2
}

(s) = L{t2} (s) + 2L{1} (s) =
2

s3
+

2

s
.

Since L{w′′} (s) = s2W (s) − sw(0) − w′(0) = s2W (s) − s+ 1, we have

[
s2W (s) − s+ 1

]
+W (s) =

2

s3
+

2

s

⇒ (
s2 + 1

)
W (s) = s− 1 +

2(s2 + 1)

s3
⇒ W (s) =

s

s2 + 1
− 1

s2 + 1
+

2

s3
.

Now, taking the inverse Laplace transform, we obtain

w = L−1

{
s

s2 + 1

}
− L−1

{
1

s2 + 1

}
+ L−1

{
2

s3

}
= cos t− sin t+ t2.

7. Let Y (s) := L{y} (s). Using the initial conditions and Theorem 5 in Section 7.3 we can

express L{y′′} (s) and L{y′} (s) in terms of Y (s), namely,

L{y′} (s) = sY (s) − y(0) = sY (s) − 5,

L{y′′} (s) = s2Y (s) − sy(0) − y′(0) = s2Y (s) − 5s+ 4.

Taking the Laplace transform of both sides of the given differential equation and using its

linearity, we obtain

L{y′′ − 7y′ + 10y} (s) = L{9 cos t+ 7 sin t} (s)

⇒ [
s2Y (s) − 5s+ 4

]− 7 [sY (s) − 5] + 10Y (s) =
9s

s2 + 1
+

7

s2 + 1
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⇒ (
s2 − 7s+ 10

)
Y (s) =

9s+ 7

s2 + 1
+ 5s− 39 =

5s3 − 39s2 + 14s− 32

s2 + 1

⇒ Y (s) =
9s+ 7

s2 + 1
+ 5s− 39 =

5s3 − 39s2 + 14s− 32

(s2 + 1)(s2 − 7s+ 10)
=

5s3 − 39s2 + 14s− 32

(s2 + 1)(s− 5)(s− 2)
.

The partial fractions decomposition of Y (s) has the form

5s3 − 39s2 + 14s− 32

(s2 + 1)(s− 5)(s− 2)
=
As+B

s2 + 1
+

C

s− 5
+

D

s− 2
.

Clearing fractions yields

5s3 − 39s2 + 14s− 32 = (As +B)(s− 5)(s− 2) + C(s2 + 1)(s− 2) +D(s2 + 1)(s− 5).

We substitute s = 5 and s = 2 to find C and D, resprectively, and then s = 0 to find B.

s = 5 : −312 = 78C ⇒ C = −4,

s = 2 : −120 = −15D ⇒ D = 8,

s = 0 : −32 = 10B − 2C − 5D ⇒ B = 0.

Equating the coefficients at s3, we also get A+ C +D = 5, which implies that A = 1. Thus

Y (s) =
s

s2 + 1
− 4

s− 5
+

8

s− 2
⇒ y(t) = L−1 {Y (s)} (t) = cos t− 4e5t + 8e2t .

9. First, note that the initial conditions are given at t = 1. Thus, to use the method of Laplace

transform, we make a shift in t and move the initial conditions to t = 0.

z′′(t) + 5z′(t) − 6z(t) = 21et−1

⇒ z′′(t+ 1) + 5z′(t+ 1) − 6z(t+ 1) = 21e(t+1)−1 = 21et. (7.13)

Now, let y(t) := z(t+ 1). Then the chain rule yields

y′(t) = z′(t+ 1)(t+ 1)′ = z′(t+ 1),

y′′(t) = [y′(t)]′ = z′′(t+ 1)(t+ 1)′ = z′′(t+ 1),

and (7.13) becomes

y′′(t) + 5y′(t) − 6y(t) = 21et (7.14)
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with initial conditions

y(0) = z(0 + 1) = z(1) = −1, y′(0) = z′(0 + 1) = z′(1) = 9.

With Y (s) := L{y(t)} (s), we apply the Laplace transform to both sides of (7.14) and obtain

L{y′′} (s) + 5L{y′} (s) − 6Y (s) = L{21et
}

(s) =
21

s− 1
. (7.15)

By Theorem 5, Section 7.3,

L{y′} (s) = sY (s) − y(0) = sY (s) + 1,

L{y′′} (s) = s2Y (s) − sy(0) − y′(0) = s2Y (s) + s− 9.

Substituting these expressions back into (7.15) and solving for Y (s) yield[
s2Y (s) + s− 9

]
+ 5 [sY (s) + 1] − 6Y (s) =

21

s− 1

⇒ (
s2 + 5s− 6

)
Y (s) =

21

s− 1
− s+ 4 =

−s2 + 5s+ 17

s− 1

⇒ Y (s) =
−s2 + 5s+ 17

(s− 1)(s2 + 5s− 6)
=

−s2 + 5s+ 17

(s− 1)(s− 1)(s+ 6)
=

−s2 + 5s+ 17

(s− 1)2(s+ 6)
.

The partial fractions decomposition for Y (s) has the form

−s2 + 5s+ 17

(s− 1)2(s+ 6)
=

A

(s− 1)2
+

B

s− 1
+

C

s+ 6
.

Clearing fractions yields

−s2 + 5s+ 17 = A(s+ 6) +B(s− 1)(s+ 6) + C(s− 1)2 .

Substitutions s = 1 and s = −6 give A = 3 and C = −1. Also, with s = 0, we have

17 = 6A− 6B + C or B = 0. Therefore,

Y (s) =
3

(s− 1)2
− 1

s+ 6
⇒ y(t) = L−1

{
3

(s− 1)2
− 1

s+ 6

}
(t) = 3tet − e−6t .

Finally, shifting the argument back, we obtain

z(t) = y(t− 1) = 3(t− 1)et−1 − e−6(t−1) .
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11. As in the previous problem (and in Example 3 in the text), we first need to shift the initial

conditions to 0. If we set v(t) = y(t+ 2), the initial value problem for v(t) becomes

v′′(t) − v(t) = (t+ 2) − 2 = t, v(0) = y(2) = 3, v′(0) = y′(2) = 0.

Taking the Laplace transform of both sides of this new differential equation gives us

L{v′′} (s) − L{v} (s) = L{t} (s) =
1

s2
.

If we denote V (s) := L{v} (s) and express L{v′′} (s) in terms of V (s) using (4) in Section 4.3

(with n = 2), that is, L{v′′} (s) = s2V (s) − 3s, we obtain

[
s2V (s) − 3s

]− V (s) =
1

s2

⇒ V (s) =
3s3 + 1

s2(s2 − 1)
=

3s3 + 1

s2(s+ 1)(s− 1)
= − 1

s2
+

1

s+ 1
+

2

s− 1
.

Hence,

v(t) = L−1 {V (s)} (t) = L−1

{
− 1

s2
+

1

s+ 1
+

2

s− 1

}
(t) = −t+ e−t + 2et .

Since v(t) = y(t+ 2), we have y(t) = v(t− 2) and so

y(t) = −(t− 2) + e−(t−2) + 2et−2 = 2 − t+ e2−t + 2et−2 .

13. To shift the initial conditions to t = 0, we make the substitution x(t) := y(t + π/2) in the

original equation and use the fact that

x′(t) := y′(t+ π/2), x′′(t) := y′′(t+ π/2).

This yields

y′′(t) − y′(t) − 2y(t) = −8 cos t− 2 sin t

⇒ −8 cos
(
t+

π

2

)
− 2 sin

(
t+

π

2

)
= −8 cos

(
t+

π

2

)
− 2 sin

(
t+

π

2

)
= 8 sin t− 2 cos t

⇒ x′′(t) − x′(t) − 2x(t) = 8 sin t− 2 cos t, x(0) = 1, x′(0) = 0.
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Taking the Laplace transform of both sides in this last differential equation and using the fact

that, with X(s) := L{x} (s),

L{x′} (s) = sX(s) − 1 and L{x′′} (s) = s2X(s) − s

(which comes from the initial conditions and (4) in Section 7.3), we obtain[
s2X(s) − s

]− [sX(s) − 1] − 2X(s) = L{8 sin t− 2 cos t} (s) =
8

s2 + 1
− 2s

s2 + 1

⇒ (
s2 − s− 2

)
X(s) =

8 − 2s

s2 + 1
+ s− 1 =

s3 − s2 − s+ 7

s2 + 1

⇒ X(s) =
s3 − s2 − s+ 7

(s2 + 1)(s2 − s− 2)
=

s3 − s2 − s+ 7

(s2 + 1)(s− 2)(s+ 1)
.

We seek for the partial fractions decomposition of X(s) in the form

s3 − s2 − s+ 7

(s2 + 1)(s− 2)(s+ 1)
=
As +B

s2 + 1
+

C

(s− 2)
+

D

s+ 1
.

Solving yields

A =
7

5
, B = −11

5
, C =

3

5
, D = −1.

Therefore,

X(s) =
(7/5)s

s2 + 1
+

(−11/5)

s2 + 1
+

(3/5)

(s− 2)
− 1

s + 1

⇒ x(t) = L−1 {X(s)} (t) =
7

5
cos t− 11

5
sin t+

3

5
e2t − e−t .

Finally, since y(t) = x(t− π/2), we obtain the solution

y(t) =
7

5
cos
(
t− π

2

)
− 11

5
sin
(
t− π

2

)
+

3

5
e2(t−π/2) − e−(t−π/2)

=
7

5
sin t+

11

5
cos t+

3

5
e2t−π − e(π/2)−t)

15. Taking the Laplace transform of y′′−3y′+2y = cos t and applying the linearity of the Laplace

transform yields

L{y′′} (s) − 3L{y′} (s) + 2L{y} (s) = L{cos t} (s) =
s

s2 + 1
. (7.16)
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If we put Y (s) = L{y} (s) and apply the property (4), page 362 of the text, we get

L{y′} (s) = sY (s), L{y′′} (s) = s2Y (s) + 1.

Substitution back into (7.16) yields[
s2Y (s) + 1

]− 3 [sY (s)] + 2Y (s) =
s

s2 + 1

⇒ (
s2 − 3s+ 2

)
Y (s) =

s

s2 + 1
− 1 =

−s2 + s− 1

s2 + 1

⇒ Y (s) =
−s2 + s− 1

(s2 + 1)(s2 − 3s+ 2)
=

−s2 + s− 1

(s2 + 1)(s− 1)(s− 2)
.

17. With Y (s) := L{y} (s), we find that

L{y′} (s) = sY (s) − y(0) = sY (s) − 1, L{y′′} (s) = s2Y (s) − sy(0) − y′(0) = s2Y (s) − s,

and so the Laplace transform of both sides of the original equation yields

L{y′′ + y′ − y} (s) = L{t3} (s)

⇒ [
s2Y (s) − s

]
+ [sY (s) − 1] − Y (s) =

6

s4

⇒ Y (s) =
1

s2 + s− 1

(
6

s4
+ s+ 1

)
=

s5 + s4 + 6

s4(s2 + s− 1)
.

19. Let us denote Y (s) := L{y} (s). From the initial conditions and formula (4) on page 362 of

the text we get

L{y′} (s) = sY (s)− y(0) = sY (s)−1, L{y′′} (s) = s2Y (s)− sy(0)− y′(0) = s2Y (s)− s−1.

The Laplace transform, applied to both sides of the given equation, yields[
s2Y (s) − s− 1

]
+ 5 [sY (s) − 1] − Y (s) = L{et

}
(s) −L{1} (s) =

1

s− 1
− 1

s
=

1

s(s− 1)

⇒ (
s2 + 5s− 1

)
Y (s) =

1

s(s− 1)
+ s+ 6 =

s3 + 5s2 − 6s+ 1

s(s− 1)

⇒ Y (s) =
s3 + 5s2 − 6s+ 1

s(s− 1)(s2 + 5s− 1)
.
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21. Applying the Laplace transform to both sides of the given equation yields

L{y′′} (s) − 2L{y′} (s) + L{t} (s) = L{cos t} (s) −L{sin t} (s) =
s− 1

s2 + 1
.

If L{y} (s) =: Y (s), then it follows from the initial conditions and (4) on page 362 of the text

that

L{y′} (s) = sY (s) − 1, L{y′′} (s) = s2Y (s) − s− 3.

Therefore, Y (s) satisfies[
s2Y (s) − s− 3

]− 2 [sY (s) − 1] + Y (s) =
s− 1

s2 + 1
.

Solving for Y (s) gives us

(
s2 − 2s+ 1

)
Y (s) =

s− 1

s2 + 1
+ s+ 1 =

s3 + s2 + 2s

s2 + 1

⇒ Y (s) =
s3 + s2 + 2s

(s2 + 1)(s2 − 2s+ 1)
=

s3 + s2 + 2s

(s2 + 1)(s− 1)2
.

23. In this equation, the right-hand side is a piecewise defined function. Let us find its Laplace

transform first.

L{g(t)} (s) =

∞∫
0

e−stg(t) dt =

2∫
0

e−stt dt+

∞∫
2

e−st5 dt

=
te−st

−s
∣∣∣∣2
0

−
2∫

0

e−st

−s dt+ lim
N→∞

5e−st

−s
∣∣∣∣N
2

= −
[
2e−2s

s

]
−
[
e−2s

s2
+

1

s2

]
+

5e−2s

s
=

1 + 3se−2s − e−2s

s2
,

where we used integration by parts integrating e−stt.

Using this formula and applying the Laplace transform to the given equation yields

L{y′′} (s) + 4L{y} (s) = L{g(t)} (s)

⇒ s2L{y} (s) + s+ 4L{y} (s) = L{g(t)} (s)

⇒ (
s2 + 4

)L{y} (s) = L{g(t)} (s) − s =
−s3 + 1 + 3se−2s − e−2s

s2

420



Exercises 7.5

⇒ L{y} (s) =
−s3 + 1 + 3se−2s − e−2s

s2(s2 + 4)
.

25. Taking the Laplace transform of y′′′−y′′ +y′−y = 0 and applying the linearity of the Laplace

transform yields

L{y′′′} (s) − L{y′′} (s) + L{y′} (s) − L{y} (s) = L{0} (s) = 0. (7.17)

If we denote Y (s) := L{y} (s) and and apply property (4) on page 362 of the text, we get

L{y′} (s) = sY (s) − 1, L{y′′} (s) = s2Y (s) − s− 1, LTy′′′ = s3Y (s) − s2 − s− 3.

Combining these equations with (7.17) gives us[
s3Y (s) − s2 − s− 3

]− [s2Y (s) − s− 1
]
+ [sY (s) − 1] − Y (s) = 0

⇒ (
s3 − s2 + s− 1

)
Y (s) = s2 + 3

⇒ Y (s) =
s2 + 3

s3 − s2 + s− 1
=

s2 + 3

(s− 1)(s2 + 1)
.

Expanding Y (s) by partial fractions results

Y (s) =
2

s− 1
− s+ 1

s2 + 1
=

2

s− 1
− s

s2 + 1
− 1

s2 + 1
.

From Table 7.1 on page 358 of the text, we see that

y(t) = L−1 {Y (s)} (t) = 2et − cos t− sin t.

27. Let Y (s) := L{y} (s). Then, by Theorem 5 in Section 7.3,

L{y′} (s) = sY (s) − y(0) = sY (s) + 4,

L{y′′} (s) = s2Y (s) − sy(0) − y′(0) = s2Y (s) + 4s− 4,

L{y′′′} (s) = s3Y (s) − s2y(0) − sy′(0) − y′′(0) = s3Y (s) + 4s2 − 4s+ 2.

Using these equations and applying the Laplace transform to both sides of the given differential

equation, we get[
s3Y (s) + 4s2 − 4s+ 2

]
+ 3
[
s2Y (s) + 4s− 4

]
+ 3 [sY (s) + 4] + Y (s) = 0

421



Chapter 7

⇒ (
s3 + 3s2 + 3s+ 1

)
Y (s) +

(
4s2 + 8s+ 2

)
= 0

⇒ Y (s) = − 4s2 + 8s+ 2

s3 + 3s2 + 3s+ 1
= −4s2 + 8s+ 2

(s+ 1)3
.

Therefore, the partial fractions decomposition of Y (s) has the form

−4s2 + 8s+ 2

(s+ 1)3
=

A

(s+ 1)3
+

B

(s+ 1)2
+

C

s+ 1
=
A +B(s+ 1) + C(s+ 1)2

(s+ 1)3

⇒ −(4s2 + 8s+ 2) = A+B(s + 1) + C(s+ 1)2 .

Substitution s = −1 yields A = 2. Equating coefficients at s2, we get C = −4. At last,

substituting s = 0 we obtain

−2 = A+B + C ⇒ B = −2 − A− C = 0.

Therefore,

Y (s) =
2

(s+ 1)3
+

−4

s+ 1
⇒ y(t) = L−1 {Y } (t) = t2e−t − 4e−t =

(
t2 − 4

)
e−t .

29. Using the initial conditions, y(0) = a and y′(0) = b, and formula (4) on page 362 of the text,

we conclude that

L{y′} (s) = sY (s) − y(0) = sY (s) − a,

L{y′′} (s) = s2Y (s) − sy(0) − y′(0) = s2Y (s) − as− b,

where Y (s) = L{y} (s). Applying the Laplace transform to the original equation yields[
s2Y (s) − as− b

]− 4 [sY (s) − a] + 3Y (s) = L{0} (s) = 0

⇒ (
s2 − 4s+ 3

)
Y (s) = as + b− 4a

⇒ Y (s) =
as+ b− 4a

s2 − 4s+ 3
=

as + b− 4a

(s− 1)(s− 3)
=

A

s− 1
+

B

s− 3
.

Solving for A and B, we find that A = (3a− b)/2, B = (b− a)/2. Hence

Y (s) =
(3a− b)/2

s− 1
+

(b− a)/2

s− 3

⇒ y(t) = L−1 {Y } (t) =
3a− b

2
L−1

{
1

s− 1

}
(t) +

b− a

2
L−1

{
1

s− 3

}
(t)

=
3a− b

2
et +

b− a

2
e3t .
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31. Similarly to Problem 29, we have

L{y′} (s) = sY (s)−y(0) = sY (s)−a, L{y′′} (s) = s2Y (s)−sy(0)−y′(0) = s2Y (s)−as−b,

with Y (s) := L{y} (s). Thus the Laplace transform of both sides of the the given equation

yields

L{y′′ + 2y′ + 2y} (s) = L{5} (s)

⇒ [
s2Y (s) − as− b

]
+ 2 [sY (s) − a] + 2Y (s) =

5

s

⇒ (
s2 + 2s+ 2

)
Y (s) =

5

s
+ as + 2a+ b =

as2 + (2a+ b)s + 5

s

⇒ Y (s) =
as2 + (2a+ b)s + 5

s(s2 + 2s+ 2)
=
as2 + (2a+ b)s + 5

s[(s+ 1)2 + 1]
.

We seek for an expansion of Y (s) of the form

as2 + (2a+ b)s+ 5

s[(s+ 1)2 + 1]
=
A

s
+
B(s+ 1) + C

(s+ 1)2 + 1
.

Clearing fractions, we obtain

as2 + (2a+ b)s+ 5 = A
[
(s+ 1)2 + 1

]
+ [B(s + 1) + C] s .

Substitutions s = 0 and s = −1 give us

s = 0 : 5 = 2A ⇒ A = 5/2,

s = −1 : 5 − a− b = A− C ⇒ C = A + a+ b− 5 = a + b− 5/2.

To find B, we can compare coefficients at s2:

a = A +B ⇒ B = a−A = a− 5/2.

So,

Y (s) =
5/2

s
+

(a− 5/2)(s+ 1)

(s+ 1)2 + 1
+
a+ b− 5/2

(s+ 1)2 + 1

⇒ y(t) = L−1 {Y } (t) =
5

2
+

(
a− 5

2

)
e−t cos t+

(
a+ b− 5

2

)
e−t sin t .
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33. By Theorem 6 in Section 7.3,

L{t2y′(t)} (s) = (−1)2 d
2

ds2
[L{y′(t)} (s)] =

d2

ds2
[L{y′(t)} (s)] . (7.18)

On the other hand, equation (4) on page 362 says that

L{y′(t)} (s) = sY (s) − y(0), Y (s) := L{y} (s).

Substitution back into (7.18) yields

L{t2y′(t)} (s) =
d2

ds2
[sY (s) − y(0)] =

d

ds

{
d

ds
[sY (s) − y(0)]

}
=

d

ds
[sY ′(s) + Y (s)] = (sY ′′(s) + Y ′(s)) + Y ′(s) = sY ′′(s) + 2Y ′(s).

35. Taking the Laplace transform of y′′ + 3ty′ − 6y = 1 and applying the linearity of the Laplace

transform yields

L{y′′} (s) + 3L{ty′} (s) − 6L{y} (s) = L{1} (s) =
1

s
. (7.19)

If we put Y (s) = L{y} (s) and apply property (4) on page 362 of the text with n = 2, we get

L{y′′} (s) = s2Y (s) − sy(0) − y′(0) = s2Y (s). (7.20)

Furthermore, as it was shown in Example 4, Section 4.5,

L{ty′} (s) = −sY ′(s) − Y (s). (7.21)

Substitution (7.20) and (7.21) back into (7.19) yields

s2Y (s) + 3 [−sY ′(s) − Y (s)] − 6Y (s) =
1

s

⇒ −3sY ′(s) +
(
s2 − 9

)
Y (s) =

1

s

⇒ Y ′(s) +

(
3

s
− s

3

)
Y (s) = − 1

3s2
.

This is a first order linear differential equation in Y (s), which can be solved by the techniques

of Section 2.3. Namely, it has the integrating factor

µ(s) = exp

[ ∫ (
3

s
− s

3

)
ds

]
= exp

[
3 ln s− s2

6

]
= s3e−s2/6 .
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Thus

Y (s) =
1

µ(s)

∫
µ(s)

(
− 1

3s2

)
ds =

1

s3e−s2/6

∫ −s
3
e−s2/6 ds

=
1

s3e−s2/6

(
e−s2/6 + C

)
=

1

s3

(
1 + Ces2/6

)
.

Just as in Example 4 on page 380 of the text, C must be zero in order to ensure that Y (s) → 0

as s→ ∞. Thus Y (s) = 1/s3, and from Table 7.1 on page 358 of the text we get

y(t) = L−1

{
1

s3

}
(t) =

1

2
L−1

{
2

s3

}
(t) =

t2

2
.

37. We apply the Laplace transform to the given equation and obtain

L{ty′′} (s) − 2L{y′} (s) + L{ty} (s) = 0. (7.22)

Using Theorem 5 (Section 7.3) and the initial conditions, we express L{y′′} (s) and L{y′} (s)

in terms of Y (s) := L{y} (s).

L{y′} (s) = sY (s) − y(0) = sY (s) − 1, (7.23)

L{y′′} (s) = s2Y (s) − sy(0)− y′(0) = s2Y (s) − s. (7.24)

We now involve Theorem 6 in Section 7.3 to get

L{ty} (s) = − d

ds
[L{y} (s)] = −Y ′(s). (7.25)

Also, Theorem 6 and equation (7.24) yield

L{ty′′} (s) = − d

ds
[L{y′′} (s)] = − d

ds

[
s2Y (s) − s

]
= 1 − 2sY (s) − s2Y ′(s). (7.26)

Substituting (7.23), (7.25), and (7.26) into (7.22), we obtain

[
1 − 2sY (s) − s2Y ′(s)

]− 2 [sY (s) − 1] + [−Y ′(s)] = 0

⇒ − (s2 + 1
)
Y ′(s) − 4sY (s) + 3 = 0

⇒ Y ′(s) +
4s

s2 + 1
Y (s) =

3

s2 + 1
.
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The integrating factor of this first order linear differential equation is

µ(s) = exp

[∫
4s

s2 + 1
ds

]
= exp

[
2 ln
(
s2 + 1

)]
=
(
s2 + 1

)2
.

Hence

Y (s) =
1

µ(s)

∫
µ(s)

(
3

s2 + 1

)
ds =

1

(s2 + 1)2

∫
3
(
s2 + 1

)
ds

=
1

(s2 + 1)2

(
s3 + 3s+ C

)
=

(s3 + s) + (2s+ C)

(s2 + 1)2
=

s

s2 + 1
+

2s

(s2 + 1)2
+

C

(s2 + 1)2
,

where C is an arbitrary constant. Therefore,

y(t) = L−1 {Y } (t) = L−1

{
s

s2 + 1

}
(t) + L−1

{
2s

(s2 + 1)2

}
(t) +

C

2
L−1

{
2

(s2 + 1)2

}
(t) .

Using formulas (24), (29) and (30) on the inside back cover of the text, we finally get

y(t) = cos t+ t sin t+ c(sin t− t cos t),

where c := C/2 is an arbitrary constant.

39. Similarly to Example 5, we have the initial value problem (18), namely,

Iy′′(t) = −ke(t), y(0) = 0, y′(0) = 0,

for the model of the mechanism. This equation leads to equation (19) for the Laplace trans-

forms Y (s) := L{y(t)} (s) and E(s) := L{e(t)} (s):

s2IY (s) = −kE(s). (7.27)

But, this time, e(t) = y(t) − a and so

E(s) = L{y(t) − a} (s) = Y (s) − a

s
⇒ Y (s) = E(s) +

a

s
.

Substituting this relation into (7.27) yields

s2IE(s) + aIs = −kE(s) ⇒ E(s) = − −aIs
s2I + k

= − as

s2 + (k/I)
.

Taking the inverse Laplace transform, we obtain

e(t) = L−1 {E(s)} (t) = −aL−1

{
s

s2 + (
√
k/I)2

}
(t) = −a cos

(√
k/It

)
.
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41. As in Problem 40, the differential equation modeling the automatic pilot is

Iy′′(t) = −ke(t) − µe′(t) , (7.28)

but now the error e(t) is given by e(t) = y(t) − at.

Let Y (s) := L{y(t)} (s), E(s) := L{e(t)} (s). Notice that, as in Example 5 on page 382,

we have y(0) = y′(0) = 0, and so e(0) = 0. Using these initial conditions and Theorem 5 in

Section 7.3, we obtain

L{y′′(t)} (s) = s2Y (s) and L{e′(t)} (s) = sE(s).

Applying the Laplace transform to both sides of (7.28) we then conclude that

IL{y′′(t)} (s) = −kL{e(t)} (s) − µL{e′(t)} (s)

⇒ Is2Y (s) = −kE(s) − µsE(s) = −(k + µs)E(s). (7.29)

Since e(t) = y(t) − at,

E(s) = L{e(t)} (s) = L{y(t) − at} (s) = Y (s) − aL{t} (s) = Y (s) − a

s2

or Y (s) = E(s) + a/s2. Substitution back into (7.29) yields

Is2
(
E(s) +

a

s2

)
= −(k + µs)E(s)

⇒ (
Is2 + µs+ k

)
E(s) = −aI

⇒ E(s) =
−aI

Is2 + µs+ k
=

−a
s2 + (µ/I)s+ (k/I)

.

Completing the square in the denominator, we write E(s) in the form suitable for inverse

Laplace transform.

E(s) =
−a

[s+ µ/(2I)]2 + (k/I) − µ2/(4I2)

=
−a

[s+ µ/(2I)]2 + (4kI − µ2)/(4I2)
=

−2Ia√
4kI − µ2

√
4kI − µ2/(2I)

[s+ µ/(2I)]2 + (4kI − µ2)/(4I2)
.

427



Chapter 7

Thus, using Table 7.1 on page 358 of the text, we find that

e(t) = L−1 {E(s)} (t) =
−2Ia√
4kI − µ2

e−µt/(2I) sin

[√
4kI − µ2t

2I

]
.

Compare this with Example 5 of the text and observe, how for moderate damping with

µ < 2
√
kI, the oscillations of Example 5 die out exponentially.

EXERCISES 7.6: Transforms of Discontinuous and Periodic Functions, page 395

1. To find the Laplace transform of g(t) = (t− 1)2u(t− 1) we apply formula (5) on page 387 of

the text with a = 1 and f(t) = t2. This yields

L{(t− 1)2u(t− 1)
}

(s) = e−sL{t2} (s) =
2e−s

s3
.

The graph of g(t) = (t− 1)2u(t− 1) is shown in Figure 7-B(a).

3. The graph of the function y = t2u(t−2) is shown in Figure 7-B(b). For this function, formula

(8) on page 387 is more convenient. To apply the shifting property, we observe that g(t) = t2

and a = 2. Hence

g(t+ a) = g(t+ 2) = (t+ 2)2 = t2 + 4t+ 4.

Now the Laplace transform of g(t+ 2) is

L{t2 + 4t+ 4
}

(s) = L{t2} (s) + 4L{t} (s) + 4L{1} (s) =
2

s3
+

4

s2
+

4

s
.

Hence, by formula (8), we have

L{t2u(t− 2)
}

(s) = e−2sL{g(t+ 2)} (s) = e−2s

(
2

s3
+

4

s2
+

4

s

)
=
e−2s(4s2 + 4s+ 2)

s3
.

5. The function g(t) equals zero until t reaches 1, at which point g(t) jumps to 2. We can express

this jump by (2 − 0)u(t− 1). At t = 2 the function g(t) jumps from the value 2 to the value

1. This can be expressed by adding the term (1− 2)u(t− 2). Finally, the jump at t = 3 from

1 to 3 can be accomplished by the function (3 − 1)u(t− 3). Hence

g(t) = 0 + (2− 0)u(t− 1) + (1− 2)u(t− 2) + (3− 1)u(t− 3) = 2u(t− 1)− u(t− 2) + 2u(t− 3)
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Figure 7–B: Graphs of functions in Problems 1 and 3.

and, by the linearity of the Laplace transform,

L{g(t)} (s) = 2L{u(t− 1)} (s) − L{u(t− 2)} (s) + 2L{u(t− 3)} (s)

= 2
e−s

s
− e−2s

s
+ 2

e−3s

s

=
e−s − e−2s + 2e−3s

s
.

7. Observe from the graph that g(t) is given by
0, t < 1,

t, 1 < t < 2,

1, 2 < t.

The function g(t) equals zero until t reaches 1, at which point g(t) jumps to the function t.

We can express this jump by tu(t− 1). At t = 2 the function g(t) jumps from the function t

to the value 1. This can be expressed by adding the term (1 − t)u(t− 2). Hence

g(t) = 0 + tu(t− 1) + (1 − t)u(t− 2) = tu(t− 1) − (t− 1)u(t− 2).
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Taking the Laplace transform of both sides and using formula (8) on page 387, we find that

the Laplace transform of the function g(t) is given by

L{g(t)} (s) = L{tu(t− 1)} (s) − L{(t− 1)u(t− 2)} (s)

= e−sL{(t+ 1)} (s) − e−2sL{(t− 1) + 2} (s)

=
(
e−s − e−2s

)L{t+ 1} (s) =
(
e−s − e−2s

)( 1

s2
+

1

s

)
=

(e−s − e−2s)(s+ 1)

s2
.

9. First, we find the formula for g(t) from the picture given.
0, t < 1,

t− 1, 1 < t < 2,

3 − t, 2 < t < 3,

0, 3 < t.

Thus, this function jumps from 0 to t − 1 at t = 1, from t − 1 to 3 − t at t = 2, and from

3− t to 0 at t = 3. Since the function u(t− a) has the unit jump from 0 to 1 at t = a, we can

express g(t) as

g(t) = [(t− 1) − 0]u(t− 1) + [(3 − t) − (t− 1)]u(t− 2) + [0 − (3 − t)]u(t− 3)

= (t− 1)u(t− 1) + (4 − 2t)u(t− 2) + (t− 3)u(t− 3).

Therefore,

L{g(t)} (s) = L{(t− 1)u(t− 1)} (s) + L{(4 − 2t)u(t− 2)} (s) + L{(t− 3)u(t− 3)} (s)

= e−sL{(t+ 1) − 1} (s) + e−2sL{4 − 2(t+ 2)} (s) + e−3sL{(t+ 3) − 3} (s)

= e−sL{t} (s) − 2e−2sL{t} (s) + e−3sL{t} (s) =
e−s − 2e−2s + e−3s

s2
.

11. We use formula (6) on page 387 of the text with a = 2 and F (s) = 1/(s− 1). Since

f(t) = L−1 {F (s)} (t) = L−1

{
1

s− 1

}
(t) = et ⇒ f(t− 2) = et−2 ,

we get

L−1

{
e−2s

s− 1

}
(t) = f(t− 2)u(t− 2) = et−2u(t− 2).
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13. Using the linear property of the inverse Laplace transform, we obtain

L−1

{
e−2s − 3e−4s

s+ 2

}
(t) = L−1

{
e−2s

s+ 2

}
(t) − 3L−1

{
e−4s

s+ 2

}
(t) .

To each term in the above equation, we can apply now formula (6), page 387 of the text with

F (s) = 1/(s+ 2) and a = 2 and a = 4, respectively. Since

f(t) := L−1 {F (s)} (t) = L−1 {1/(s+ 2)} (t) = e−2t,

we get

L−1

{
e−2s

s+ 2

}
(t) − 3L−1

{
e−4s

s+ 2

}
(t) = f(t− 2)u(t− 2) − 3f(t− 4)u(t− 4)

= e−2(t−2)u(t− 2) − 3e−2(t−4)u(t− 4) .

15. Since

F (s) :=
s

s2 + 4s+ 5
=

s

(s+ 2)2 + 12
=

s + 2

(s+ 2)2 + 12
− 2

1

(s+ 2)2 + 12

⇒ f(t) := L−1 {F (s)} (t) = e−2t (cos t− 2 sin t) ,

applying Theorem 8 we get

L−1

{
se−3s

s2 + 4s+ 5

}
(t) = f(t− 3)u(t− 3) = e−2(t−3) [cos(t− 3) − 2 sin(t− 3)] u(t− 3).

17. By partial fractions,
s− 5

(s+ 1)(s+ 2)
= − 6

s+ 1
+

7

s+ 2

so that

L−1

{
e−3s(s− 5)

(s+ 1)(s+ 2)

}
(t) = −6L−1

{
e−3s

s+ 1

}
(t) + 7L−1

{
e−3s

s+ 2

}
(t)

= −6L−1

{
1

s+ 1

}
(t− 3)u(t− 3) + 7L−1

{
1

s+ 2

}
(t− 3)u(t− 3)

=
[−6e−(t−3) + 7e−2(t−3)

]
u(t− 3) =

[
7e6−2t − 6e3−t

]
u(t− 3).

431



Chapter 7

19. In this problem, we apply methods of Section 7.5 of solving initial value problems using the

Laplace transform. Taking the Laplace transform of both sides of the given equation and

using the linear property of the Laplace transform, we get

L{I ′′} (s) + 2L{I ′} (s) + 2L{I} (s) = L{g(t)} (s). (7.30)

Let us denote I(s) := L{I} (s). By Theorem 5, Section 7.3,

L{I ′} (s) = sI(s) − I(0) = sI(s) − 10,

L{I ′′} (s) = s2I(s) − sI(0) − I ′(0) = s2I(s) − 10s.
(7.31)

To find the Laplace transform of g(t), we express this function using the unit step function

u(t). Since g(t) identically equals to 20 for 0 < t < 3π, jumps from 20 to 0 at t = 3π and

then jumps from 0 to 20 at t = 4π, we can write

g(t) = 20 + (0 − 20)u(t− 3π) + (20 − 0)u(t− 4π) = 20 − 20u(t− 3π) + 20u(t− 4π).

Therefore,

L{g(t)} (s) = L{20 − 20u(t− 3π) + 20u(t− 4π)} (s)

= 20L{1 − u(t− 3π) + u(t− 4π)} (s) = 20

(
1

s
− e−3πs + e−4πs

)
.

Substituting this equation and (7.31) into (7.30) yields[
s2I(s) − 10s

]
+ 2 [sI(s) − 10] + 2I(s) = 20

(
1

s
− e−3πs

s
+
e−4πs

s

)
⇒ I(s) = 10

1

s
+ 20

−e−3πs + e−4πs

s[(s+ 1)2 + 1]
. (7.32)

Since L−1 {1/s} (t) = 1 and

L−1

{
1

s[(s+ 1)2 + 1]

}
(t) = L−1

{
1

2

[
1s− s+ 1

(s+ 1)2 + 1
− 1

(s+ 1)2 + 1

]}
(t)

=
1

2

[
1 − e−t(cos t+ sin t)

]
,

applying the inverse Laplace transform to both sides of (7.32) yields

I(t) = L−1

{
10

1

s
+ 20

−e−3πs

s[(s+ 1)2 + 1]
+ 20

e−4πs

s[(s+ 1)2 + 1]

}
(t)
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0

10

 

y=I(t)

3π 4π 8π

Figure 7–C: The graph of the function y = I(t) in Problem 19.

= 10 − 10u(t− 3π)
[
1 − e−(t−3π) (cos(t− 3π) + sin(t− 3π))

]
+10u(t− 4π)

[
1 − e−(t−4π) (cos(t− 4π) + sin(t− 4π))

]
= 10 − 10u(t− 3π)

[
1 + e−(t−3π) (cos t+ sin t)

]
+10u(t− 4π)

[
1 − e−(t−4π) (cos t+ sin t)

]
.

The graph of the solution, y = I(t), 0 < t < 8π, is depicted in Figure 7-C.

21. In the windowed version (11) of f(t), fT (t) = t and T = 2. Thus

FT (s) :=

∞∫
0

e−stfT (t) dt =

2∫
0

e−stt dt = −te
−st

s
− e−st

s2

∣∣∣∣2
0

= −2e−2s

s
− e−2s

s2
+

1

s2
=

1 − 2se−2s − e−2s

s2
.

From Theorem 9 on page 391 of the text, we obtain

L{f(t)} (s) =
FT (s)

1 − e−2s
=

1 − 2se−2s − e−2s

s2(1 − e−2s)
.

The graph of the function y = f(t) is given in Figure B.45 in the answers of the text.

23. We use formula (12) on page 391 of the text. With the period T = 2, the windowed version

433



Chapter 7

fT (t) of f(t) is

fT (t) =

{
f(t), 0 < t < 2,

0, otherwise
=


e−t, 0 < t < 1,

1, 1 < t < 2,

0, otherwise.

Therefore,

FT (s) =

∞∫
0

e−stfT (t) dt =

1∫
0

e−ste−t dt+

2∫
1

e−st dt

=
e−(s+1)t

−(s+ 1)

∣∣∣∣1
0

+
e−st

−s
∣∣∣∣2
1

=
1 − e−(s+1)

s+ 1
+
e−s − e−2s

s

and, by (12),

L{f(t)} (s) =
1

1 − e−2s

[
1 − e−(s+1)

s+ 1
+
e−s − e−2s

s

]
.

The graph of f(t) is shown in Figure B.46 in the answers of the text.

25. Similarly to Example 6 on page 392 of the text, f(t) is a periodic function with period T = 2a,

whose windowed version has the form

f2a(t) = 1 − u(t− a), 0 < t < 2a.

Thus, using the linearity of the Laplace transform and formula (4) on page 386 for the Laplace

transform of the unit step function, we have

F2a(s) = L{f2a(t)} (s) = L{1} (s) −L{u(t− a)} (s) =
1

s
− e−as

s
=

1 − e−as

s
.

Applying now Theorem 9 yields

L{f(t)} (s) =
1

1 − e−2as

1 − e−as

s
=

1

(1 − e−as)(1 + e−as)

1 − e−as

s
=

1

s(1 + e−as)
.

27. Observe that if we let

f2a(t) =

{
f(t), 0 < t < 2a,

0, otherwise,
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denote the windowed version of f(t), then from formula (12) on page 391 of the text we have

L{f(t)} (s) =
L{f2a(t)} (s)

1 − e−2as
=

L{f2a(t)} (s)

(1 − e−as)(1 + e−as)
.

Now

f2a(t) =
t

a
+

[(
2 − t

a

)
− t

a

]
u(t− a) +

[
0 −
(

2 − t

a

)]
u(t− 2a)

=
t

a
− 2(t− a)u(t− a)

a
+

(t− 2a)u(t− 2a)

a
.

Hence,

L{f2a(t)} (s) =
1

a
L{t} (s) − 2

a
L{(t− a)u(t− a)} (s) +

1

a
L{(t− 2a)u(t− 2a)} (s)

=
1

a

1

s2
− 2

a

e−as

s2
+

1

a

e−as

s2
=

1

as2

(
1 − 2e−as + e−2as

)
=

(1 − e−as)
2

as2

and

L{f(t)} (s) =
(1 − e−as)

2
/(as2)

(1 − e−as)(1 + e−as)
=

1 − e−as

as2(1 + e−as)
.

29. Applying the Laplace transform to both sides of the given differential equation, we obtain

L{y′′} (s) + L{y} (s) = L{u(t− 3)} (s) =
e−3s

s
.

Since

L{y′′} (s) = s2L{y} (s) − sy(0) − y′(0) = s2L{y} (s) − 1,

substitution yields[
s2L{y} (s) − 1

]
+ L{y} (s) =

e−3s

s

⇒ L{y} (s) =
1

s2 + 1
+

e−3s

s(s2 + 1)
=

1

s2 + 1
+ e−3s

[
1

s
− s

s2 + 1

]
.

By formula (6) on page 387 of the text,

L−1

{
e−3s

[
1

s
− s

s2 + 1

]}
(t) = L−1

{
1

s
− s

s2 + 1

}
(t− 3)u(t− 3) = [1 − cos(t− 3)]u(t− 3).

Hence

y(t) = L−1

{
1

s2 + 1
+ e−3s

[
1

s
− s

s2 + 1

]}
(t) = sin t+ [1 − cos(t− 3)]u(t− 3)

The graph of the solution is shown in Figure B.47 in the answers of the text.
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31. We apply the Laplace transform to both sides of the differential equation and get

L{y′′} (s) + L{y} (s) = L{t− (t− 4)u(t− 2)} (s) =
1

s2
−L{(t− 4)u(t− 2)} (s) . (7.33)

Since (t − 4)u(t− 2) = [(t − 2) − 2]u(t− 2), we can use formula (5) from Theorem 8 to find

its Laplace transform. With f(t) = t− 2 and a = 2, this formula yields

L{(t− 4)u(t− 2)} (s) = e−2sL{t− 2} (s) = e−2s

[
1

s2
− 2

s

]
.

Also,

L{y′′} (s) = s2L{y} (s) − sy(0) − y′(0) = s2L{y} (s) − 1.

Substitution back into (7.33) yields[
s2L{y} (s) − 1

]
+ L{y} (s) =

1

s2
− e−2s

[
1

s2
− 2

s

]
⇒ L{y} (s) =

1

s2
− e−2s 1 − 2s

s2(s2 + 1)
=

1

s2
− e−2s

[
1

s2
− 2

s
+

2s

s2 + 1
− 1

s2 + 1

]
.

Applying now the inverse Laplace transform and using formula (6) on page 387 of the text,

we obtain

y(t) = L−1

{
1

s2
− e−2s

[
1

s2
− 2

s
+

2s

s2 + 1
− 1

s2 + 1

]}
(t)

= t−L−1

{
1

s2
− 2

s
+

2s

s2 + 1
− 1

s2 + 1

}
(t− 2)u(t− 2)

= t− [(t− 2) − 2 + 2 cos(t− 2) − sin(t− 2)]u(t− 2)

= t+ [4 − t+ sin(t− 2) − 2 cos(t− 2)]u(t− 2).

See Figure B.48 in the answers of the text.

33. By formula (4) on page 386 of the text,

L{u(t− 2π) − u(t− 4π)} (s) =
e−2πs

s
− e−4πs

s
.

Thus, taking the Laplace transform of y′′ + 2y′ + 2y = u(t− 2π)− u(t− 4π) and applying the

initial conditions y(0) = y′(0) gives us[
s2Y (s) − s− 1

]
+ 2 [sY (s) − 1] + 2Y (s) =

e−2πs − e−4πs

s
,
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where Y (s) is the Laplace transform of y(t). Solving for Y (s) yields

Y (s) =
s+ 3

s2 + 2s+ 2
+

e−2πs − e−4πs

s(s2 + 2s+ 2)

=
s+ 1

(s+ 1)2 + 12
+

2(1)

(s+ 1)2 + 12
+

e−2πs

s[(s+ 1)2 + 12]
− e−4πs

s[(s+ 1)2 + 12]
. (7.34)

Since

1

s[(s+ 1)2 + 12]
=

1

2

(s2 + 2s+ 2) − (s2 + 2s)

s[(s+ 1)2 + 12]
=

1

2

[
1

s
− s+ 1

(s+ 1)2 + 12
− 1

(s+ 1)2 + 12

]
,

we have

L−1

{
1

s[(s+ 1)2 + 12]

}
(t) = L−1

{
1

2

[
1

s
− s+ 1

(s+ 1)2 + 12
− 1

(s+ 1)2 + 12

]}
(t)

=
1

2

[
1 − e−t cos t− e−t sin t

]
and, by formula (6) on page 387 of the text,

L−1

{
e−2πs

s[(s+ 1)2 + 12]

}
(t) =

1

2

[
1 − e−(t−2π) cos(t− 2π) − e−(t−2π) sin(t− 2π)

]
u(t− 2π)

=
1

2

[
1 − e2π−t(cos t+ sin t)

]
u(t− 2π)

L−1

{
e−4πs

s[(s+ 1)2 + 12]

}
(t) =

1

2

[
1 − e−(t−4π) cos(t− 4π) − e−(t−4π) sin(t− 4π)

]
u(t− 4π)

=
1

2

[
1 − e4π−t(cos t+ sin t)

]
u(t− 4π).

Finally, taking the inverse Laplace transform in (7.34) yields

y(t) = e−t cos t+ 2e−t sin t+
1

2

[
1 − e2π−t(cos t+ sin t)

]
u(t− 2π)

−1

2

[
1 − e4π−t(cos t+ sin t)

]
u(t− 4π) .

35. We take the Laplace transform of the both sides of the given equation and obtain

L{z′′} (s) + 3L{z′} (s) + 2L{z} (s) = L{e−3tu(t− 2)
}

(s). (7.35)
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We use the initial conditions, z(0) = 2 and z′(0) = −3, and formula (4) from Section 7.3 to

express L{z′} (s) and L{z′′} (s) in terms of Z(s) := L{z} (s). That is,

L{z′} (s) = sZ(s)−z(0) = sZ(s)−2, L{z′′} (s) = s2Z(s)−sz(0)−z′(0) = s2Z(s)−2s+3.

In the right-hand side of (7.35), we can use, say, the translation property of the Laplace

transform (Theorem 3, Section 7.3) and the Laplace transform of the unit step function

(formula (4), Section 7.6).

L{e−3tu(t− 2)
}

(s) = L{u(t− 2)} (s+ 3) =
e−2(s+3)

s+ 3
.

Therefore, (7.35) becomes[
s2Z(s) − 2s+ 3

]
+ 3 [sZ(s) − 2] + 2Z(s) =

e−2(s+3)

s+ 3

⇒ (
s2 + 3s+ 2

)
Z(s) = 2s+ 3 +

e−2(s+3)

s+ 3

⇒ Z(s) =
2s+ 3

s2 + 3s+ 2
+ e−2s−6 1

(s+ 3)(s2 + 3s+ 2)

=
1

s+ 1
+

1

s+ 2
+ e−2s−6

[
1/2

s+ 3
− 1

s+ 2
+

1/2

s+ 1

]
.

Hence,

z(t) = L−1

{
1

s+ 1
+

1

s+ 2
+ e−6e−2s

[
1/2

s+ 3
− 1

s+ 2
+

1/2

s + 1

]}
(t)

= L−1

{
1

s+ 1

}
(t) + L−1

{
1

s+ 2

}
(t)

+
e−6

2

[
L−1

{
1

s+ 3

}
− 2L−1

{
1

s+ 2

}
+ L−1

{
1

s+ 1

}]
(t− 2)u(t− 2)

= e−t + e−2t +
e−6

2

[
e−3(t−2) − 2e−2(t−2) + e−(t−2)

]
u(t− 2)

= e−t + e−2t +
1

2

[
e−3t − 2e−2(t+1) + e−(t+4)

]
u(t− 2)

37. Since

L{g(t)} (s) =

∞∫
0

e−stg(t) dt =

2π∫
0

e−st sin t dt =
e−st

s2 + 1
(−s sin t− cos t)

∣∣∣∣2π

0

=
1 − e−2πs

s2 + 1
,
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applying the Laplace transform to the original equation yields

L{y′′} (s) + 4L{y} (s) = L{g(t)} (s)

⇒ [
s2L{y} (s) − s− 3

]
+ 4L{y} (s) =

1 − e−2πs

s2 + 1

⇒ L{y} (s) =
s + 3

s2 + 4
+

1

(s2 + 1)(s2 + 4)
− e−2πs

(s2 + 1)(s2 + 4)
.

Using the partial fractions decomposition

1

(s2 + 1)(s2 + 4)
=

1

3

(s2 + 4) − (s2 + 1)

(s2 + 1)(s2 + 4)
=

1

3

[
1

s2 + 1
− 1

6

2

s2 + 4

]
,

we conclude that

L{y} (s) =
s

s2 + 4
+

4

3

2

s2 + 4
+

1

3

1

s2 + 1
− e−2πs

[
1

3

1

s2 + 1
− 1

6

2

s2 + 4

]
and so

y(t) = L−1

{
s

s2 + 4

}
(t) +

4

3
L−1

{
2

s2 + 4

}
(t) + L−1

{
1

3

1

s2 + 1

}
(t)

−L−1

{
1

3

1

s2 + 1
− 1

6

2

s2 + 4

}
(t− 2π)u(t− 2π)

= cos 2t+
4

3
sin 2t+

1

3
sin t−

[
1

3
sin(t− 2π) − 1

6
sin 2(t− 2π)

]
u(t− 2π)

= cos 2t+
4

3
sin 2t+

1

3
sin t−

[
1

3
sin t− 1

6
sin 2t

]
u(t− 2π)

= cos 2t+
1

3
[1 − u(t− 2π)] sin t+

1

6
[8 + u(t− 2π)] sin 2t .

39. We can express g(t) using the unit step function as

g(t) = tu(t− 1) + (1 − t)u(t− 5) = [(t− 1) + 1]u(t− 1) − [(t− 5) + 4]u(t− 5).

Thus, formula (5) on page 387 of the text yields

L{g(t)} (s) = e−sL{t+ 1} (s) − e−5sL{t+ 4} (s) = e−s

(
1

s2
+

1

s

)
− e−5s

(
1

s2
+

4

s

)
.
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Let Y (s) = L{y} (s). Applying the Laplace transform to the given equation and using the

initial conditions, we obtain

L{y′′} (s) + 5L{y′} (s) + 6Y (s) = L{g(t)} (s)

⇒ [
s2Y (s) − 2

]
+ 5 [sY (s)] + 6Y (s) = L{g(t)} (s)

⇒ (
s2 + 5s+ 6

)
Y (s) = 2 + e−s

(
1

s2
+

1

s

)
− e−5s

(
1

s2
+

4

s

)
⇒ Y (s) =

2

s2 + 5s+ 6
+ e−s s + 1

s2(s2 + 5s+ 6)
− e−5s 4s+ 1

s2(s2 + 5s+ 6)
. (7.36)

Using partial fractions decomposition, we can write

2

s2 + 5s+ 6
=

2

s+ 2
− 2

s+ 3
,

s+ 1

s2(s2 + 5s+ 6)
=

1/36

s
+

1/6

s2
− 1/4

s+ 2
+

2/9

s+ 3
,

4s+ 1

s2(s2 + 5s+ 6)
=

1/6

s2
+

19/36

s
− 7/4

s+ 2
+

11/9

s+ 3
.

Therefore,

L−1

{
2

s2 + 5s+ 6

}
(t) = 2e−2t − 2e−3t ,

L−1

{
s+ 1

s2(s2 + 5s+ 6)

}
(t) =

1

36
+
t

6
− e−2t

4
+

2e−3t

9
,

L−1

{
4s+ 1

s2(s2 + 5s+ 6)

}
(t) =

19

36
+
t

6
− 7e−2t

4
+

11e−3t

9
.

Using these equations and taking the inverse Laplace transform in (7.36), we finally obtain

y(t) = 2e−2t − 2e−3t +

[
1

36
+
t− 1

6
− e−2(t−1)

4
+

2e−3(t−1)

9

]
u(t− 1)

+

[
19

36
+
t− 5

6
− 7e−2(t−5)

4
+

11e−3(t−5)

9

]
u(t− 5).

41. First observe that for s > 0, T > 0, we have 0 < e−Ts < 1 so that

1

1 − e−Ts
= 1 + e−Ts + e−2Ts + e−3Ts + · · · (7.37)
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and the series converges for all s > 0. Thus,

1

(s+ α)(1 − e−Ts)
=

1

s+ α

1

1 − e−Ts
=

1

s+ α

(
1 + e−Ts + e−2Ts + e−3Ts + · · ·)

=
1

s+ α
+

e−Ts

s+ α
+
e−2Ts

s+ α
+ · · · ,

and so

L−1

{
1

(s+ α)(1 − e−Ts)

}
(t) = L−1

{
1

s+ α
+

e−Ts

s+ α
+
e−2Ts

s+ α
+ · · ·

}
(t). (7.38)

Taking for granted that the linearity of the inverse Laplace transform extends to the infinite

sum in (7.38) and ignoring convergence questions yields

L−1

{
1

(s+ α)(1 − e−Ts)

}
= L−1

{
1

s+ α

}
+ L−1

{
e−Ts

s+ α

}
+ L−1

{
e−2Ts

s+ α

}
+ · · ·

= e−αt + e−α(t−T )u(t− T ) + e−α(t−2T )u(t− 2T ) + · · ·

as claimed.

43. Using the expansion (7.37) obtained in Problem 41, we can represent L{g} (s) as

L{g} (s) =
β

s2 + β2

1

1 − e−Ts
=

β

s2 + β2

(
1 + e−Ts + e−2Ts + e−3Ts + · · ·)

=
β

s2 + β2
+ e−Ts β

s2 + β2
+ e−2Ts β

s2 + β2
+ · · · .

Since L−1 {β/(s2 + β2)} (t) = sin βt, using the linearity of the inverse Laplace transform

(extended to infinite series) and formula (6) in Theorem 8, we obtain

g(t) = L−1

{
β

s2 + β2

}
(t) + L−1

{
β

s2 + β2

}
(t− T )u(t− T )

+L−1

{
β

s2 + β2

}
(t− 2T )u(t− 2T ) + · · ·

= sin βt+ [sin β(t− T )]u(t− T ) + [sin β(t− 2T )]u(t− 2T ) + · · ·

as stated.
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45. In order to apply the method of Laplace transform to given initial value problem, let us find

L{f} (s) first. Since the period of f(t) is T = 1 and f(t) = et on (0, 1), the windowed version

of f(t) is

f1(t) =

{
et, 0 < t < 1,

0, otherwise,

and so

F1(s) =

∞∫
0

e−stf1(t) dt =

1∫
0

e−stet dt =
e(1−s)t

1 − s

∣∣∣∣1
0

=
1 − e1−s

s− 1
.

Hence, Theorem 9 yields the following formula for L{f} (s):

L{f} (s) =
1 − e1−s

(s− 1)(1 − e−s)
.

We can now apply the Laplace transform to the given differential equation and obtain

L{y′′} (s) + 3L{y′} (s) + 2L{y} (s) =
1 − e1−s

(s− 1)(1 − e−s)

⇒ [
s2L{y} (s)

]
+ 3 [sL{y} (s)] + 2L{y} (s) =

1 − e1−s

(s− 1)(1 − e−s)

⇒ L{y} (s) =
1 − e1−s

(s− 1)(s2 + 3s+ 2)(1 − e−s)
=

1 − e1−s

(s− 1)(s+ 1)(s+ 2)(1 − e−s)

⇒ L{y} (s) =
e

(s− 1)(s+ 1)(s+ 2)
+

1 − e

1 − e−s

1

(s− 1)(s+ 1)(s+ 2)
.

Using the partial fractions decomposition

1

(s− 1)(s+ 1)(s+ 2)
=

1/6

s− 1
− 1/2

s+ 1
+

1/3

s+ 2

we find that

L{y} (s) =
e/6

s− 1
− e/2

s+ 1
+

e/3

s+ 2
+

1 − e

6

1

(s− 1)(1 − e−s)

−1 − e

2

1

(s+ 1)(1 − e−s)
+

1 − e

3

1

(s+ 2)(1 − e−s)

⇒ y(t) =
e

6
et − e

2
e−t +

e

3
e−2t +

1 − e

6
L−1

{
1

(s− 1)(1 − e−s)

}
(t)

−1 − e

2
L−1

{
1

(s+ 1)(1 − e−s)

}
(t) +

1 − e

3
L−1

{
1

(s+ 2)(1 − e−s)

}
(t). (7.39)
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To each of the three inverse Laplace transforms in the above formula we can apply results of

Problem 42(a) with T = 1 and α = −1, 1, and 2, respectively. Thus, for n < t < n + 1, we

have

L−1

{
1

(s− 1)(1 − e−s)

}
(t) = et

[
e−(n+1) − 1

e−1 − 1

]
,

L−1

{
1

(s+ 1)(1 − e−s)

}
(t) = e−t

[
en+1 − 1

e− 1

]
,

L−1

{
1

(s+ 2)(1 − e−s)

}
(t) = e−2t

[
e2(n+1) − 1

e2 − 1

]
.

Finally, substitution back into (7.39) yields

y(t) =
e

6
et − e

2
e−t +

e

3
e−2t +

1 − e

6
et

[
e−(n+1) − 1

e−1 − 1

]
−1 − e

2
e−t

[
en+1 − 1

e− 1

]
+

1 − e

3
e−2t

[
e2(n+1) − 1

e2 − 1

]
=

et−n

6
− e−t (1 + e− en+1)

2
+
e−2t (1 + e+ e2 − e2n+2)

3(e+ 1)
.

47. Since

et =
∞∑

k=0

tk

k!

and

L{tk} (s) =
k!

sk+1
,

using the linearity of the Laplace transform we have

L{et
}

(s) = L
{ ∞∑

k=0

tk

k!

}
(s) =

∞∑
k=0

L{tk} (s)

k!
=

∞∑
k=0

k!/sk+1

k!
=

1

s

∞∑
k=0

(
1

s

)k

. (7.40)

We can apply now the summation formula for geometric series, that is,

1 + x+ x2 + · · · =
1

1 − x
,

which is valid for |x| < 1. With x = 1/s, s > 1, (7.40) yields

L{et
}

(s) =
1

s

1

1 − (1/s)
=

1

s− 1
.
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49. Recall that the Taylor’s series for cos t about t = 0 is

cos t = 1 − t2

2!
+
t4

4!
− t6

6!
+ · · ·+ (−1)n t2n

(2n)!
+ · · ·

so that
1 − cos t

t
=

t

2!
− t3

4!
+
t5

6!
+ · · ·+ (−1)n+1 t

2n−1

(2n)!
+ · · · .

Thus

L
{

1 − cos t

t

}
(s) =

1

2!
L{t} (s) − 1

4!
L{t3} (s) + · · · + (−1)n+1

(2n)!
L{t2n−1

}
(s) + · · ·

=
1

2

1

s2
− 1

4

1

s4
+ · · · + (−1)n+1

2n

1

s2n
+ · · ·

=
∞∑

n=1

(−1)n+1

2n

1

s2n
=

∞∑
n=1

(−1)n+1

2ns2n
.

To sum this series, recall that

ln(1 − x) = −
∞∑

n=1

xn

n
.

Hence,

ln

(
1 +

1

s2

)
= −

∞∑
n=1

(−1)n

ns2n
=

∞∑
n=1

(−1)n+1

ns2n
.

Thus, we have
1

2
ln

(
1 +

1

s2

)
=

∞∑
n=1

(−1)n+1

2ns2n
= L

{
1 − cos t

t

}
(s) .

This formula can also be obtained by using the result of Problem 27 in Section 7.3 of the text.

51. We use formula (17) on page 394 of the text.

(a) With r = −1/2, (17) yields

L{t−1/2
}

(s) =
Γ[(−1/2) + 1]

s(−1/2)+1
=

Γ(1/2)

s1/2
=

√
π√
s

=

√
π

s
.

(b) This time, r = 7/2, and (17) becomes

L{t7/2
}

(s) =
Γ[(7/2) + 1]

s(7/2)+1
=

Γ(9/2)

s9/2
.
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From the recursive formula (16) we find that

Γ

(
9

2

)
= Γ

(
7

2
+ 1

)
=

7

2
Γ

(
7

2

)
=

7

2

5

2
Γ

(
5

2

)
=

7

2

5

2

3

2
Γ

(
3

2

)
=

7

2

5

2

3

2

1

2
Γ

(
1

2

)
=

105
√
π

16
.

Therefore,

L{t7/2
}

(s) =
105

√
π

16s9/2
.

53. According to the definition (11) of the function fT (t), fT (t− kT ) = 0 if the point t− kT does

not belong to (0, T ). Therefore, fixed t, in the series (13) all the terms containing fT (t− kT )

with k’s such that t− kT ≤ 0 or t− kT ≥ T vanish. In the remaining terms, k satisfies

0 < t− kT < T ⇔ t

T
− 1 < k <

t

T
.

But, for any fixed t, there is at most one k satisfying this condition.

55. Recall that

ex = 1 + x+
x2

2!
+ · · ·+ xn

n!
+ · · · .

Substituting −1/s for x above yields

e−1/s = 1 − 1

s
+

1

2!s2
− 1

3!s3
+ · · ·+ (−1)n

n!sn
+ · · · .

Thus, we have

s−1/2e−1/s =
1

s1/2
− 1

s3/2
+

1

2!s5/2
+ · · · + (−1)n

n!sn+1/2
+ · · · =

∞∑
n=0

(−1)n

n!sn+1/2
.

By Problem 52 of this section,

L−1

{
1

sn+(1/2)

}
(t) =

2ntn−(1/2)

1 · 3 · 5 · · · (2n− 1)
√
π
,

so that

L−1
{
s−1/2e−1/s

}
(t) = L−1

{ ∞∑
n=0

(−1)n

n!sn+1/2

}
(t)

=

∞∑
n=0

(−1)n

n!
L−1

{
1

sn+(1/2)

}
(t) =

∞∑
n=0

(−1)n

n!

2ntn−(1/2)

1 · 3 · 5 · · · (2n− 1)
√
π
.
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Multiplying the nth term by [2 · 4 · · · (2n)]/[2 · 4 · · · (2n)], we obtain

L−1
{
s−1/2e−1/s

}
(t) =

∞∑
n=0

(−1)n(2n)2tn−(1/2)

(2n)!
√
π

=
∞∑

n=0

(−1)n(2n)2tn

(2n)!
√
πt

=

(
1√
πt

) ∞∑
n=0

(−1)n(2
√
t)2n

(2n)!
=

(
1√
πt

)
cos
(
2
√
t
)
.

57. Recall that the Maclaurin expansion of ln(1 − x) is

ln(1 − x) = −
∞∑

n=1

xn

n
,

which converges for |x| < 1. Hence, substitution −1/s2 for x yields

ln

(
1 +

1

s2

)
= −

∞∑
n=1

(−1)n

ns2n
=

∞∑
n=1

(−1)n+1

ns2n
.

Assuming that the inverse Laplace transform can be computed termwise, we obtain

L−1

{
ln

(
1 +

1

s2

)}
= L−1

{ ∞∑
n=1

(−1)n+1

ns2n

}
=

∞∑
n=1

(−1)n+1

n
L−1

{
1

s2n

}
.

From Table 7.1 in Section 7.2, L{tk} = k!/sk+1, k = 1, 2, . . . . Thus L−1
{
1/sk+1

}
= tk/k!.

With k = 2n− 1, this yields

L−1

{
1

s2n

}
(t) =

t2n−1

(2n− 1)!
, n = 1, 2, . . .

and, therefore,

L−1

{
ln

(
1 +

1

s2

)}
(t) =

∞∑
n=1

(−1)n+1

n

t2n−1

(2n− 1)!
= −2

t

∞∑
n=1

(−1)n

(2n)!
t2n . (7.41)

Since

cos t =

∞∑
n=0

(−1)n

(2n)!
t2n = 1 +

∞∑
n=1

(−1)n

(2n)!
t2n ,

(7.41) implies that

L−1

{
ln

(
1 +

1

s2

)}
(t) = −2

t
(cos t− 1) =

2(1 − cos t)

t
.
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59. Applying the Laplace transform to both sides of the original equation and using its linearity,

we obtain

L{y′′} (s) −L{y} (s) = L{G3(t− 1)} (s). (7.42)

Initial conditions, y(0) = 0 and y′(0)=2, and Theorem 5 in Section 7.3 imply that

L{y′′} (s) = s2L{y} (s) − sy(0) − y′(0) = s2L{y} (s) − 2.

In the right-hand side of (7.42), we can apply the result of Problem 58(c) with a = 3 and

b = 1 to get

L{G3(t− 1)} (s) =
e−s − e−4s

s
.

Thus (7.42) becomes

[
s2L{y} (s) − 2

]−L{y} (s) =
e−s − e−4s

s

⇒ L{y} (s) =
2

s2 − 1
+
e−s − e−4s

s(s2 − 1)
.

Substituting partial fraction decompositions

2

s2 − 1
=

1

s− 1
− 1

s+ 1
,

1

s(s2 − 1)
=

1/2

s− 1
+

1/2

s+ 1
− 1

s

yields

L{y} (s) =
1

s− 1
− 1

s+ 1
+
(
e−s − e−4s

) [ 1/2

s− 1
+

1/2

s+ 1
− 1

s

]
=

1

s− 1
− 1

s+ 1
+ e−s

[
1/2

s− 1
+

1/2

s+ 1
− 1

s

]
− e−4s

[
1/2

s− 1
+

1/2

s+ 1
− 1

s

]
. (7.43)

Since

L−1

{
1/2

s− 1
+

1/2

s + 1
− 1

s

}
(t) =

et + e−t − 2

2
,

formula (6) on page 387 of the text gives us

L−1

{
e−s

[
1/2

s− 1
+

1/2

s+ 1
− 1

s

]}
(t) = L−1

{
1/2

s− 1
+

1/2

s+ 1
− 1

s

}
(t− 1)u(t− 1)

=
et−1 + e1−t − 2

2
u(t− 1),
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L−1

{
e−4s

[
1/2

s− 1
+

1/2

s+ 1
− 1

s

]}
(t) = L−1

{
1/2

s− 1
+

1/2

s+ 1
− 1

s

}
(t− 4)u(t− 4)

=
et−4 + e4−t − 2

2
u(t− 4).

Taking the inverse Laplace transform in (7.43) yields

y(t) = et − e−t +
et−1 + e1−t − 2

2
u(t− 1) − et−4 + e4−t − 2

2
u(t− 4).

61. In this problem, we use the method of solving “mixing problems” discussed in Section 3.2.

So, let x(t) denote the mass of salt in the tank at time t with t = 0 denoting the moment

when the process started. Thus, using the formula

mass = volume × concentration ,

we have the initial condition

x(0) = 500 (L) × 0.2 (kg/L) = 100 (kg).

For the rate of change of x(t), that is, x′(t), we use then relation

x′(t) = input rate − output rate . (7.44)

While the output rate (through the exit valve C) can be computed as

output rate =
x(t)

500
(kg/L) × 12 (L/min) =

3x(t)

125
(kg/min)

for all t, the input rate has different formulas for the first 10 minute and after that. Namely,

0 < t < 10 (valve A) : input rate = 12 (L/min) × 0.4 (kg/L) = 4.8 (kg/min);

10 < t (valve B) : input rate = 12 (L/min) × 0.6 (kg/L) = 7.2 (kg/min).

In other words, the input rate is a function of t, which can be written as

input rate = g(t) =

{
4.8, 0 < t < 10,

7.2, 10 < t.
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Using the unit step function, we can express g(t) = 4.8 + 2.4u(t − 10) (kg/min). Therefore

(7.44) becomes

x′(t) = g(t) − 3x(t)

125
⇒ x′(t) +

3

125
x(t) = 4.8 + 2.4u(t− 10) (7.45)

with the initial condition x(0) = 100. Taking the Laplace transform of both sides yields

L{x′} (s) +
3

125
L{x} (s) = L{4.8 + 2.4u(t− 10)} (s) =

4.8

s
+

2.4e−10s

s

⇒ [sL{x} (s) − 100] +
3

125
L{x} (s) =

4.8

s
+

2.4e−10s

s

⇒ L{x} (s) =
100s+ 4.8

s[s + (3/125)]
+

2.4

s[s + (3/125)]
e−10s . (7.46)

Since

2.4

s[s+ (3/125)]
= 100

(
1

s
− 1

s+ (3/125)

)
,

100s+ 4.8

s[s+ (3/125)]
= 100

(
2

s
− 1

s+ (3/125)

)
,

applying the inverse Laplace transform in (7.46), we get

x(t) = 100
(
2 − e−3t/125

)
+ 100

(
1 − e−3(t−10)/125

)
u(t− 10).

Finally, dividing by the volume of the solution in the tank, which constantly equals to 500 L,

we conclude that

concentration = 0.4 − 0.2e−3t/125 + 0.2
(
1 − e−3(t−10)/125

)
u(t− 10).

63. In this problem, the solution still enters the tank at the rate 12 L/min, but leaves the tank at

the rate only 6 L/min. Thus, every minute, the volume of the solution in the tank increases

by 12 − 6 = 6 L. Therefore, the volume, as a function of t, is given by 500 + 6t and so

output rate =
x(t)

500 + 6t
(kg/L) × 6 (L/min) =

3x(t)

250 + 3t
(kg/min).

Instead of equation (7.45) in Problem 61, we now have

x′(t) = g(t) − 3x(t)

250 + 3t
⇒ (250 + 3t)x′(t) + 3x(t) = (250 + 3t)[48 + 24u(t− 10)].
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This equation has polynomial coefficients and can also be solved using the Laplace transform

method. (See the discussion in Section 7.5, page 380, and Example 4.) But, as an intermediate

step, one will obtain a first order linear differential equation for L{x} (s).

EXERCISES 7.7: Convolution, page 405

1. Let Y (s) := L{y} (s), G(s) := L{g} (s). Taking the Laplace transform of both sides of the

given differential equation and using the linear property of the Laplace transform, we obtain

L{y′′} (s) − 2L{y′} (s) + Y (s) = G(s).

The initial conditions and Theorem 5, Section 7.3, imply that

L{y′} (s) = sY (s) + 1,

L{y′′} (s) = s2Y (s) + s− 1.

Thus, substitution yields[
s2Y (s) + s− 1

]− 2 [sY (s) + 1] + Y (s) = G(s)

⇒ (
s2 − 2s+ 1

)
Y (s) = 3 − s+G(s)

⇒ Y (s) =
3 − s

s2 − 2s+ 1
+

G(s)

s2 − 2s+ 1
=

2

(s− 1)2
− 1

s− 1
+

G(s)

(s− 1)2
.

Taking now the inverse Laplace transform, we obtain

y(t) = 2L−1

{
1

(s− 1)2

}
(t) −L−1

{
1

s− 1

}
(t) + L−1

{
G(s)

(s− 1)2

}
(t) .

Using Table 7.1, we find that

L−1

{
1

s− 1

}
(t) = et , L−1

{
1

(s− 1)2

}
(t) = tet ,

and, by the convolution theorem,

L−1

{
G(s)

(s− 1)2

}
(t) = L−1

{
1

(s− 1)2
G(s)

}
(t) =

(
tet
) ∗ g(t) =

t∫
0

(t− v)et−vg(v) dv.
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Thus

y(t) = 2tet − et +

t∫
0

(t− v)et−vg(v) dv.

3. Taking the Laplace transform of y′′ + 4y′ + 5y = g(t) and applying the initial conditions

y(0) = y′(0) = 1 gives us[
s2Y (s) − s− 1

]
+ 4 [sY (s) − 1] + 5Y (s) = G(s),

where Y (s) := L{y} (s), G(s) := L{g} (s). Thus

Y (s) =
s+ 5

s2 + 4s+ 5
+

G(s)

s2 + 4s+ 5
=

s+ 2

(s+ 2)2 + 1
+

3

(s+ 2)2 + 1
+

G(s)

(s+ 2)2 + 1
.

Taking the inverse Laplace transform of Y (s) with the help of the convolution theorem yields

y(t) = e−2t cos t+ 3e−2t sin t+

t∫
0

e−2(t−v) sin(t− v)g(v) dv..

5. Since L−1 {1/s} (t) = 1 and L−1 {1/(s2 + 1)} (t) = sin t, writing

1

s(s2 + 1)
=

1

s
· 1

s2 + 1

and using the convolution theorem, we obtain

L−1

{
1

s(s2 + 1)

}
(t) = 1 ∗ sin t =

t∫
0

sin v dv = − cos v
∣∣t
0
= 1 − cos t.

7. From Table 7.1, L−1 {1/(s− a)} (t) = eat. Therefore, using the linearity of the inverse Laplace

transform and the convolution theorem, we have

L−1

{
14

(s+ 2)(s− 5)

}
(t) = 14L−1

{
1

s+ 2
· 1

s− 5

}
(t) = 14e−2t ∗ e5t = 14

t∫
0

e−2(t−v)e5v dv

= 14e−2t

t∫
0

e7v dv = 2e−2t
(
e7t − 1

)
= 2
(
e5t − e−2t

)
.
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9. Since s/(s2 + 1)2 = [s/(s2 + 1)] · [1/(s2 + 1)] the convolution theorem tells us that

L−1

{
s

(s2 + 1)2

}
(t) = L−1

{
s

s2 + 1
· s

s2 + 1

}
(t) = cos t ∗ sin t =

t∫
0

cos(t− v) sin v dv.

Using the identity sinα cosβ = [sin(α + β) + sin(α− β)]/2, we get

L−1

{
s

(s2 + 1)2

}
(t) =

1

2

t∫
0

[sin t+ sin(t− 2v)] dv

=
1

2

(
v sin t+

cos(t− 2v)

2

)∣∣∣∣t
0

=
t sin t

2
.

11. Using the hint, we can write

s

(s− 1)(s+ 2)
=

1

s+ 2
+

1

(s− 1)(s+ 2)
,

so that by the convolution theorem, Theorem 11 on page 400 of the text,

L−1

{
s

(s− 1)(s+ 2)

}
(t) = L−1

{
1

s+ 2

}
(t) + L−1

{
1

(s− 1)(s+ 2)

}
(t)

= e−2t + et ∗ e−2t = e−2t +

t∫
0

et−ve−2v dv

= e−2t + et

t∫
0

e−3v dv = e−2t − et

3

(
e−3t − 1

)
=

2e−2t

3
+
et

3
.

13. Note that f(t) = t ∗ e3t. Hence, by (8) on page 400 of the text,

L{f(t)} (s) = L{t} (s)L{e3t
}

(s) =
1

s2
· 1

s− 3
=

1

s2(s− 3)
.

15. Note that
t∫

0

y(v) sin(t− v) dv = sin t ∗ y(t).

Let Y (s) := L{y} (s). Taking the Laplace transform of the original equation, we obtain

Y (s) + 3L{sin t ∗ y(t)} (s) = L{t} (s)
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⇒ Y (s) + 3L{sin t} (s)Y (s) =
1

s2
⇒ Y (s) +

3

s2 + 1
Y (s) =

1

s2

⇒ Y (s) =
s2 + 1

s2(s2 + 4)
=

(1/4)

s2
+

(3/8)2

s2 + 22

⇒ y(t) = L−1

{
(1/4)

s2
+

(3/8)2

s2 + 22

}
(t) =

t

4
+

3 sin 2t

8
.

17. We use the convolution Theorem 11 to find the Laplace transform of the integral term.

L


t∫
0

(t− v)y(v) dv

 (s) = L{t ∗ y(t)} (s) = L{t} (s)L{y(t)} (s) =
Y (s)

s2
,

where Y (s) denotes the Laplace transform of y(t). Thus taking the Laplace transform of both

sides of the given equation yields

Y (s) +
Y (s)

s2
=

1

s
⇒ Y (s) =

s

s2 + 1
⇒ y(t) = L−1

{
s

s2 + 1

}
(t) = cos t .

19. By the convolution theorem,

L


t∫
0

(t− v)2y(v) dv

 (s) = L{t2 ∗ y(t)} (s) = L{t2} (s)L{y(t)} (s) =
2Y (s)

s3
.

Hence, applying the Laplace transform to the original equation yields

Y (s) +
2Y (s)

s3
= L{t3 + 3

}
(s) =

6

s4
+

3

s

⇒ Y (s) =
s3

s3 + 2
· 6 + 3s3

s4
=

3

s

⇒ y(t) = L−1

{
3

s

}
(t) = 3.

21. As in Example 3 on page 402 of the text, we first rewrite the integro-differential equation as

y′(t) + y(t) − y(t) ∗ sin t = − sin t , y(0) = 1. (7.47)

We now take the Laplace transform of (7.47) to obtain

[sY (s) − 1] + Y (s) − 1

s2 + 1
Y (s) = − 1

s2 + 1
,
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where Y (s) = L{y} (s). Thus,

Y (s) =
s2

s3 + s2 + s
=

s

s2 + s+ 1
=

s

(s+ 1/2)2 + 3/4

=
s+ 1/2

(s+ 1/2)2 + 3/4
− (1/

√
3)(

√
3/2)

(s+ 1/2)2 + 3/4
.

Taking the inverse Laplace transform yields

y(t) = e−t/2 cos

(√
3t

2

)
− 1√

3
e−t/2 sin

(√
3t

2

)
.

23. Taking the Laplace transform of the differential equation, and assuming zero initial conditions,

we obtain

s2Y (s) + 9Y (s) = G(s),

where Y = L{y}, G = L{g}. Thus,

H(s) =
Y (s)

G(s)
=

1

s2 + 9
.

The impulse response function is then

h(t) = L−1 {H(s)} (t) = L−1

{
1

s2 + 9

}
(t) =

1

3
L−1

{
3

s2 + 32

}
(t) =

sin 3t

3
.

To solve the initial value problem, we need the solution to the corresponding homogeneous

problem. The auxiliary equation, r2 + 9 = 0, has roots, r = ±3i. Thus, a general solution to

the homogeneous equation is

yh(t) = C1 cos 3t+ C2 sin 3t.

Applying the initial conditions y(0) = 2 and y′(0) = −3, we obtain

2 = y(0) = (C1 cos 3t+ C2 sin 3t)
∣∣
t=0

= C1 ,

−3 = y′(0) = (−3C1 sin 3t+ 3C2 cos 3t
∣∣
t=0

= 3C2

⇒ C1 = 2 ,

C2 = −1 .

So

yk(t) = 2 cos 3t− sin 3t,
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and the formula for the solution to the original initial value problem is

y = (h ∗ g)(t) + yk(t) =
1

3

t∫
0

g(v) sin 3(t− v) dv + 2 cos 3t− sin 3t.

25. Taking the Laplace transform of both sides of the given equation and assuming zero initial

conditions, we get

L{y′′ − y′ − 6y} (s) = L{g(t)} (s) ⇒ s2Y (s) − sY (s) − 6Y (s) = G(s).

Thus,

H(s) =
Y (s)

G(s)
=

1

s2 − s− 6
=

1

(s− 3)(s+ 2)

is the transfer function. The impulse response function h(t) is then given by

h(t) = L−1

{
1

(s− 3)(s+ 2)

}
(t) = e3t ∗ e−2t =

t∫
0

e3(t−v)e−2v dv = e3t e
−5v

−5

∣∣∣∣t
0

=
e3t − e−2t

5
.

To solve the given initial value problem, we use Theorem 12. To this end, we need the solution

yk(t) to the corresponding initial value problem for the homogeneous equation. That is,

y′′ − y′ − 6y = 0, y(0) = 1, y′(0) = 8

(see (19) in the text). Applying the Laplace transform yields

[
s2Yk(s) − s− 8

]− [sYk(s) − 1] − 6Yk(s) = 0

⇒ Yk(s) =
s+ 7

s2 − s− 6
=

s+ 7

(s− 3)(s+ 2)
=

2

s− 3
− 1

s+ 2

⇒ yk(t) = L−1 {Yk(s)} (t) = L−1

{
2

s− 3
− 1

s+ 2

}
(t) = 2e3t − e−2t .

So,

y(t) = (h ∗ g)(t) + yk(t) =
1

5

t∫
0

[
e3(t−v) − e−2(t−v)

]
g(v) dv + 2e3t − e−2t .
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27. Taking the Laplace transform and assuming zero initial conditions, we find the transfer func-

tion H(s).

s2Y (s) − 2sY (s) + 5Y (s) = G(s) ⇒ H(s) =
Y (s)

G(s)
=

1

s2 − 2s+ 5
.

Therefore, the impulse response function is

h(t) = L−1 {H(s)} (t) = L−1

{
1

(s− 1)2 + 22

}
(t) =

1

2
L−1

{
2

(s− 1)2 + 22

}
(t) =

1

2
et sin 2t .

Next, we find the solution yk(t) to the corresponding initial value problem for the homogeneous

equation,

y′′ − 2y′ + 5y = 0, y(0) = 0, y′(0) = 2.

Since the associated equation, r2 − 2r + 5 = 0, has roots r = 1 ± 2i, a general solution to the

homogeneous equations is

yh(t) = et (C1 cos 2t+ C2 sin 2t) .

We satisfy the initial conditions by solving

0 = y(0) = C1

2 = y′(0) = C1 + 2C2

⇒ C1 = 0,

C2 = 1.

Hence, yk(t) = et sin 2t and

y(t) = (h ∗ g)(t) + yk(t) =
1

2

t∫
0

et−v sin 2(t− v)g(v) dv + et sin 2t

is the desired solution.

29. With given data, the initial value problem becomes

5I ′′(t) + 20I ′(t) +
1

0.005
I(t) = e(t), I(0) = −1, I ′(0) = 8.

Using formula (15) on page 403 of the text, we find the transfer function

H(s) =
1

5s2 + 20s+ 200
=

1

5

1

(s+ 2)2 + 62
.
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Therefore,

h(t) = L−1

{
1

5

1

(s+ 2)2 + 62

}
(t) =

1

30
L−1

{
6

(s+ 2)2 + 62

}
(t) =

1

30
e−2t sin 6t.

Next, we consider the initial value problem

5I ′′(t) + 20I ′(t) + 200I(t) = 0, I(0) = −1, I ′(0) = 8

for the corresponding homogeneous equation. Its characteristic equation, 5r2 +20r+200 = 0,

has roots r = −2 ± 6i, which yield a general solution

Ih(t) = e−2t (C1 cos 6t+ C2 sin 6t) .

We find constants C1 and C2 so that the solution satisfies the initial conditions. Thus we have

−1 = I(0) = C1 ,

8 = I ′(0) = −2C1 + 6C2

⇒ C1 = −1 ,

C2 = 1 ,

and so Ik(t) = e−2t (sin 6t− cos 6t). Finally,

I(t) = h(t) ∗ e(t) + Ik(t) =
1

30

t∫
0

e(v)e−2(t−v) sin 6(t− v) dv + e−2t (sin 6t− cos 6t) .

31. By the convolution theorem, we get

L{1 ∗ 1 ∗ 1} (s) = L{1} (s)L{1 ∗ 1} (s) = L{1} (s)L{1} (s)L{1} (s) =

(
1

s

)3

=
1

s3
.

Therefore, the definition of the inverse Laplace transform yields

1 ∗ 1 ∗ 1 = L−1

{
1

s3

}
(t) =

1

2
L−1

{
2

s3

}
(t) =

1

2
t2 .

33. Using the linear property of integrals, we have

f ∗ (g + h) =

t∫
0

f(t− v)[g + h](v) dv =

t∫
0

f(t− v)[g(v) + h(v)] dv

=

t∫
0

f(t− v)g(v) dv +

t∫
0

f(t− v)h(v) dv = f ∗ g + f ∗ h.
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35. Since
t∫

0

f(v) dv =

t∫
0

1 · f(v) dv = 1 ∗ f(t),

we conclude that

L


t∫
0

f(v) dv

 (s) = L{1 ∗ f(t)} (s) = L{1} (s)L{f(t)} (s) =
1

s
F (s).

Hence, by the definition of the inverse Laplace transform,

t∫
0

f(v) dv = L−1

{
1

s
F (s)

}
(t).

(Note that the integral in the left-hand side is a continuous function.)

37. Actually, this statement holds for any continuously differentiable function h(t) on [0,∞)

satisfying h(0) = 0. Indeed, first of all,

(h ∗ g)(0) =

t∫
0

h(t− v)g(v) dv

∣∣∣∣∣∣
t=0

=

0∫
0

h(−v)g(v) dv = 0

since the interval of integration has zero length. Next, we apply the Leibniz’s rule to find the

derivative of (h ∗ g)(t).

(h ∗ g)′(t) =

 t∫
0

h(t− v)g(v) dv

′

=

t∫
0

∂h(t − v)g(v)

∂t
dv + h(t− v)g(v)

∣∣∣
v=t

=

t∫
0

h′(t− v)g(v) dv + h(0)g(t) =

t∫
0

h′(t− v)g(v) dv

since h(0) = 0. Therefore,

(h ∗ g)′(0) =

0∫
0

h′(−v)g(v) dv = 0,

again as a definite integral with equal limits of integration.
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EXERCISES 7.8: Impulses and the Dirac Delta Function, page 412

1. By equation (3) on page 407 of the text,

∞∫
−∞

(t2 − 1)δ(t) dt =
(
t2 − 1

)∣∣
t=0

= −1.

3. By equation (3) on page 407 of the text,

∞∫
−∞

(sin 3t)δ
(
t− π

2

)
dt = sin

(
3 · π

2

)
= −1.

5. Formula (6) of the Laplace transform of the Dirac delta function yields

∞∫
0

e−2tδ(t− 1) dt = L{δ(t− 1)} (2) = e−s
∣∣
s=2

= e−2 .

7. Using the linearity of the Laplace transform and (6) on page 409 of the text, we get

L{δ(t− 1) − δ(t− 3)} (s) = L{δ(t− 1)} (s) − L{δ(t− 3)} (s) = e−s − e−3s .

9. Since δ(t− 1) = 0 for t < 1,

L{tδ(t− 1)} (s) :=

∞∫
0

e−sttδ(t− 1) dt =

∞∫
−∞

e−sttδ(t− 1) dt = e−stt
∣∣
t=1

= e−s

by equation (3) on page 407 of the text.

Another way to solve this problem is to use Theorem 6 inj Section 7.3. This yields

L{tδ(t− 1)} (s) = − d

ds
L{δ(t− 1)} (s) = −d (e−s)

ds
= e−s .

11. Since δ(t− π) = 0 for t < π, we use the definition of the Laplace transform and formula (3),

page 407 of the text, to conclude that

L{(sin t)δ(t− π)} (s) :=

∞∫
0

e−st(sin t)δ(t− π) dt =

∞∫
−∞

e−st(sin t)δ(t− π) dt = e−πt sin π = 0.
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13. Let W (s) := L{w} (s). Using the initial conditions and Theorem 5 in Section 7.3, we find

that

L{w′′} (s) = s2W (s) − sw(0) − w′(0) = s2W (s).

Thus, applying the Laplace transform to both sides of the given equation yields

s2W (s) +W (s) = L{δ(t− π)} (s) = e−πs ⇒ W (s) =
e−πs

s2 + 1
.

Taking the inverse Laplace transform of both sides of the last equation and using Theorem 8

in Section 7.6, we get

w(t) = L−1

{
e−πs

s2 + 1

}
(t) = L−1

{
1

s2 + 1

}
(t−π)u(t−π) = sin(t−π)u(t−π) = −(sin t)u(t−π).

15. Let Y := L{y}. Taking the Laplace transform of y′′ + 2y′ − 3y = δ(t − 1) − δ(t − 2) and

applying the initial conditions y(0) = 2, y′(0) = −2, we obtain[
s2Y (s) − 2s+ 2

]
+ 2 [sY (s) − 2] − 3Y (s) = L{δ(t− 1) − δ(t− 2)} (s) = e−s − e−2s

⇒ Y (s) =
2s+ 2 + e−s − e−2s

s2 + 2s− 3
=

2s+ 2

(s+ 3)(s− 1)
+

e−s

(s+ 3)(s− 1)
− e−2s

(s+ 3)(s− 1)

=
1

s− 1
+

1

s+ 3
+
e−s

4

(
1

s− 1
− 1

s+ 3

)
− e−2s

4

(
1

s− 1
− 1

s+ 3

)
,

so that by Theorem 8 on page 387 of the text we get

y(t) = et + e−3t +
1

4

(
et−1 − e−3(t−1)

)
u(t− 1) − 1

4

(
et−2 − e−3(t−2)

)
u(t− 2).

17. Let Y := L{y}. We use the initial conditions to find that

L{y′′} (s) = s2Y (s) − sy(0) − y′(0) = s2Y (s) − 2.

Thus taking the Laplace transform of both sides of the given equation and using formula (6)

on page 409, we get[
s2Y (s) − 2

]− Y (s) = 4L{δ(t− 2)} (s) + L{t2} (s) = 4e−2s +
2

s3

⇒ Y (s) =
4e−2s

s2 − 1
+

2(s3 + 1)

s3(s2 − 1)
= 2e−2s

(
1

s− 1
− 1

s+ 1

)
+

2

s− 1
− 2

s3
− 2

s
.
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Now we can apply the inverse Laplace transform.

y(t) = L−1

{
2e−2s

(
1

s− 1
− 1

s+ 1

)
+

2

s− 1
− 2

s3
− 2

s

}
(t)

= 2

(
L−1

{
1

s− 1

}
−L−1

{
1

s+ 1

})
(t− 2)u(t− 2)

+2L−1

{
1

s− 1

}
(t) − L−1

{
2

s3

}
(t) − 2L−1

{
1

s

}
(t)

= 2
(
et−2 − e2−t

)
u(t− 2) + 2et − t2 − 2.

19. Let W (s) := L{w} (s). We apply the Laplace transform to the given equation and obtain

L{w′′} (s) + 6L{w′} (s) + 5W (s) = L{etδ(t− 1)
}

(s). (7.48)

From formula (4) on page 362 of the text we see that

L{w′} (s) = sW (s) − w(0) = sW (s),

L{w′′} (s) = s2W (s) − sw(0) − w′(0) = s2W (s) − 4.
(7.49)

Also, the translation property (1), Section 7.3, of the Laplace transform yields

L{etδ(t− 1)
}

(s) = L{δ(t− 1)} (s− 1) = e−(s−1) = e1−s . (7.50)

Substituting (7.49) and (7.50) back into (7.48), we obtain[
s2W (s) − 4

]
+ 6 [sW (s)] + 5W (s) = e1−s

⇒ W (s) =
4 + e1−s

s2 + 6s+ 5
=

4 + e1−s

(s+ 1)(s+ 5)
=

1

s+ 1
− 1

s + 5
+
e

4
e−s

(
1

s+ 1
− 1

s+ 5

)
.

Finally, the inverse Laplace transform of both sides of this equation yields

w(t) = e−t − e−5t +
e

4

[
e−(t−1) − e−5(t−1)

]
u(t− 1) .

21. We apply the Laplace transform to the given equation, solve the resulting equation for

L{y} (s), and then use the inverse Laplace transforms. This yields

L{y′′} (s) + L{y} (s) = L{δ(t− 2π)} (s)
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⇒ [
s2L{y} (s) − 1

]
+ L{y} (s) = e−2πs ⇒ L{y} (s) =

1 + e−2πs

s2 + 1

⇒ y(t) = L−1

{
1

s2 + 1

}
(t) + L−1

{
1

s2 + 1

}
(t− 2π)u(t− 2π)

= sin t+ [sin(t− 2π)]u(t− 2π) = [1 + u(t− 2π)] sin t.

The graph of the solution is shown in Figure B.49 in the answers of the text.

23. The solution to the initial value problem

y′′ + y = δ(t− 2π), y(0) = 0, y′(0) = 1

is given in Problem 21, that is

y1(t) = [1 + u(t− 2π)] sin t.

Thus, if y2(t) is the solution to the initial value problem

y′′ + y = −δ(t− π), y(0) = 0, y′(0) = 0, (7.51)

then, by the superposition principle (see Section 4.5), y(t) = y1(t) + y2(t) is the desired

solution. The Laplace transform of both sides in (7.51) yields

s2L{y} (s) + L{y} (s) = −e−πs ⇒ L{y} (s) = − e−πs

s2 + 1

⇒ y2(t) = −L−1

{
1

s2 + 1

}
(t− π)u(t− π) = −[sin(t− π)]u(t− π) = u(t− π) sin t.

(We have used zero initial conditions to express L{y′′} in terms of L{y}.) Therefore, the

answer is

y(t) = y1(t) + y2(t) = [1 + u(t− 2π)] sin t+ u(t− π) sin t = [1 + u(t− π) + u(t− 2π)] sin t.

The sketch of this curve is given in Figure B.50 .

25. Taking the Laplace transform of y′′ + 4y′ + 8y = δ(t) with zero initial conditions yields

s2Y (s) + 4sY (s) + 8Y (s) = L{δ(t)} (s) = 1.
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Solving for Y (s), we obtain

Y (s) =
1

s2 + 4s+ 8
=

1

(s+ 2)2 + 4
=

1

2

2

(s+ 2)2 + 22

so that

h(t) = L−1

{
1

2

2

(s+ 2)2 + 22

}
(t) =

1

2
e−2t sin 2t .

Notice thatH(s) for y′′+4y′+8y = g(t) with y(0) = y′(0) = 0 is given byH(s) = 1/(s2+4s+8),

so that again

h(t) = L−1 {H(s)} (t) =
1

2
e−2t sin 2t .

27. The Laplace transform of both sides of the given equation, with zero initial conditions and

g(t) = δ(t), gives us

s2L{y} (s) − 2sL{y} (s) + 5L{y} (s) = L{δ(t)} (s)

⇒ L{y} (s) =
1

s2 − 2s+ 5
=

1

(s− 1)2 + 22
.

The inverse Laplace transform now yields

h(t) = L−1

{
1

(s− 1)2 + 22

}
(t) =

1

2
L−1

{
2

(s− 1)2 + 22

}
(t) =

1

2
et sin 2t .

29. We solve the given initial value problem to find the displacement x(t). Let X(s) := L{x} (s).

Applying the Laplace transform to the differential equation yields

L{x′′} (s) + 9X(s) = L
{
−3δ

(
t− π

2

)}
(s) = −3e−πs/2 .

Since

L{x′′} (s) = s2X(s) − sx(0) − x′(0) = s2X(s) − s,

the above equation becomes[
s2X(s) − s

]
+ 9X(s) = −3e−πs/2 ⇒ X(s) =

s− 3e−πs/2

s2 + 9
=

s

s2 + 32
− e−πs/2 3

s2 + 32
.

Therefore,

x(t) = L−1

{
s

s2 + 32
− e−πs/2 3

s2 + 32

}
(t)
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= cos 3t−
[
sin 3

(
t− π

2

)]
u
(
t− π

2

)
=
[
1 − u

(
t− π

2

)]
cos 3t .

Since, for t > π/2, u(t− π/2) ≡ 1, we conclude that

x(t) ≡ 0 for t >
π

2
.

This means that the mass stops after the hit and remains in the equilibrium position thereafter.

31. By taking the Laplace transform of

ay′′ + by′ = cy = δ(t), y(0) = y′(0) = 0,

and solving for Y := L{y}, we find that the transfer function is given by

H(s) =
1

as2 + bs + c
.

If the roots of the polynomial as2 + bs + c are real and distinct, say r1, r2, then

H(s) =
1

(s− r1)(s− r2)
=

1/(r1 − r2)

s− r1
− 1/(r1 − r2)

s− r2
.

Thus

h(t) =
1

r1 − r2

(
er1t − er2t

)
and clearly h(t) is bounded as t→ ∞ if and only if r1 and r2 are less than or equal to zero.

If the roots of as2 + bs + c are complex, then, by the quadratic formula, they are given by

− b

2a
±

√
4ac− b2

2a
i

so that the real part of the roots is −b/(2a). Now

H(s) =
1

as2 + bs+ c
=

1

a
· 1

s2 + (b/a)s+ (c/a)
=

1

a
· 1

[s+ b/(2a)]2 + (4ac− b2)/(4a2)

=
2√

4ac− b2
·

√
4ac− b2/(2a)

[s+ b/(2a)]2 + [
√

4ac− b2/(2a)]2

so that

h(t) =
2√

4ac− b2
e−(b/2a)t sin

(√
4ac− b2

2a
t

)
,

and again it is clear that h(t) is bounded if and only if −b/(2a), the real part of the roots of

as2 + bs+ c, is less than or equal to zero.
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33. Let a function f(t) be defined on (−∞,∞) and continuous in a neighborhood of the origin,

t = 0. Since δ(t) = 0 for any t �= 0, so does the product f(t)δ(t). Therefore,

∞∫
−∞

f(t)δ(t) dt =

ε∫
−ε

f(t)δ(t) dt for any ε > 0. (7.52)

By the mean value theorem, for any ε small enough (so that f(t) is continuous on (−ε, ε))
there exists a point ζε in (−ε, ε) such that

ε∫
−ε

f(t)δ(t) dt = f (ζε)

ε∫
−ε

δ(t) dt = f (ζε)

∞∫
−∞

δ(t) dt = f (ζε) .

Together with (7.52) this yields

∞∫
−∞

f(t)δ(t) dt = f (ζε) , for any ε > 0.

Now we take limit, as ε→ 0, in both sides.

lim
ε→0

 ∞∫
−∞

f(t)δ(t) dt

 = lim
ε→0

[f (ζε)] .

Note that the integral in the left-hand side does not depend on ε, and so the limit equals

to the integral itself. In the right-hand side, since ζε belongs to (−ε, ε), ζε → 0 as ε → 0,

and the continuity of f(t) implies that f (ζε) converges to f(0), as ε → 0. Combining these

observations, we get the required.

35. Following the hint, we solve the initial value problem

EIy(4)(x) = Lδ(x− λ), y(0) = y′(0) = 0, y′′(0) = A, y′′′(0) = B.

Using these initial conditions and Theorem 5 in Section 7.3 with n = 4, we obtain

L{y(4)(x)
}

(s) = s4L{y(x)} (s) − sA− B,
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and so the Laplace transform of the given equation yields

EI
[
s4L{y(x)} (s) − sA− B

]
= LL{δ(x− λ)} (s) = Le−λs .

Therefore,

L{y(x)} (s) =
L

EI

e−λs

s4
+
A

s3
+
B

s4

⇒ y(x) = L−1

{
L

EI

e−λs

s4
+
A

s3
+
B

s4

}
(x)

=
L

EI3!
L−1

{
3!

s4

}
(x− λ)u(x− λ) +

A

2!
L−1

{
2!

s3

}
(x) +

B

3!
L−1

{
3!

s4

}
(x)

=
L

6EI
(x− λ)3u(x− λ) +

A

2
x2 +

B

6
x3. (7.53)

Next, we are looking for A and B such that y′′(2λ) = y′′′(2λ) = 0. Note that, for x > λ,

u(x− λ) ≡ 1 and so (7.53) becomes

y(x) =
L

6EI
(x− λ)3 +

A

2
x2 +

B

6
x3 .

Differentiating we get

y′′(x) =
L

EI
(x− λ) + A+Bx and y′′′(x) =

L

EI
+B.

Hence, A and B must satisfy

0 = y′′(2λ) = [L/(EI)](2λ− λ) + A+ 2Bλ,

0 = y′′′(2λ) = L/(EI) +B
⇒ A = λL/(EI),

B = −L/(EI).
Substitution back into (7.53) yields the solution

y(x) =
L

6EI

[
(x− λ)3u(x− λ) + 3λx2 − x3

]
.

EXERCISES 7.9: Solving Linear Systems with Laplace Transforms, page 416

1. Let X(s) = L{x} (s), Y (s) = L{y} (s). Applying the Laplace transform to both sides of the

given equations yields

L{x′} (s) = 3X(s) − 2Y (s),

L{y′} (s) = 3Y (s) − 2X(s).
(7.54)
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Since
L{x′} (s) = sX(s) − x(0) = sX(s) − 1,

L{y′} (s) = sY (s) − y(0) = sY (s) − 1,

the system (7.54) becomes

sX(s) − 1 = 3X(s) − 2Y (s),

sY (s) − 1 = 3Y (s) − 2X(s)
⇒ (s− 3)X(s) + 2Y (s) = 1,

2X(s) + (s− 3)Y (s) = 1.
(7.55)

Subtracting the second equation from the first equation yields

(s− 5)X(s) + (5 − s)Y (s) = 0 ⇒ X(s) = Y (s).

So, from the first equation in (7.55) we get

(s− 3)X(s) + 2X(s) = 1 ⇒ X(s) =
1

s− 1
⇒ x(t) = L−1

{
1

s− 1

}
(t) = et .

Since Y (s) = X(s), y(t) = x(t) = et.

3. Let Z(s) = L{z} (s), W (s) = L{w} (s). Using the initial conditions we conclude that

L{z′} (s) = sZ(s) − z(0) = sZ(s) − 1, L{w′} (s) = sW (s) − w(0) = sW (s).

Using these equations and taking the Laplace transform of the equations in the given system,

we obtain

[sZ(s) − 1] + [sW (s)] = Z(s) −W (s),

sZ(s) − 1] − [sW (s)] = Z(s) −W (s)
⇒ (s− 1)W (s) + (s+ 1)W (s) = 1,

(s− 1)W (s) − (s− 1)W (s) = 1.
(7.56)

Subtracting equations yields

2sW (s) = 0 ⇒ W (s) = 0 ⇒ w(t) = L−1 {0} (t) ≡ 0.

Substituting W (s) into either equation in (7.56), we obtain

(s− 1)Z(s) = 1 ⇒ Z(s) =
1

s− 1
⇒ z(t) = L−1

{
1

s− 1

}
(t) = et .
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5. Denote X(s) = L{x} (s), Y (s) = L{y} (s). The Laplace transform of the given equations

yields

L{x′} (s) = Y (s) + L{sin t} (s),

L{y′} (s) = X(s) + 2L{cos t} (s),

which becomes

sX(s) − 2 = Y (s) + 1/(s2 + 1),

sY (s) = X(s) + 2s/(s2 + 1)
⇒ sX(s) − Y (s) = (2s2 + 3)/(s2 + 1),

−X(s) + sY (s) = 2s/(s2 + 1)

after expressing L{x′} and L{y′} in terms of X(s) and Y (s). Multiplying the second equation

by s and adding the result to the first equation, we get(
s2 − 1

)
Y (s) =

4s2 + 3

s2 + 1
⇒ Y (s) =

4s2 + 3

(s− 1)(s+ 1)(s2 + 1)
.

Since the partial fractions decomposition for Y (s) is

4s2 + 3

(s− 1)(s+ 1)(s2 + 1)
=

7/4

s− 1
− 7/4

s+ 1
+

1/2

s2 + 1
,

taking the inverse Laplace transform yields

y(t) = L−1

{
7/4

s− 1
− 7/4

s+ 1
+

1/2

s2 + 1

}
(t) =

7

4
et − 7

4
e−t +

1

2
sin t .

From the second equation in the original system,

x(t) = y′ − 2 cos t =
7

4
et +

7

4
e−t − 3

2
cos t .

7. We will first write this system without using operator notation. Thus, we have

x′ − 4x+ 6y = 9e−3t ,

x− y′ + y = 5e−3t .
(7.57)

By taking the Laplace transform of both sides of both of these differential equations and using

the linearity of the Laplace transform, we obtain

L{x′} (s) − 4X(s) + 6Y (s) = 9/(s+ 3) ,

X(s) − L{y′} (s) + Y (s) = 5/(s+ 3) ,
(7.58)
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where X(s) and Y (s) are the Laplace transforms of x(t) and y(t), respectively. Using the

initial conditions x(0) = −9 and y(0) = 4, we can express

L{x′} (s) = sX(s) − x(0) = sX(s) + 9,

L{y′} (s) = sY (s) − y(0) = sY (s) − 4.

Substituting these expressions into the system given in (7.58) and simplifying yields

(s− 4)X(s) + 6Y (s) = −9 +
9

s+ 3
=

−9s− 18

s+ 3
,

X(s) + (−s + 1)Y (s) = −4 +
5

s+ 3
=

−4s− 7

s+ 3
.

By multiplying the second equation above by −(s − 4), adding the resulting equations, and

simplifying, we obtain(
s2 − 5s+ 10

)
Y (s) =

(4s+ 7)(s− 4)

s+ 3
+

−9s− 18

s+ 3
=

4s2 − 18s− 46

s+ 3

⇒ Y (s) =
4s2 − 18s− 46

(s+ 3)(s2 − 5s+ 10)
.

Note that the quadratic s2 − 5s+ 10 = (s− 5/2)2 + 15/4 is irreducible. The partial fractions

decomposition yields

Y (s) =
1

17

[
46s− 334

(s− 5/2)2 + 15/4
+

22

s+ 3

]
=

1

17

[
46

(
s− 5/2

(s− 5/2)2 + 15/4

)
− 146

√
15

5

( √
15/2

(s− 5/2)2 + 15/4

)
+ 22

1

s+ 3

]
,

and so

y(t) = L−1 {Y (s)} (t) =
46

17
e5t/2 cos

(√
15t

2

)
− 146

√
15

85
e5t/2 sin

(√
15t

2

)
+

22

17
e−3t .

From the second equation in the system (7.57) above, we find that

x(t) = 5e−3t + y′(t) − y(t) = 5e−3t +
115

17
e5t/2 cos

(√
15t

2

)

−
(

23
√

15

17
+

73
√

15

17

)
e5t/2 sin

(√
15t

2

)
− 219

17
e5t/2 cos

(√
15t

2

)
− 66

17
e−3t
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= −150

17
e5t/2 cos

(√
15t

2

)
− 334

√
15

85
e5t/2 sin

(√
15t

2

)
− 3

17
e−3t .

9. Taking the Laplace transform of both sides of both of these differential equations yields the

system

L{x′′} (s) +X(s) + 2L{y′} (s) = 0,

−3L{x′′} (s) − 3X(s) + 2L{y′′} (s) + 4Y (s) = 0,

where X(s) = L{x} (s), Y (s) = L{y} (s). Using the initial conditions x(0) = 2, x′(0) = −7

and y(0) = 4, y′(0) = −9, we see that

L{x′′} (s) = s2X(s) − sx(0) − x′(0) = s2X(s) − 2s+ 7,

L{y′} (s) = sY (s) − y(0) = sY (s) − 4,

L{y′′} (s) = s2Y (s) − sy(0)− y′(0) = s2Y (s) − 4s+ 9.

Substituting these expressions into the system given above yields

[s2X(s) − 2s+ 7] +X(s) + 2 [sY (s) − 4] = 0,

−3 [s2X(s) − 2s+ 7] − 3X(s) + 2 [s2Y (s) − 4s+ 9] + 4Y (s) = 0,

which simplifies to

(s2 + 1)X(s) + 2sY (s) = 2s+ 1,

−3 (s2 + 1)X(s) + 2 (s2 + 2)Y (s) = 2s+ 3.
(7.59)

Multiplying the first equation by 3 and adding the two resulting equations eliminates the

function X(s). Thus, we obtain(
2s2 + 6s+ 4

)
Y (s) = 8s+ 6 ⇒ Y (s) =

4s+ 3

(s+ 2)(s+ 1)
=

5

s+ 2
− 1

s+ 1
,

where we have factored the expression 2s2 + 6s+ 4 and used the partial fractions expansion.

Taking the inverse Laplace transform, we obtain

y(t) = L−1 {Y (s)} (t) = 5L−1

{
1

s+ 2

}
(t) − L−1

{
1

s+ 1

}
(t) = 5e−2t − e−t .

To find the solution x(t), we again examine the system given in (7.59) above. This time we

will eliminate the function Y (s) by multiplying the first equation by s2 + 2 and the second
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equation by −s and adding the resulting equations. Thus, we have(
s2 + 3s+ 2

) (
s2 + 1

)
X(s) = 2s3 − s2 + s+ 2

⇒ X(s) =
2s3 − s2 + s+ 2

(s+ 2)(s+ 1)(s2 + 1)
.

Expressing X(s) in a partial fractions expansion, we find that

X(s) =
4

s+ 2
− 1

s+ 1
− s

s2 + 1

and so

x(t) = L−1

{
4

s+ 2
− 1

s+ 1
− s

s2 + 1

}
(t) = 4e−2t − e−t − cos t.

Hence, the solution to this initial value problem is

x(t) = 4e−2t − e−t − cos t and y(t) = 5e−2t − e−t .

11. Since

L{x′} (s) = sX(s) − x(0) = sX(s) and

L{y′} (s) = sY (s) − y(0) = sY (s) ,

applying the Laplace transform to the given equations yields

sX(s) + Y (s) = L{1 − u(t− 2)} (s) =
1

s
− e−2s

s
=

1 − e−2s

s
,

X(s) + sY (s) = L{0} (s) = 0 .

From the second equation, X(s) = −sY (s). Substituting this into the first equation, we

eliminate X(s) and obtain

−s2Y (s) + Y (s) =
1 − e−2s

s

⇒ Y (s) =
1 − e−2s

s(1 − s2)
=
(
1 − e−2s

)(1

s
− 1/2

s− 1
− 1/2

s+ 1

)
.

Using now the linear property of the inverse Laplace transform and formula (6) on page 387,

we get

y(t) = L−1

{
1

s
− 1/2

s− 1
− 1/2

s+ 1

}
(t) − L−1

{
1

s
− 1/2

s− 1
− 1/2

s+ 1

}
(t− 2)u(t− 2)

471



Chapter 7

= 1 − et + e−t

2
−
[
1 − et−2 + e−(t−2)

2

]
u(t− 2).

Since, from the second equation in the original system, x = −y′, we have

x(t) = −
{

1 − et + e−t

2
−
[
1 − et−2 + e−(t−2)

2

]
u(t− 2)

}
=

et − e−t

2
−
[
et−2 − e−(t−2)

2

]
u(t− 2).

13. Since, by formula (8) on page 387 of the text,

L{(sin t)u(t− π)} (s) = e−πsL{sin(t+ π)} (s) = e−πsL{− sin t} (s) = − e−πs

s2 + 1
,

applying the Laplace transform to the given system yields

L{x′} (s) − L{y′} (s) = L{(sin t)u(t− π)} (s),

L{x} (s) + L{y′} (s) = L{0} (s)

⇒ [sX(s) − 1] − [sY (s) − 1] = − e−πs

s2 + 1
,

X(s) + [sY (s) − 1] = 0,

where we have used the initial conditions, x(0) = 1 and y(0) = 1, and Theorem 4, Section 7.3,

to express L{x′} (s) and L{y′} (s) in terms of X(s) = L{x} (s) and Y (s) = L{y} (s). The

above system simplifies to

X(s) − Y (s) = − e−πs

s(s2 + 1)
,

X(s) + sY (s) = 1.

From the second equation, X(s) = 1 − sY (s), and with this substitution the first equation

becomes

1− sY (s)− Y (s) = − e−πs

s(s2 + 1)
⇒ Y (s) =

[
1 +

e−πs

s(s2 + 1)

]
1

s+ 1
=

1

s+ 1
+

e−πs

s(s+ 1)(s2 + 1)
.

Using partial fractions we express

Y (s) =
1

s+ 1
+ e−πs

[
1

s
− 1/2

s+ 1
− (1/2)s

s2 + 1
− 1/2

s2 + 1

]
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and so

y(t) = e−t +

[
1 − 1

2
e−(t−π) − 1

2
cos(t− π) − 1

2
sin(t− π)

]
u(t− π)

= e−t +

[
1 − 1

2
e−(t−π) +

1

2
cos t+

1

2
sin t

]
u(t− π).

Finally,

x(t) = −y′(t) = e−t −
[
1

2
e−(t−π) − 1

2
sin t+

1

2
cos t

]
u(t− π).

15. First, note that the initial conditions are given at the point t = 1. Thus, for the Laplace

transform method, we have to shift the argument to get zero initial point. Let us denote

u(t) := x(t+ 1) and v(t) := y(t+ 1).

The chain rule yields

u′(t) = x′(t+ 1)(t+ 1)′ = x′(t+ 1), v′(t) = y′(t+ 1)(t+ 1)′ = y′(t+ 1).

In the original system, we substitute t+ 1 for t to get

x′(t+ 1) − 2y(t+ 1) = 2,

x′(t+ 1) + x(t+ 1) − y′(t+ 1) = (t+ 1)2 + 2(t+ 1) − 1,

and make u and v substitution. This yields

u′(t) − 2v(t) = 2,

u′(t) + u(t) − v′(t) = (t+ 1)2 + 2(t+ 1) − 1 = t2 + 4t+ 2

with initial conditions u(0) = 1, v(0) = 0. Taking the Laplace transform and using formula

(2) on page 361 of the text, we obtain the system

[sU(s) − 1] − 2V (s) =
2

s
,

[sU(s) − 1] + U(s) − sV (s) =
2

s3
+

4

s2
+

2

s
,

where U(s) = L{u} (s), V (s) = L{v} (s). Expressing

U(s) =
2V (s)

s
+

2

s2
+

1

s
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from the first equation and substituting this into the second equation, we obtain[
2

s
+ 2V (s)

]
+

[
2V (s)

s
+

2

s2
+

1

s

]
− sV (s) =

2

s3
+

4

s2
+

2

s
,

which yields

V (s) =
1

s2
⇒ U(s) =

2

s3
+

2

s2
+

1

s
.

Applying now inverse Laplace transforms yields

u(t) = t2 + 2t+ 1 = (t+ 1)2, v(t) = L−1

{
1

s2

}
(t) = t.

Finally,

x(t) = u(t− 1) = t2 and y(t) = v(t− 1) = t− 1.

17. As in Problem 15, first we make a shift in t to move the initial conditions to t = 0. Let

u(t) := x(t+ 2) and v(t) := y(t+ 2).

With t replaced by t+ 2, the original system becomes

x′(t+ 2) + x(t+ 2) − y′(t+ 2) = 2tet ,

x′′(t+ 2) − x′(t+ 2) − 2y(t+ 2) = −et

or

u′(t) + u(t) − v′(t) = 2tet ,

u′′(t) − u′(t) − 2v(t) = −et ,
with

u(0) = 0,

u′(0) = 1,

v(0) = 1.

Applying the Laplace transform to these equations and expressing L{u′′}, L{u′}, and L{v′}
in terms of U = L{u} and V = L{v} (see formula (4) on page 362 of the text, we obtain

[sU(s)] + U(s) − [sV (s) − 1] = 2L{tet
}

(s) =
2

(s− 1)2
,[

s2U(s) − 1
]− [sU(s)] − 2V (s) = − 1

s− 1
.

We multiply the first equation by 2, the second equation by s, and subtract the resulting

equations in order to eliminate V (s). Thus we get[
s(s2 − s) − 2(s+ 1)

]
U(s) = s− s

s− 1
− 4

(s− 1)2
+ 2
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⇒ (
s3 − s2 − 2s− 2

)
U(s) =

s3 − s2 − 2s− 2

(s− 1)2
⇒ U(s) =

1

(s− 1)2
.

The inverse Laplace transform then yields

u(t) = L−1

{
1

(s− 1)2

}
(t) = tet ⇒ x(t) = u(t− 2) = (t− 2)et−2 .

We find y(t) from the second equation in the original system.

y(t) =
x′′(t) − x′(t) + et−2

2
=
tet−2 − (t− 1)et−2 + et−2

2
= et−2 .

19. We first take the Laplace transform of both sides of all three of these equations and use the

initial conditions to obtain a system of equations for the Laplace transforms of the solution

functions:
sX(s) + 6 = 3X(s) + Y (s) − 2Z(s),

sY (s) − 2 = −X(s) + 2Y (s) + Z(s),

sZ(s) + 12 = 4X(s) + Y (s) − 3Z(s).

Simplifying yields

(s− 3)X(s) − Y (s) + 2Z(s) = −6,

X(s) + (s− 2)Y (s) − Z(s) = 2,

−4X(s) − Y (s) + (s+ 3)Z(s) = −12.

(7.60)

To solve this system, we will use substitution to eliminate the function Y (s). Therefore, we

solve for Y (s) in the first equation in (7.60) to obtain

Y (s) = (s− 3)X(s) + 2Z(s) + 6.

Substituting this expression into the two remaining equations in (7.60) and simplifying yields

(s2 − 5s+ 7)X(s) + (2s− 5)Z(s) = −6s + 14,

−(s+ 1)X(s) + (s+ 1)Z(s) = −6.
(7.61)

Next we will eliminate the function X(s) from the system given in (7.61). To do this we can

either multiply the first equation by (s + 1) and the second by (s2 − 5s + 7) and add, or we

can solve the last equation given in (7.61) for X(s) to obtain

X(s) = Z(s) +
6

s+ 1
, (7.62)
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and substitute this into the first equation in (7.61). By either method we see that

Z(s) =
−12s2 + 38s− 28

(s+ 1)(s2 − 3s+ 2)
=

−12s2 + 38s− 28

(s+ 1)(s− 2)(s− 1)
.

Now, Z(s) has the partial fraction expansion

Z(s) =
−13

s+ 1
+

1

s− 1
.

Therefore, by taking inverse Laplace transforms of both sides of this equation, we obtain

z(t) = L−1 {Z(s)} (t) = L−1

{ −13

s+ 1
+

1

s− 1

}
(t) = −13e−t + et .

To find X(s), we will use equation (7.62) and the expression found above for Z(s). Thus, we

have

X(s) = Z(s) +
6

s+ 1
=

−13

s+ 1
+

1

s− 1
+

6

s+ 1
=

−7

s+ 1
+

1

s− 1

⇒ x(t) = L−1 {X(s)} (t) = L−1

{ −7

s+ 1
+

1

s− 1

}
(t) = −7e−t + et .

To find y(t), we could substitute the expressions that we have already found for X(s) and

Z(s) into the Y (s) = (s− 3)X(s) + 2Z(s) + 6, which we found above, or we could return to

the original system of differential equations and use x(t) and z(t) to solve for y(t). For the

latter method, we solve the first equation in the original system for y(t) to obtain

y(t) = x′(t) − 3x(t) + 2z(t)

= 7e−t + et + 21e−t − 3et − 26e−t + 2et = 2e−t .

Therefore, the solution to the initial value problem is

x(t) = −7e−t + et , y(t) = 2e−t , z(t) = −13e−t + et .

21. We refer the reader to the discussion in Section 5.1 in obtaining the system (1) on page 242 of

the text governing interconnected tanks. All the arguments provided remain in force except

for the one affected by the new “valve condition”, which the formula for the input rate for
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the tank A. In Section 5.1, just fresh water was pumped into the tank A and so there was no

salt coming from outside of the system into the tank A . Now we have more complicated rule:

the incoming liquid is fresh water for the first 5 min, but then it changes to a solution having

a concentration 2 kg/L. This solution contributes additional

2 (kg/L) × 6 (L/min) = 12 (kg/min)

to the input rate into the tank A. Thus, from the valve, we have{
0, t < 5,

12, t > 5
= 12u(t− 5) (kg/min)

of salt coming to the tank A. With this change, the system (1) in the text becomes

x′ = −x/3 + y/12 + 12u(t− 5),

y′ = x/3 − y/3.
(7.63)

Also, we have the initial conditions x(0) = x0 = 0, y(0) = y0 = 4. Let X := L{x} and

Y := L{y}. Taking the Laplace transform of both equations in the system above, we get

L{x′} (s) = −1

3
X(s) +

1

12
Y (s) + 12L{u(t− 5)} (s),

L{y′} (s) =
1

3
X(s) − 1

3
Y (s).

Since L{u(t− 5)} (s) = e−5s/s and

L{x′} (s) = sX(s) − x(0) = sX(s),

L{y′} (s) = sY (s) − y(0) = sY (s) − 4,

we obtain

sX(s) = −1

3
X(s) +

1

12
Y (s) +

12e−5s

s
,

sY (s) − 4 =
1

3
X(s) − 1

3
Y (s)

which simplifies to

4(3s+ 1)X(s) − Y (s) =
144e−5s

s
,

−X(s) + (3s+ 1)Y (s) = 12.
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From the second equation in this system, we have X(s) = (3s + 1)Y (s) − 12. Substitution

into the first equation yields

4(3s+ 1) [(3s+ 1)Y (s) − 12] − Y (s) =
144e−5s

s

⇒ [
4(3s+ 1)2 − 1

]
Y (s) = 48(3s+ 1) +

144e−5s

s
.

Note that

4(3s+ 1)2 − 1 = [2(3s+ 1) + 1] · [2(3s+ 1) − 1] = (6s+ 3)(6s+ 1) = 36

(
s +

1

2

)(
s +

1

6

)
.

Therefore,

Y (s) =
4(3s+ 1)

3(s+ 1/2)(s+ 1/6)
+

4e−5s

s(s+ 1/2)(s+ 1/6)

=
2

(s+ 1/2)
+

2

(s+ 1/6)
+ e−5s

[
48

s
+

24

s+ 1/2
− 72

s+ 1/6

]
,

where we have applied the partial fractions decomposition. Taking the inverse Laplace trans-

form and using Theorem 8 in Section 7.6 for the inverse Laplace transform of the term having

the exponential factor, we get

y(t) = 2L−1

{
1

(s+ 1/2)

}
(t) + 2L−1

{
1

(s+ 1/6)

}
(t)

+

[
48L−1

{
1

s

}
+ 24L−1

{
1

s+ 1/2

}
− 72L−1

{
1

s+ 1/6

}]
(t− 5)u(t− 5)

= 2e−t/2 + 2e−t/6 +
[
48 + 24e−(t−5)/2 − 72e−(t−5)/6

]
u(t− 5).

From the second equation in (7.63), after some algebra, we find x(t).

x(t) = 3y′(t) + y = −e−t/2 + e−t/6 +
[
48 − 12e−(t−5)/2 − 36e−(t−5)/6

]
u(t− 5).

23. Recall that Kirchhoff’s voltage law says that, in an electrical circuit consisting of an inductor

of LH, a resistor of RΩ, a capacitor of C F, and a voltage source of E V,

EL + ER + EC = E, (7.64)
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where EL, ER, and EC denote the voltage drops across the inductor, resistor, and capacitor,

respectively. These voltage grops are given by

EL = L
dI

dt
, ER := RI, EC :=

q

C
, (7.65)

where I denotes the current passing through the correspondent element.

Also, Kirchhoff’s current law states that the algebraic sum of currents passing through any

point in an electrical network equals to zero.

The electrical network shown in Figure 7.28 consists of three closed circuits: loop 1 through

the battery, R1 = 2 Ω resistor, L1 = 0.1 H inductor, and L2 = 0.2 H inductor; loop 2 through

the inductor L1 and R2 = 1 Ω resistor; loop 3 through the battery, resistors R1 and R2, and

inductor L2. We apply Kirchhoff’s voltage law (7.64) to two of these loops, say, the loop 1 and

the loop 2, and (since the equation obtained from Kirchhoff’s voltage law for the third loop is

a linear combination of the other two) Kirchhoff’s current law to one of the junction points,

say, the upper one. Thus, choosing the clockwise direction in the loops and using formulas

(7.65), we obtain

Loop 1:

ER1 + EL1 + EL2 = E ⇒ 2I1 + 0.1I ′3 + 0.2I ′1 = 6;

Loop 2:

EL1 + ER2 = 0 ⇒ 0.1I ′3 − I2 = 0

with the negative sign due to the counterclockwise direction of the current I2 in this loop;

Upper junction point:

I1 − I2 − I3 = 0.

Therefore, we have the following system for the currents I1, I2, and I3:

2I1 + 0.1I ′3 + 0.2I ′1 = 6,

0.1I ′3 − I2 = 0,

I1 − I2 − I3 = 0

(7.66)
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with initial conditions I1(0) = I2(0) = I3(0) = 0.

Let I1(s) := L{I1} (s), I2(s) := L{I2} (s), and I3(s) := L{I3} (s). Using the initial condi-

tions, we conclude that

L{I ′1} (s) = sI1(s) − I1(0) = sI1(s),

L{I ′3} (s) = sI3(s) − I3(0) = sI3(s).

Using these equations and taking the Laplace transform of the equations in (7.66), we come

up with

(0.2s+ 2)I1(s) + 0.1sI3(s) =
6

s
,

0.1sI3(s) − I2(s) = 0,

I1(s) − I2(s) − I3(s) = 0

Expressing I2(s) = 0.1sI3(s) from the second equation and substituting this into the third

equation, we get

I1(s) − 0.1sI3(s) − I3(s) = 0 ⇒ I1(s) = (0.1s+ 1)I3(s).

The latter, when substituted into the first equation, yields

(0.2s+ 2)(0.1s+ 1)I3(s) + 0.1sI3(s) =
6

s

⇒ [
2(0.1s+ 1)2 + 0.1s

]
I3(s) =

6

s

⇒ I3(s) =
6

s[2(0.1s+ 1)2 + 0.1s]
=

300

s(s+ 20)(s+ 5)
.

We use the partial fractions decomposition to find that

I3(s) =
3

s
+

1

s+ 20
− 4

s+ 5

and so

I3(t) = L−1

{
3

s
+

1

s+ 20
− 4

s+ 5

}
(t) = 3 + e−20t − 4e−5t .

Now we can find I2(t) using the second equation in (7.66).

I2(t) = 0.1I ′3(t) = 0.1
(
3 + e−20t − 4e−5t

)′
= −2e−20t + 2e−5t .

Finally, the third equation in (7.66) yields

I1(t) = I2(t) + I3(t) = 3 − e−20t − 2e−5t .
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REVIEW PROBLEMS: page 418

1. By the definition of Laplace transform,

L{f} (s) =

∞∫
0

e−stf(t) dt =

2∫
0

e−st(3) dt+

∞∫
2

e−st(6 − t) dt.

For the first integral, we have

2∫
0

e−st(3) dt =
3e−st

−s
∣∣∣∣t=2

t=0

=
3(1 − e−2s)

s
.

The second integral is an improper integral. Using integration by parts, we obtain

∞∫
2

e−st(6 − t) dt = lim
M→∞

M∫
2

e−st(6 − t) dt = lim
M→∞

(6 − t)
e−st

−s
∣∣∣∣t=M

t=2

−
M∫

2

e−st

−s (−1)dt


= lim

M→∞

[
4e−2s

s
− (6 −M)e−sM

s
+
e−st

s2

∣∣∣∣t=M

t=2

]

= lim
M→∞

[
4e−2s

s
− (6 −M)e−sM

s
+
e−sM

s2
− e−2s

s2

]
=

4e−2s

s
− e−2s

s2
.

Thus

L{f} (s) =
3(1 − e−2s)

s
+

4e−2s

s
− e−2s

s2
=

3

s
+ e−2s

(
1

s
− 1

s2

)
.

3. From Table 7.1 on page 358 of the text, using the formula for the Laplace transform of eattn

with n = 2 and a = −9, we get

L{t2e−9t
}

(s) =
2!

[s− (−9)]3
=

2

(s+ 9)3
.

5. We use the linearity of the Laplace transform and Table 7.1 to obtain

L{e2t − t3 + t2 − sin 5t
}

(s) = L{e2t
}

(s) − L{t3} (s) + L{t2} (s) −L{sin 5t} (s)

=
1

s− 2
− 3!

s4
+

2!

s3
− 5

s2 + 52
=

1

s− 2
− 6

s4
+

2

s3
− 5

s2 + 25
.
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7. We apply Theorem 6 in Section 7.3 and obtain

L{t cos 6t} (s) = − d

ds
L{cos 6t} (s) = − d

ds

[
s

s2 + 62

]
= −(s2 + 36) − s(2s)

(s2 + 36)2
=

s2 − 36

(s2 + 36)2
.

9. We apply formula (8), Section 7.6, on page 387 of the text and the linear property of the

Laplace transform to get

L{t2u(t− 4)
}

(s) = e−4sL{(t+ 4)2
}

(s) = e−4sL{t2 + 8s+ 16
}

(s)

= e−4s

(
2

s3
+

8

s2
+

16

s

)
= 2e−4s

(
1

s3
+

4

s2
+

8

s

)
.

11. Using the linearity of the inverse Laplace transform and Table 7.1 we find

L−1

{
7

(s+ 3)3

}
(t) =

7

2!
L−1

{
2!

[s− (−3)]3

}
(t) =

7

2
t2e−3t .

13. We apply partial fractions to find the inverse Laplace transform. Since the quadratic poly-

nomial s2 + 4s + 13 = (s + 2)2 + 32 is irreducible, the partial fraction decomposition for the

given function has the form

4s2 + 13s+ 19

(s− 1)(s2 + 4s+ 13)
=

A

s− 1
+
B(s+ 2) + C(3)

(s+ 2)2 + 32
.

Clearing fractions yields

4s2 + 13s+ 19 = A[(s + 2)2 + 32] + [B(s + 2) + C(3)](s− 1) .

With s = 1, this gives 36 = 18A or A = 2. Substituting s = −2, we get

9 = 9A− 9C ⇒ C = A− 1 = 1.

Finally, with s = 0, we compute

19 = 13A+ (2B + 3C)(−1) ⇒ B = 2.

Thus
4s2 + 13s+ 19

(s− 1)(s2 + 4s+ 13)
=

2

s− 1
+

2(s+ 2) + (1)(3)

(s+ 2)2 + 32
,
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and so

L−1

{
4s2 + 13s+ 19

(s− 1)(s2 + 4s+ 13)

}
(t) = 2L−1

{
1

s− 1

}
(t) + 2L−1

{
s + 2

(s+ 2)2 + 32

}
(t)

+L−1

{
3

(s+ 2)2 + 32

}
(t)

= 2et + 2e−2t cos 3t+ e−2t sin 3t .

15. The partial fraction decomposition for the given function has the form

2s2 + 3s− 1

(s+ 1)2(s+ 2)
=

A

(s+ 1)2
+

B

s+ 1
+

C

s+ 2
=
A(s+ 2) +B(s+ 1)(s+ 2) + C(s+ 1)2

(s+ 1)2(s+ 2)
.

Thus

2s2 + 3s− 1 = A(s+ 2) +B(s+ 1)(s+ 2) + C(s+ 1)2 .

We evaluate both sides of this equation at s = −2, −1, and 0. This yields

s = −2 : 2(−2)2 + 3(−2) − 1 = C(−2 + 1)2 ⇒ C = 1,

s = −1 : 2(−1)2 + 3(−1) − 1 = A(−1 + 2) ⇒ A = −2,

s = 0 : −1 = 2A+ 2B + C ⇒ B = (−1 − 2A− C)/2 = 1.

Therefore,

L−1

{
2s2 + 3s− 1

(s+ 1)2(s+ 2)

}
(t) = L−1

{ −2

(s+ 1)2
+

1

s+ 1
+

1

s+ 2

}
(t) = −2te−t + e−t + e−2t .

17. First we apply Theorem 8 in Section 7.6 to get

L−1

{
e−2s(4s+ 2)

(s− 1)(s+ 2)

}
(t) = L−1

{
4s+ 2

(s− 1)(s+ 2)

}
(t− 2)u(t− 2). (7.67)

Applying partial fractions yields

4s+ 2

(s− 1)(s+ 2)
=

2

s− 1
+

2

s+ 2
⇒ L−1

{
4s+ 2

(s− 1)(s+ 2)

}
(t) = 2et + 2e−2t .

Therefore, it follows from (7.67) that

L−1

{
e−2s(4s+ 2)

(s− 1)(s+ 2)

}
(t) =

[
2et−2 + 2e−2(t−2)

]
u(t− 2) =

(
2et−2 + 2e4−2t

)
u(t− 2).
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19. Applying the Laplace transform to both sides of the given equation and using the linearity of

the Laplace transform yields

L{y′′ − 7y′ + 10y} (s) = L{y′′} (s) − 7L{y′} (s) + 10L{y} (s) = 0. (7.68)

By Theorem 5 in Section 7.3,

L{y′} (s) = sL{y} (s) − y(0) = sL{y} (s),

L{y′′} (s) = s2L{y} (s) − sy(0) − y′(0) = s2L{y} (s) + 3,

where we have used the initial conditions, y(0) = 0 and y′(0) = −3. Substituting these

expressions into (7.68), we get[
s2L{y} (s) + 3

]− 7 [sL{y} (s)] + 10L{y} (s) = 0

⇒ (s2 − 7s+ 10)L{y} (s) + 3 = 0

⇒ L{y} (s) =
−3

s2 − 7s+ 10
=

−3

(s− 2)(s− 5)
=

1

s− 2
− 1

s− 5
.

Thus

y(t) = L−1

{
1

s− 2
− 1

s− 5

}
(t) = L−1

{
1

s− 2

}
(t) −L−1

{
1

s− 5

}
(t) = e2t − e5t .

21. Let Y (s) := L{y} (s). Taking the Laplace transform of the given equation and using proper-

ties of the Laplace transform, we obtain

L{y′′ + 2y′ + 2y} (s) = L{t2 + 4t
}

(s) =
2

s3
+

4

s2
=

2 + 4s

s3
.

Since

L{y′} (s) = sY (s) − y(0) = sY (s), L{y′′} (s) = s2Y (s) − sy(0) − y′(0) = s2Y (s) + 1,

we have [
s2Y (s) + 1

]
+ 2 [sY (s)] + 2Y (s) =

2 + 4s

s3

⇒ (s2 + 2s+ 2)Y (s) =
2 + 4s

s3
− 1 =

2 + 4s− s3

s3
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⇒ Y (s) =
2 + 4s− s3

s3(s2 + 2s+ 2)
=

2 + 4s− s3

s3[(s+ 1)2 + 12]
.

The partial fraction decomposition for Y (s) has the form

2 + 4s− s3

s3[(s+ 1)2 + 12]
=
A

s3
+
B

s2
+
C

s
+
D(s+ 1) + E(1)

(s+ 1)2 + 12
.

Clearing fractions, we obtain

2 + 4s− s3 = A[(s+ 1)2 + 1] +Bs[(s+ 1)2 + 1] + Cs2[(s+ 1)2 + 1] + [D(s+ 1) + E]s3 .

Comparing coefficients at the corresponding power of s in both sides of this equation yields

s0 : 2 = 2A ⇒ A = 1,

s1 : 4 = 2A+ 2B ⇒ B = (4 − 2A)/2 = 1,

s2 : 0 = A+ 2B + 2C ⇒ C = −(A + 2B)/2 = −3/2,

s4 : 0 = C +D ⇒ D = −C = 3/2,

s3 : −1 = B + 2C +D + E ⇒ E = −1 − B − 2C −D = −1/2.

Therefore,

Y (s) =
1

s3
+

1

s2
− 3/2

s
+

(3/2)(s+ 1)

(s+ 1)2 + 12
− (1/2)(1)

(s+ 1)2 + 12

⇒ y(t) = L−1 {Y (s)} (t) =
t2

2
+ t− 3

2
+

3

2
e−t cos t− 1

2
e−t sin t .

23. By formula (4) in Section 7.6,

L{u(t− 1)} (s) =
e−s

s
.

Thus, applying the Laplace transform to both sides of the given equation and using the initial

conditions, we get

L{y′′ + 3y′ + 4y} (s) =
e−s

s

⇒ [
s2Y (s) − 1

]
+ 3 [sY (s)] + 4Y (s) =

e−s

s

⇒ Y (s) =
1

s2 + 3s+ 4
+

e−s

s(s2 + 3s+ 4)
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⇒ Y (s) =
1

(s+ 3/2)2 + (
√

7/2)2
+ e−s 1

s[(s+ 3/2)2 + (
√

7/2)2]
,

where Y (s) := L{y} (s). To apply the inverse Laplace transform, we need the partial fraction

decomposition of the last fraction above.

1

s[(s+ 3/2)2 + (
√

7/2)2]
=
A

s
+
B(s+ 3/2) + C(

√
7/2)

(s+ 3/2)2 + (
√

7/2)2
.

Solving for A, B, and C yields

A =
1

4
, B = −1

4
, C = − 3

4
√

7
.

Therefore,

Y (s) =
1

(s+ 3/2)2 + (
√

7/2)2
+ e−s

[
1/4

s
− (1/4)(s+ 3/2)

(s+ 3/2)2 + (
√

7/2)2
− (3/4

√
7)(

√
7/2)

(s + 3/2)2 + (
√

7/2)2

]

and the inverse Laplace transform gives

y(t) = L−1

{
1

(s+ 3/2)2 + (
√

7/2)2

}
(t)

+L−1

{
1/4

s
− (1/4)(s+ 3/2)

(s+ 3/2)2 + (7/4)
− (3/4

√
7)(

√
7/2)

(s+ 3/2)2 + (7/4)

}
(t− 1)u(t− 1)

=
2√
7
e−3t/2 sin

(√
7t

2

)

+

[
1

4
− 1

4
e−3(t−1)/2 cos

(√
7(t− 1)

2

)
− 3

4
√

7
e−3(t−1)/2 sin

(√
7(t− 1)

2

)]
u(t− 1).

25. Let Y (s) := L{y} (s). Then, from the initial conditions, we have

L{y′} (s) = sY (s) − y(0) = sY (s), L{y′′} (s) = s2Y (s) − sy(0) − y′(0) = s2Y (s).

Moreover, Theorem 6 in Section 7.3 yields

L{ty′} (s) = − d

ds
L{y′} (s) = − d

ds
[sY (s)] = −sY ′(s) − Y (s),

L{ty′′} (s) = − d

ds
L{y′′} (s) = − d

ds

[
s2Y (s)

]
= −s2Y ′(s) − 2sY (s).
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Hence, applying the Laplace transform to the given equation and using the linearity of the

Laplace transform, we obtain

L{ty′′ + 2(t− 1)y′ − 2y} (s) = L{ty′′} (s) + 2L{ty′} (s) − 2L{y′} (s) − 2L{y} (s) = 0

⇒ [−s2Y ′(s) − 2sY (s)
]
+ 2 [−sY ′(s) − Y (s)] − 2 [sY (s)] − 2Y (s) = 0

⇒ −s(s+ 2)Y ′(s) − 4(s+ 1)Y (s) = 0 ⇒ Y ′(s) +
4(s+ 1)

s(s + 2)
Y (s) = 0.

Separating variables and integrating yields

dY

Y
= −4(s+ 1)

s(s + 2)
ds = −2

(
1

s
+

1

s+ 2

)
ds

⇒ ln |Y | = −2(ln |s| + ln |s+ 2|) + C

⇒ Y (s) = ± eC

s2(s+ 2)2
=

c1
s2(s+ 2)2

,

where c1 �= 0 is an arbitrary constant. Allowing c1 = 0, we also get the solution Y (s) ≡ 0,

which was lost in separation of variables. Thus

Y (s) =
c1

s2(s+ 2)2
=
c1
4

[
1

s2
− 1

s
+

1

(s+ 2)2
+

1

s+ 2

]
and so

y(t) = L−1 {Y (s)} (t) =
c1
4

(
t− 1 + te−2t + e−2t

)
= c
(
t− 1 + te−2t + e−2t

)
,

where c = c1/4 is an arbitrary constant.

27. Note that the original equation can be written in the form

y(t) + t ∗ y(t) = e−3t.

Let Y (s) := L{y} (s). Applying the Laplace transform to both sides of this equation and

using Theorem 11 in Section 7.7, we obtain

L{y(t) + t ∗ y(t)} (s) = Y (s) + L{t} (s)Y (s) = L{e−3t
}

(s)

⇒ Y (s) +
1

s2
Y (s) =

1

s+ 3
⇒ Y (s) =

s2

(s+ 3)(s2 + 1)
.
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The partial fraction decomposition for Y (s) has the form

s2

(s+ 3)(s2 + 1)
=

A

s+ 3
+
Bs+ C

s2 + 1
=
A(s2 + 1) + (Bs+ C)(s+ 3)

(s+ 3)(s2 + 1)
.

Thus

s2 = A(s2 + 1) + (Bs+ C)(s+ 3).

Evaluating both sides of this equation at s = −3, 0, and −2 yields

s = −3 : ⇒ 9 = A(10) ⇒ A = 9/10,

s = 0 : ⇒ 0 = A + 3C ⇒ C = −A/3 = −3/10,

s = −2 : ⇒ 4 = 5A− 2B + C ⇒ B = (5A+ C − 4)/2 = 1/10.

Therefore,

Y (s) =
9/10

s+ 3
+

(1/10)s

s2 + 1
− 3/10

s2 + 1

⇒ y(t) = L−1 {Y (s)} (t) =
9

10
e−3t +

1

10
cos t− 3

10
sin t .

29. To find the transfer function, we use formula (15) on page 403 of the text. Comparing given

equation with (14), we find that a = 1, b = −5, and c = 6. Thus (15) yields

H(s) =
1

as2 + bs + c
=

1

s2 − 5s+ 6
.

The impulse response function h(t) is defined as L−1 {H} (t). Using partial fractions, we see

that

H(s) =
1

s2 − 5s+ 6
=

1

(s− 3)(s− 2)
=

1

s− 3
− 1

s− 2

⇒ h(t) = L−1

{
1

s− 3
− 1

s− 2

}
(t) = e3t − e2t .

31. Let X(s) := L{x} (s), Y (s) := L{y} (s). Using the initial condition, we obtain

L{x′} (s) = sX(s) − x(0) = sX(s), L{y′} (s) = sY (s) − y(0) = sY (s).
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Therefore, applying the Laplace transform to both sides of the equations in the given system

yields

sX(s) + Y (s) = L{0} (s) = 0,

X(s) + sY (s) = L{1 − u(t− 2)} (s) =
1

s
− e−2s

s
=

1 − e−2s

s
.

Expressing Y (s) = −sX(s) from the first equation and substituting this into the second

equation, we eliminate Y (s):

X(s) − s2X(s) =
1 − e−2s

s

⇒ X(s) = − 1 − e−2s

s(s2 − 1)
= − 1 − e−2s

s(s− 1)(s+ 1)
.

Since

− 1

s(s− 1)(s+ 1)
=

1

s
− 1/2

s− 1
− 1/2

s+ 1
,

the inverse Laplace transform yields

x(t) = L−1

{(
1 − e−2s

)(1

s
− 1/2

s− 1
− 1/2

s+ 1

)}
(t)

= L−1

{
1

s
− 1/2

s− 1
− 1/2

s+ 1

}
(t) −L−1

{
1

s
− 1/2

s− 1
− 1/2

s+ 1

}
(t− 2)u(t− 2)

= 1 − et + e−t

2
−
[
1 − et−2 + e−(t−2)

2

]
u(t− 2) .

We now find y(t) from the first equation in the original system.

y(t) = −x′(t) =
et − e−t

2
− et−2 − e−(t−2)

2
u(t− 2) .
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CHAPTER 8: Series Solutions of Differential
Equations

EXERCISES 8.1: Introduction: The Taylor Polynomial Approximation, page 430

1. To find Taylor approximations

y(0) +
y′(0)

1!
x+

y′′(0)

2!
x2 +

y′′(0)

3!
x3 + · · · ,

we need the values of y(0), y′(0), y′′(0), etc. y(0) is provided by the initial condition, y(0) = 1.

Substituting x = 0 into the given differential equation,

y′(x) = x2 + y(x)2 , (8.1)

we obtain

y′(0) = 02 + y(0)2 = 0 + 12 = 1.

Differentiating both sides of (8.1) yields

y′′(x) = 2x+ 2y(x)y′(x),

and so

y′′(0) = 2(0) + 2y(0)y′(0) = 0 + 2(1)(1) = 2.

Hence

y(x) = 1 +
1

1!
x+

2

2!
x2 + · · · = 1 + x+ x2 + · · · .

3. Using the initial condition, y(0) = 0 we substitute x = 0 and y = 0 into the given equation

and find y′(0).

y′(0) = sin(0) + e0 = 1.
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To determine y′′(0), we differentiate the given equation with respect to x and substitute x = 0,

y = 0, and y′ = 1 in the formula obtained:

y′′(0) = (sin y + ex)′ = (sin y)′ + (ex)′ = y′ cos y + ex,

y′′(0) = 1 · cos 0 + e0 = 2.

Similarly, differentiating y′′(x) and substituting, we obtain

y′′′ = (y′ cos y + ex)
′
= (y′ cos y)

′
+ (ex)′ = y′′ cos y + (y′)2

(− sin y) + ex,

y′′′(0) = y′′(0) cos 0 + (y′(0))
2
(− sin y(0)) + e0 = 2 cos 0 + (1)2(− sin 0) + 1 = 3.

Thus the first three nonzero terms in the Taylor polynomial approximations to the solution

of the given initial value problem are

y(x) = y(0) +
y′(0)

1!
x+

y′′(0)

2!
x2 +

y′′′(0)

3!
x3 + · · ·

= 0 +
1

1
x+

2

2
x2 +

3

6
x3 + · · · = x+ x2 +

1

2
x3 + · · · .

5. We need the values of x(0), x′(0), x′′(0), etc. The first two are given by the initial conditions:

x(0) = 1, x′(0) = 0.

Writing the given equation in the form

x′′(t) = −tx(t) (8.2)

we find that

x′′(0) = −0 · x(0) = −0 · 1 = 0.

Differentiating (8.2) and substituting t = 0 we conclude that

x′′′(t) = − [tx′(t) + x(t)] ⇒ x′′′(0) = − [0 · x′(0) + x(0)] = −1,

x(4)(t) = − [tx′′(t) + 2x′(t)] ⇒ x(4)(0) = − [0 · x′′(0) + 2x′(0)] = 0,

x(5)(t) = − [tx′′′(t) + 3x′′(t)] ⇒ x(5)(0) = − [0 · x′′′(0) + 3x′′(0)] = 0,

x(6)(t) = − [tx(4)(t) + 4x′′′(t)
] ⇒ x(6)(0) = − [0 · x(4)(0) + 4x′′′(0)

]
= 4.

Therefore,

x(t) = 1 − 1

3!
t3 +

4

6!
t6 + · · · = 1 − t3

6
+

t6

180
+ · · · .
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7. We use the initial conditions to find y′′(0). Writing the given equation in the form

y′′(θ) = −y(θ)3 + sin θ

and substituting θ = 0, y(0) = 0 we get

y′′(0) = −y(0)3 + sin 0 = 0.

Differentiating the given equation we obtain

y′′′ = (y′′)′ = − (y3
)′

+ (sin θ)′ = −3y2y′ + cos θ

⇒ y′′′(0) = −3y(0)2y′(0) + cos 0 = −3(0)2(0) + 1 = 1.

Similarly, we get

y(4) = (y′′′)′ = −3y2y′′ − 6y (y′)2 − sin θ

⇒ y(4)(0) = −3y(0)2y′′(0) − 6y(0) (y′(0))
2 − sin 0 = 0.

To simplify further computations we observe that since the Taylor expansion for y(θ) has the

form

y(θ) =
1

3!
θ3 + · · · ,

then the Taylor expansion for y(θ)3 must begin with the term (1/3!)3θ9, so that(
y(θ)3

)(k)
∣∣∣
θ=0

= 0 for k = 0, 1, . . . , 8 .

Hence

y(5) = − (y3
)(3) − cos θ ⇒ y(5)(0) = − (y3

)(3) ∣∣∣
θ=0

− cos 0 = −1,

y(6) = − (y3
)(4)

+ sin θ ⇒ y(6)(0) = − (y3
)(4) ∣∣∣

θ=0
− sin 0 = 0,

y(7) = − (y3
)(5)

+ cos θ ⇒ y(7)(0) = − (y3
)(5) ∣∣∣

θ=0
+ cos 0 = 1.

Thus, the first three nonzero terms of the Taylor approximations are

y(θ) =
1

3!
θ3 − 1

5!
θ5 +

1

7!
θ7 + · · · =

1

6
θ3 − 1

120
θ5 +

1

5040
θ7 + · · ·
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9. (a) To construct p3(x) we need f(1), f ′(1), f ′′(1), and f ′′′(1). Thus we have

f(x) = ln x ⇒ f(1) = ln 1 = 0,

f ′(x) = x−1 ⇒ f ′(1) = (1)−1 = 1,

f ′′(x) = −x−2 ⇒ f ′′(1) = −(1)−2 = −1,

f ′′′(x) = 2x−3 ⇒ f ′′′(1) = 2(1)−3 = 2,

and so

p3(x) = 0 +
1

1!
(x− 1) +

−1

2!
(x− 1)2 +

2

3!
(x− 1)3

= x− 1 − (x− 1)2

2
+

(x− 1)3

3
.

(b) To apply formula (6), we first compute

f (4)(x) = [f ′′′(x)]′ =
(
2x−3

)′
= −6x−4 .

Thus, the error formula (6) yields

lnx− p3(x) =: e3(x) =
f (4)(ξ)

4!
(x− x0)

4 =
−6ξ−4

24
(x− 1)4 = −(x− 1)4

4ξ4

⇒ |ln(1.5) − p3(1.5)| =

∣∣∣∣−(1.5 − 1)4

4ξ4

∣∣∣∣ = (0.5)4

4ξ4

⇒ |ln(1.5) − p3(1.5)| ≤ (0.5)4

4
=

1

64
= 0.015625 ,

where we have used the fact ξ > 1.

(c) Direct calculations yield

|ln(1.5) − p3(1.5)| ≈
∣∣∣∣0.405465 −

(
0.5 − (0.5)2

2
+

(0.5)3

3

)∣∣∣∣ ≈ 0.011202 .

(d) See Figure B.51 in the answers of the text.

11. First, we rewrite the given equation in the form

y′′ = −py′ − qy + g.
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On the right-hand side of this equation, the function y′ is differentiable (y′′ exists) and the

functions y, p, q, and g are differentiable (even twice). Thus we conclude that its left-hand

side, y′′, is differentiable being the product, sum, and difference of differentiable functions.

Therefore, y′′′ = (y′′)′ exists and is given by

y′′′ = (−py′ − qy + g)
′
= −p′y′ − py′′ − q′y − qy′ + g′.

Similarly, we conclude that the right-hand side of the equation above is a differentiable func-

tion since all the functions involved are differentiable (notice that we have just proved the

differentiability of y′′). Hence, y′′′, its left-hand side is differentiable as well, i.e., (y′′′)′ = y(4)

does exist.

13. With form k = r = A = 1 and ω = 10, the Duffing’s equation becomes

y′′ + y + y3 = cos 10t or y′′ = −y − y3 + cos 10t.

Substituting the initial conditions, y(0) = 0 and y′(0) = 1 into the latter equation yields

y′′(0) = −y(0) − y(0)3 + cos(10 · 0) = −0 − (0)3 + cos 0 = 1.

Differentiating the given equation, we conclude that

y′′′ =
(−y − y3 + cos 10t

)′
= −y′ − 3y2y′ − 10 sin 10t,

which, at t = 0, gives

y′′′(0) = −y′(0) − 3y(0)2y′(0) − 10 sin(10 · 0) = −1 − 3(0)2(1) − 10 sin 0 = −1.

Thus, the Taylor polynomial approximations to the solution of the given initial value problem

are

y(t) = y(0) +
y′(0)

1!
t+

y′′(0)

2!
t2 +

y′′′(0)

3!
t3 + · · · = t+

1

2
t2 − 1

6
t3 + · · · .

15. For the Taylor polynomial p2(x), we need y(0), y′(0), and y′′(0). We already know y(0) and

y′(0) from the initial conditions:

y(0) = 1 and y′(0) = 0.
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Expressing y′′(x) from the given equation yields

y′′(x) = −2y′(x) + xy(x)

x
. (8.3)

The formal substitution of x = 0 in (8.3) gives “0/0”–indeterminate form. On the other hand,

since the differentiability of a function implies its continuity, and we are given that y(x) has

derivatives of all orders at x = 0, we conclude that all the derivatives of y(x) are continuous

at x = 0. Therefore,

y′′(0) = lim
x→0

y′′(x),

and we can find the above limit by applying L’Hospital’s rule. Namely,

y′′(0) = lim
x→0

[
−2y′(x) + xy(x)

x

]
= − lim

x→0

[2y′(x) + xy(x)]′

(x)′
= − lim

x→0
[2y′′(x) + xy′(x) + y(x)] ,

and the last limit can be found by substitution due to the continuity of y(x) and its derivatives

at x = 0. Hence,

y′′(0) = − [2y′′(0) + 0 · y′(0) + y(0)] = −2y′′(0) − 1.

Solving for y′′(0) yields y′′(0) = −1/3, and so

p2(x) = y(0) +
y′(0)

1!
x+

y′′(0)

2!
x2 = 1 − x2

6
.

EXERCISES 8.2: Power Series and Analytic Functions, page 438

1. Since an = 2−n/(n+ 1), the ratio test yields

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

2−(n+1)/(n+ 2)

2−n/(n+ 1)
= lim

n→∞
2−1(n+ 1)

n + 2
=

1

2
= L.

So, the radius of convergence is

ρ =
1

L
= 2.
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In this power series, x0 = 1. Hence, the endpoints of the interval of convergence are

x1 = x0 + ρ = 1 + 2 = 3,

x2 = x0 − ρ = 1 − 2 = −1.

At the point x1, the series becomes

∞∑
n=0

2−n

n + 1
(3 − 1)n =

∞∑
n=0

1

n+ 1
= ∞

(harmonic series); at the point x2 we have

∞∑
n=0

2−n

n+ 1
(−1 − 1)n =

∞∑
n=0

(−1)n

n+ 1
<∞

by alternating series test. Therefore, the set of convergence is [−1, 3).

3. We will use the ratio test given in Theorem 2 on page 432 of the text to find the radius of

convergence for this power series. Since an = n2/2n, we see that

an+1

an
=

(n + 1)2/2n+1

n2/2n
=

(n+ 1)2

2n2
.

Therefore, we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)2

2n2

∣∣∣∣ = 1

2
lim

n→∞
(n + 1)2

n2
=

1

2
lim

n→∞

(
1 +

1

n

)2

=
1

2
.

Thus, the radius of convergence is ρ = 2. Hence, this power series converges absolutely for

|x+ 2| < 2. That is, for

−2 < x+ 2 < 2 or − 4 < x < 0.

We must now check the end points of this interval. We first check the end point −4 or

x+ 2 = −2 which yields the series

∞∑
n=0

n2(−2)n

2n
=

∞∑
n=0

(−1)nn2.

This series diverges since the nth term, an = (−1)nn2, does not approach zero as n goes to

infinity. (Recall that it is necessary for the nth term of a convergent series to approach zero
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as n goes to infinity. But this fact in itself does not prove that a series converges.) Next, we

check the end point x = 0 or x+ 2 = 2 which yields the series

∞∑
n=0

n22n

2n
=

∞∑
n=0

n2.

Again, as above, this series diverges. Therefore, this power series converges in the open interval

(−4, 0) and diverges outside of this interval.

5. With an = 3/n3, the ratio test gives

L = lim
n→∞

3/(n+ 1)3

3/n3
= lim

n→∞

(
n

n+ 1

)3

=

(
lim

n→∞
n

n+ 1

)3

= 1.

Therefore, the radius of convergence is ρ = 1/L = 1. At the points x0 ± ρ = 2 ± 1, that is,

x = 3 and x = 1, we have the series

∞∑
n=0

3

n3
and

∞∑
n=0

3(−1)n

n3
,

which are known to converge. Therefore, the set of convergence of the given series is the closed

interval [1, 3].

7. By writing
∞∑

k=0

a2kx
2k =

∞∑
k=0

a2k

(
x2
)k

=
∞∑

k=0

bkz
k ,

where bk := a2k and z := x2, we obtain a power series centered at the origin. The ratio test

then yields the radius of convergence to be 1/L, where

L = lim
k→∞

∣∣∣∣bk+1

bk

∣∣∣∣ = lim
k→∞

∣∣∣∣a2(k+1)

a2k

∣∣∣∣ = lim
k→∞

∣∣∣∣a2k+2

a2k

∣∣∣∣ .
So, the series

∑∞
k=0 bkz

k converges for |z| < 1/L and diverges for |z| > 1/L. Since z = x2,

|z| < 1

L
⇔ ∣∣x2

∣∣ < 1

L
⇔ |x| < 1√

L
.

Hence, the original series converges for |x| < 1/
√
L and diverges for |x| > 1/

√
L. By the

definition, 1/
√
L is its radius of convergence.
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The second statement can be proved in a similar way, since

∞∑
k=0

a2k+1x
2k+1 = x

∞∑
k=0

a2k+1

(
x2
)k

= x
∞∑

k=0

bkz
k ,

where bk := a2k+1 and z := x2.

9. Since the addition of power series reduces to the addition of the coefficients at the correspond-

ing powers of the variable, we make the following changes in indices of summation.

f(x) : n→ k ⇒ f(x) =
∑∞

k=0 [1/(k + 1)]xk ,

g(x) : n− 1 → k ⇒ g(x) =
∑∞

k=0 2−(k+1)xk .

Therefore,

f(x) + g(x) =

∞∑
k=0

1

k + 1
xk +

∞∑
k=0

2−(k+1)xk =

∞∑
k=0

[
1

k + 1
+ 2−k−1

]
xk .

11. We want to find the product f(x)g(x) of the two series

f(x) =
∞∑

n=0

xn

n!
= 1 + x+

x2

2
+
x3

6
+
x4

24
+ · · · ,

and

g(x) = sin x =

∞∑
k=0

[
(−1)k

(2k + 1)!

]
x2k+1 = x− x3

6
+

x5

120
− x7

7!
+ · · · .

Therefore, we have

f(x)g(x) =

(
1 + x+

x2

2
+
x3

6
+
x4

24
+ · · ·

)(
x− x3

6
+

x5

120
− x7

7!
+ · · ·

)
= x+ x2 +

(
1

2
− 1

6

)
x3 +

(
1

6
− 1

6

)
x4 +

(
1

24
− 1

12
+

1

120

)
x5 + · · ·

= x+ x2 + +
1

3
x3 + · · · .

Note that since the radius of convergence for both of the given series is ρ = ∞, the expansion

of the product f(x)g(x) also converges for all values of x.
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13. Using formula (6) on page 434 of the text, we obtain

f(x)g(x) =

[ ∞∑
n=0

(−1)n

n!
xn

][ ∞∑
n=0

(−1)nxn

]

=

(
1 − x+

1

2
x2 − 1

6
x3 + · · ·

)(
1 − x+ x2 − x3 + · · ·)

= (1)(1) + [(1)(−1) + (−1)(1)] x+

[
(1)(1) + (−1)(−1) +

(
1

2

)
(1)

]
x2 + · · ·

= 1 − 2x+
5

2
x2 + · · ·

15. (a) Let q(x) =
∑∞

n=0 anx
n. Multiplying both sides of the given equation by

∑∞
n=0 x

n/n!, we

obtain ( ∞∑
n=0

anx
n

)( ∞∑
n=0

1

n!
xn

)
=

∞∑
n=0

1

2n
xn .

Thus, the right-hand side,
∑∞

n=0 x
n/2n, is the Cauchy product of q(x) and

∑∞
n=0 x

n/n!.

(b) With cn = 1/2n and bn = 1/n!, formula (6) on page 434 of the text yields:

n = 0 :
1

20
= c0 = a0b0 = a0 · 1

0!
= a0 ;

n = 1 :
1

21
= c1 = a0b1 + a1b0 = a0 · 1

1!
+ a1 · 1

0!
= a0 + a1 ;

n = 2 :
1

22
= c2 = a0b2 + a1b1 + a2b0 = a0 · 1

2!
+ a1 · 1

1!
+ a2 · 1

0!
=
a0

2
+ a1 + a2 ;

n = 3 :
1

23
= c3 = a0b3 + a1b2 + a2b1 + a3b0 =

a0

6
+
a1

2
+ a2 + a3 ;

etc.

(c) The system in (b) simplifies to

1 = a0 ,

1/2 = a0 + a1 ,

1/4 = a0/2 + a1 + a2 ,

1/8 = a0/6 + a1/2 + a2 + a3 ,
...

⇒

a0 = 1 ,

a1 = 1/2 − a0 = −1/2 ,

a2 = 1/4 − a0/2 − a1 = 1/4 ,

a3 = 1/8 − a0/6 − a1/2 − a2 = −1/24 ,
...

500



Exercises 8.2

Thus,

q(x) = 1 − 1

2
x+

1

4
x2 − 1

24
x3 + · · · .

17. Since

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(−1)n+1

(−1)n

∣∣∣∣ = lim
n→∞

1 = 1,

by the ratio test, we find the radius of convergence of the given series to be ρ = 1/1 = 1 > 0.

Therefore, Theorem 4 of page 434 of the text can be applied. This yields

[
(1 + x)−1

]′
=

∞∑
n=1

(−1)nnxn−1 ⇒ −(1 + x)−2 =

∞∑
n=1

(−1)nnxn−1 ,

and the radius of convergence of this series is also ρ = 1.

19. Here we will assume that this series has a positive radius of convergence. Thus, since we have

f(x) =

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + · · ·+ anx

n + · · · ,

we can differentiate term by term to obtain

f ′(x) = 0 + a1 + a22x+ a33x
2 + · · ·+ annx

n−1 + · · · =

∞∑
n=1

annx
n−1 .

Note that the summation for f(x) starts at zero while the summation for f ′(x) starts at one.

21. Using the ratio test, we find that the radius ρ of convergence of the given series is

ρ =
1

limn→∞ |(−1)n+1/(−1)n| =
1

1
= 1 > 0.

Thus, by Theorem 4 on page 434 of the text,

g(x) =

x∫
0

f(t) dt =

x∫
0

[ ∞∑
n=0

(−1)ntn

]
dt

=

∞∑
n=0

(−1)n

x∫
0

tn dt =

∞∑
n=0

(−1)n 1

n+ 1
tn+1

∣∣∣∣x
0

=

∞∑
n=0

(−1)n

n+ 1
xn+1 .
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On the other hand,

g(x) =

x∫
0

dt

1 + t
= ln(1 + t)

∣∣∣x
0
= ln(1 + x), x ∈ (−1, 1).

23. Setting k = n− 1, we have n = k + 1. Note that k = 0 when n = 1. Hence, substitution into

the given series yields
∞∑

n=1

nanx
n−1 =

∞∑
k=0

(k + 1)ak+1x
k .

25. We let n+ 1 = k so that n = k − 1; when n = 0, then k = 1. Thus,

∞∑
n=0

anx
n+1 =

∞∑
k=1

ak−1x
k .

27. Termwise multiplication yields

x2
∞∑

n=0

n(n + 1)anx
n =

∞∑
n=0

n(n+ 1)anx
nx2 =

∞∑
n=0

n(n + 1)anx
n+2 .

Now we can shift the summation index by letting k = n + 2. Then we have n = k − 2,

n+ 1 = k − 1, k = 2 when n = 0, and so

∞∑
n=0

n(n + 1)anx
n+2 =

∞∑
k=2

(k − 2)(k − 1)ak−2x
k .

By replacing k by n, we obtain the desired form.

29. We need to determine the nth derivative of f(x) at the point x = π. Thus, we observe that

f(x) = f (0)(x) = cosx ⇒ f(π) = f (0)(π) = cosπ = −1,

f ′(x) = − sin x ⇒ f ′(π) = − sin π = 0,

f ′′(x) = − cosx ⇒ f ′′(π) = − cos π = 1,

f ′′′(x) = sin x ⇒ f ′′′(π) = sin π = 0,

f (4)(x) = cosx ⇒ f (4)(π) = cosπ = −1.

Since f (4)(x) = cos x = f(x), the four derivatives given above will be repeated indefinitely.

Thus, we see that f (n)(π) = 0 if n is odd and f (n)(π) = ±1 if n is even (where the signs
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alternate starting at −1 when n = 0). Therefore, the Taylor series for f about the point

x0 = π is given by

f(x) = −1 + 0 +
1

2!
(x− π)2 + 0 − 1

4!
(x− π)4 + · · · + (−1)n+1(x− π)2n

(2n)!
+ · · ·

=

∞∑
n=0

(−1)n+1(x− π)2n

(2n)!
.

31. Writing

f(x) =
1 + x

1 − x
=

(1 − x) + 2x

1 − x
= 1 + 2x

1

1 − x
,

we can use the power series expansion (3) on page 433 of the text (geometric series) to obtain

the desired Taylor series. Thus we have

f(x) = 1 + 2x
1

1 − x
= 1 + 2x

∞∑
k=0

xk = 1 +

∞∑
k=0

2xk+1 .

Shifting the summation index, that is, letting k + 1 = n, yields

f(x) = 1 +
∞∑

k=0

2xk+1 = 1 +
∞∑

n=1

2xn .

33. Using the formula

cj =
f (j)(x0)

j!

for the coefficients of the Taylor series for f(x) about x0, we find

f(x0) = x3 + 3x− 4
∣∣
x=1

= 0 ⇒ c0 = 0,

f ′(x0) = 3x2 + 3
∣∣
x=1

= 6 ⇒ c1 = 6/1! = 6,

f ′′(x0) = 6x
∣∣
x=1

= 6 ⇒ c2 = 6/2! = 3,

f ′′′(x) ≡ 6 ⇒ c3 = 6/3! = 1,

f (j)(x) ≡ 0 ⇒ cj = 0 for j ≥ 4.

Therefore,

x3 + 3x− 4 = 6(x− 1) + 3(x− 1)2 + (x− 1)3 .
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35. (a) We have
1

x
=

1

1 + (x− 1)
=

1

1 − s
, where s = −(x− 1).

Since 1/(1− s) =
∑∞

n=0 s
n, the substitution s = −(x− 1) into both sides of this equality

yields the expansion

1

x
=

1

1 − s
=

∞∑
n=0

sn =
∞∑

n=0

[−(x− 1)]n =
∞∑

n=0

(−1)n(x− 1)n ,

which is valid for

|s| = |x− 1| < 1 ⇒ 0 < x < 2 .

(b) Since the above series has positive radius of convergence ρ = 1, Theorem 4 on page 434

of the text can be applied. Hence, for 0 < x < 2,

ln x =

x∫
1

1

t
dt =

x∫
1

[ ∞∑
n=0

(−1)n(t− 1)n

]
dt =

∞∑
n=0

(−1)n

x∫
1

(t− 1)n dt

=

∞∑
n=0

(−1)n 1

n+ 1
(t− 1)n+1

∣∣∣∣x
1

=

∞∑
n=0

(−1)n

n + 1
(x− 1)n+1 =

∞∑
k=1

(−1)k−1

k
(x− 1)k .

37. For n = 0, f (0)(0) := f(0) = 0 by the definition of f(x).

To find f ′(0), we use the definition of the derivative.

f ′(0) = lim
x→0

f(x) − f(0)

x− 0
= lim

x→0

e−1/x2

x
. (8.4)

We compute left-hand and right-hand side limits by making the substitution t = 1/x. Note

that t→ +∞ when x→ 0+ and t→ −∞ when x→ 0−. Thus we have

lim
x→0±

e−1/x2

x
= lim

t→±∞
te−t2 = lim

t→±∞
t

et2
= lim

t→±∞
1

2tet2
= 0,

where we applied L’Hospital’s rule to the indeterminate form ∞/∞. Therefore, the limit in

(8.4) exists and equals 0. For any x �= 0,

f ′(x) =
(
e−1/x2

)′
= e−1/x2

(
− 1

x2

)′
=

2

x3
e−1/x2

.
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Next, we proceed by induction. Assuming that, for some n ≥ 1,

f (n)(0) = 0 and f (n)(x) = p

(
1

x

)
e−1/x2

, x �= 0,

where p(t) is a polynomial in t, we show that

f (n+1)(0) = 0 and f (n+1)(x) = q

(
1

x

)
e−1/x2

, x �= 0,

where q(t) is a polynomial in t. This will imply that f (n)(0) = 0 for all n ≥ 0.

Indeed, the substitution t = 1/x in the one-sided limits yields

lim
x→0±

f (n)(x) − f (n)(0)

x− 0
= lim

x→0±

p(1/x)e−1/x2

x
= lim

t→±∞
tp(t)

et2
= lim

t→±∞
r(t)

et2
,

where r(t) = a0t
k + · · ·+ak is a polynomial. Applying the L’Hospital’s rule k times, we obtain

lim
t→±∞

r(t)

et2
= lim

t→±∞
r′(t)

(et2)
′ = lim

t→±∞
r′(t)
2tet2

= lim
t→±∞

r′′(t)
(4t2 + 2)et2

= · · · = lim
t→±∞

k!a0

(2ktk + · · · )et2
= 0 .

Since both one-sided limits exist and are equal, the regular limit exists and equals to the same

number. That is,

f (n+1)(0) = lim
x→0

f (n)(x) − f (n)(0)

x− 0
= 0.

For any x �= 0,

f (n+1)(x) =

[
p

(
1

x

)
e−1/x2

]′
=

[
p′
(

1

x

)(
1

x

)′ ]
e−1/x2

+ p

(
1

x

)[
e−1/x2

(
− 1

x2

)′ ]
=

[
−p′
(

1

x

)
1

x2
+ p

(
1

x

)
2

x3

]
e−1/x2

= q

(
1

x

)
e−1/x2

,

where q(t) = −p′(t)t2 + p(t)2t3.

EXERCISES 8.3: Power Series Solutions to Linear Differential Equations, page 449

1. Dividing the given equation by (x+ 1) yields

y′′ − x2

x+ 1
y′ +

3

x+ 1
y = 0.
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Thus we see that

p(x) = − x2

x+ 1
, q(x) =

3

x+ 1
.

These are rational functions and so they are analytic everywhere except, perhaps, at zeros

of their denominators. Solving x + 1 = 0, we find that x = −1, which is a point of infinite

discontinuity for both functions. Consequently, x = −1 is the only singular point of the given

equation.

3. Writing the equation in standard form yields

y′′ +
2

θ2 − 2
y′ +

sin θ

θ2 − 2
y = 0.

The coefficients

p(θ) =
2

θ2 − 2
and q(θ) =

sin θ

θ2 − 2

are quotients of analytic functions, and so they are analytic everywhere except zeros θ = ±√
2

of the denominator where they have infinite discontinuities. Hence, the given equation has

two singular points, θ = ±√
2.

5. In standard form, the equation becomes

x′′ +
t+ 1

t2 − t− 2
x′ − t− 2

t2 − t− 2
x = 0.

Hence

p(t) =
t+ 1

t2 − t− 2
=

t+ 1

(t+ 1)(t− 2)
, q(t) = − t− 2

t2 − t− 2
= − t− 2

(t+ 1)(t− 2)
.

The point t = −1 is a removable singularity for p(t) since, for t �= −1, we can cancel (t+1)-term

in the numerator and denominator, and so p(t) becomes analytic at t = −1 if we set

p(−1) := lim
t→−1

p(t) = lim
t→−1

1

t− 2
= −1

3
.

At the point t = 2, p(t) has infinite discontinuity. Thus p(t) is analytic everywhere except

t = 2. Similarly, q(t) is analytic everywhere except t = −1. Therefore, the given equation has

two singular points, t = −1 and t = 2.
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7. In standard form, this equation becomes

y′′ +
(cosx

sin x

)
y = 0.

Thus, p(x) = 0 and, hence, is analytic everywhere. We also see that

q(x) =
cosx

sin x
= cot x.

Note that q(x) is the quotient of two functions (cosx and sin x) that each have a power series

expansion with a positive radius of convergence about each real number x. Thus, according to

page 434 of the text, we see that q(x) will also have a power series expansion with a positive

radius of convergence about every real number x as long as the denominator, sinx, is not

equal to zero. Since the cotangent function is ±∞ at integer multiples of π, we see that q(x)

is not defined and, therefore, not analytic at nπ. Hence, the differential equation is singular

only at the points nπ, where n is an integer.

9. Dividing the differential equation by sin θ, we get

y′′ − ln θ

sin θ
y = 0.

Thus, p(θ) ≡ 0 and q(θ) = − ln θ/ sin θ. The function q(θ) is not defined for θ ≤ 0 because

of the logarithmic term and has infinite discontinuities at positive zeros of the denominator.

Namely,

sin θ = 0 ⇒ θ = kπ, k = 1, 2, 3, . . . .

At all other points θ, q(θ) is analytic as a quotient of two analytic functions. Hence, the

singular points of the given equation are

θ ≤ 0 and θ = kπ, k = 1, 2, 3, . . . .

11. The coefficient, x + 2, is a polynomial, and so it is analytic everywhere. Therefore, x = 0 is

an ordinary point of the given equation. We seek a power series solution of the form

y(x) =

∞∑
n=0

anx
n ⇒ y′(x) =

∞∑
n=1

nanx
n−1 ,
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where we have applied Theorem 4 on page 434 of the text to find the power series expansion

of y′(x). We now substitute the power series for y and y′ into the given differential equation

and obtain
∞∑

n=1

nanx
n−1 + (x+ 2)

∞∑
n=0

anx
n = 0

⇒
∞∑

n=1

nanx
n−1 +

∞∑
n=0

2anx
n +

∞∑
n=0

anx
n+1 = 0. (8.5)

To sum these series, we make shifts in indices of summation so that they sum over the same

power of x. In the first sum, we set k = n− 1 so that n = k + 1 and k runs from 0 to ∞; in

the second sum, we just replace n by k; in the third sum, we let k = n+ 1 and so n = k − 1,

and the summation starts from 1. Thus the equation (8.5) becomes

∞∑
k=0

(k + 1)ak+1x
k +

∞∑
k=0

2akx
k +

∞∑
k=1

ak−1x
k = 0

⇒
[
a1 +

∞∑
k=1

(k + 1)ak+1x
k

]
+

[
2a0 +

∞∑
k=1

2akx
k

]
+

∞∑
k=1

ak−1x
k = 0

⇒ (a1 + 2a0) +
∞∑

k=1

[(k + 1)ak+1 + 2ak + ak−1] x
k = 0.

For the power series on the left-hand side to be identically zero, we must have all zero coeffi-

cients. Hence,

a1 + 2a0 = 0 and (k + 1)ak+1 + 2ak + ak−1 = 0 for all k ≥ 1.

This yields

a1 + 2a0 = 0 ⇒ a1 = −2a0 ,

k = 1 : 2a2 + 2a1 + a0 = 0 ⇒ a2 = (−2a1 − a0) /2 = (4a0 − a0) /2 = 3a0/2 ,

k = 2 : 3a3 + 2a2 + a1 = 0 ⇒ a3 = (−2a2 − a1) /3 = (−3a0 + 2a0) /3 = −a0/3 ,
...

Therefore,

y(x) = a0 − 2a0x+
3a0

2
x2 − a0

3
x3 + · · · = a0

(
1 − 2x+

3x2

2
− x3

3
+ · · ·

)
,

where a0 is an arbitrary constant (which is, actually, y(0)).
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13. This equation has no singular points since the coefficients p(x) ≡ 0 and q(x) = −x2 are

analytic everywhere. So, let

z(x) =

∞∑
k=0

akx
k ⇒ z′(x) =

∞∑
k=1

kakx
k−1 ⇒ z′′(x) =

∞∑
k=2

k(k − 1)akx
k−2 ,

where we used Theorem 4 on page 434 of the text differentiating the series termwise. Substi-

tution z and z′′ into the given equation yields

z′′ − x2z =
∞∑

k=2

k(k − 1)akx
k−2 − x2

∞∑
k=0

akx
k =

∞∑
k=2

k(k − 1)akx
k−2 −

∞∑
k=0

akx
k+2 .

We now shift indices of summation so that they sum over the same power of x. For the first

sum, we substitute n = k − 2 so that k = n + 2, k − 1 = n + 1, and the summation starts

from n = 0. In the second summation, we let n = k + 2 which yields k = n− 2 and n = 2 as

the starting index. Thus we obtain

z′′ − x2z =
∞∑

n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=2

an−2x
n .

Next step in writing the right-hand side as a single power series is to start both summations

at the same point. To do this we observe that

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=2

an−2x
n = 2a2 + 6a3x+

∞∑
n=2

(n + 2)(n+ 1)an+2x
n −

∞∑
n=2

an−2x
n

= 2a2 + 6a3x+

∞∑
n=2

[(n+ 2)(n+ 1)an+2 − an−2] x
n .

In order for this power series to equal zero, each coefficient must be zero. Therefore, we obtain

2a2 = 0, 6a3 = 0 and (n+ 2)(n+ 1)an+2 − an−2 = 0, n ≥ 2 .

From the first two equations we find that a2 = 0 and a3 = 0. Next we take n = 2 and n = 3

in the above recurrence relation and get

n = 2 : (4)(3)a4 − a0 = 0 ⇒ a4 = a0/12 ,

n = 3 : (5)(4)a5 − a1 = 0 ⇒ a5 = a1/20 .
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Hence,

z(x) =
∞∑

k=0

akx
k = a0 + a1x+ (0)x2 + (0)x3 +

a0

12
x4 +

a1

20
x5 + · · ·

= a0

(
1 +

x4

12
+ · · ·

)
+ a1

(
x+

x5

20
+ · · ·

)
.

15. Zero is an ordinary point for this equation since the functions p(x) = x − 1 and q(x) = 1

are both analytic everywhere and, hence, at the point x = 0. Thus, we can assume that the

solution to this linear differential equation has a power series expansion with a positive radius

of convergence about the point x = 0. That is, we assume that

y(x) = a0 + a1x+ a2x
2 + a3x

3 + · · · =
∞∑

n=0

anx
n.

In order to solve the differential equation we must find the coefficients an. To do this, we must

substitute y(x) and its derivatives into the given differential equation. Hence, we must find

y′(x) and y′′(x). Since y(x) has a power series expansion with a positive radius of convergence

about the point x = 0, we can find its derivative by differentiating term by term. We can

similarly differentiate y′(x) to find y′′(x). Thus, we have

y′(x) = 0 + a1 + 2a2x+ 3a3x
2 + · · · =

∞∑
n=1

nanx
n−1

⇒ y′′(x) = 2a2 + 6a3x+ · · · =

∞∑
n=2

n(n− 1)anx
n−2 .

By substituting these expressions into the differential equation, we obtain

y′′ + (x− 1)y′ + y =

∞∑
n=2

n(n− 1)anx
n−2 + (x− 1)

∞∑
n=1

nanx
n−1 +

∞∑
n=0

anx
n = 0.

Simplifying yields

∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=1

nanx
n −

∞∑
n=1

nanx
n−1 +

∞∑
n=0

anx
n = 0. (8.6)

We want to be able to write the left-hand side of this equation as a single power series. This

will allow us to find expressions for the coefficient of each power of x. Therefore, we first need
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to shift the indices in each power series above so that they sum over the same powers of x.

Thus, we let k = n− 2 in the first summation and note that this means that n = k + 2 and

that k = 0 when n = 2. This yields

∞∑
n=2

n(n− 1)anx
n−2 =

∞∑
k=0

(k + 2)(k + 1)ak+2x
k.

In the third power series, we let k = n − 1 which implies that n = k + 1 and k = 0 when

n = 1. Thus, we see that
∞∑

n=1

nanx
n−1 =

∞∑
k=0

(k + 1)ak+1x
k.

For the second and last power series we need only to replace n with k. Substituting all of

these expressions into their appropriate places in equation (8.6) above yields

∞∑
k=0

(k + 2)(k + 1)ak+2x
k +

∞∑
k=1

kakx
k −

∞∑
k=0

(k + 1)ak+1x
k +

∞∑
k=0

akx
k = 0.

Our next step in writing the left-hand side as a single power series is to start all of the

summations at the same point. To do this we observe that

∞∑
k=0

(k + 2)(k + 1)ak+2x
k = (2)(1)a2x

0 +

∞∑
k=1

(k + 2)(k + 1)ak+2x
k,

∞∑
k=0

(k + 1)ak+1x
k = (1)a1x

0 +

∞∑
k=1

(k + 1)ak+1x
k,

∞∑
k=0

akx
k = a0x

0 +
∞∑

k=1

akx
k.

Thus, all of the summations now start at one. Therefore, we have

(2)(1)a2x
0 +

∞∑
k=1

(k + 2)(k + 1)ak+2x
k +

∞∑
k=1

kakx
k

−(1)a1x
0 −

∞∑
k=1

(k + 1)ak+1x
k + a0x

0 +
∞∑

k=1

akx
k = 0

⇒ 2a2 − a1 + a0 +

∞∑
k=1

(
(k + 2)(k + 1)ak+2x

k + kakx
k − (k + 1)ak+1x

k + akx
k
)

= 0

511



Chapter 8

⇒ 2a2 − a1 + a0 +

∞∑
k=1

((k + 2)(k + 1)ak+2 + (k + 1)ak − (k + 1)ak+1)x
k = 0.

In order for this power series to equal zero, each coefficient must be zero. Therefore, we obtain

2a2 − a1 + a0 = 0 ⇒ a2 =
a1 − a0

2
,

and

(k + 2)(k + 1)ak+2 + (k + 1)ak − (k + 1)ak+1 = 0, k ≥ 1

⇒ ak+2 =
ak+1 − ak

k + 2
, k ≥ 1,

where we have canceled the factor (k + 1) from the recurrence relation, the last equation

obtained above. Note that in this recurrence relation we have solved for the coefficient with

the largest subscript, namely ak+2. Also, note that the first value for k in the recurrence

relation is the same as the first value for k used in the summation notation. By using the

recurrence relation with k = 1, we find that

a3 =
a2 − a1

3
=

a1 − a0

2
− a1

3
=

−(a1 + a0)

6
,

where we have plugged in the expression for a2 that we found above. By letting k = 2 in the

recurrence equation, we obtain

a4 =
a3 − a2

4
=

−(a1 + a0)

6
− a1 − a0

2
4

=
−2a1 + a0)

12
,

where we have plugged in the values for a2 and a3 found above. Continuing this process will

allow us to find as many coefficients for the power series of the solution to the differential

equation as we may want. Notice that the coefficients just found involve only the variables a0

and a1. From the recurrence equation, we see that this will be the case for all coefficients of the

power series solution. Thus, a0 and a1 are arbitrary constants and these variables will be our

arbitrary variables in the general solution. Hence, substituting the values for the coefficients

that we found above into the solution

y(x) =

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + · · · ,
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yields the solution

y(x) = a0 + a1x+
a1 − a0

2
x2 +

−(a1 + a0)

6
x3 +

−2a1 + a0

12
x4 + · · ·

= a0

(
1 − x2

2
− x3

6
+
x4

12
+ · · ·

)
+ a1

(
x+

x2

2
− x3

6
− x4

6
+ · · ·

)
.

19. Since x = 0 is an ordinary point for the given equation, we seek for a power series expansion

of a general solution of the form

y(x) =
∞∑

n=0

anx
n ⇒ y′(x) =

∞∑
n=1

nanx
n−1 .

Substituting y(x) and y′(x) into the given equation, we obtain

∞∑
n=1

nanx
n−1 − 2x

∞∑
n=0

anx
n =

∞∑
n=1

nanx
n−1 −

∞∑
n=0

2anx
n+1 = 0.

We shift the indices of summations so that they sum over the same powers of x. In the first

sum, we let k = n− 1. Then n = k + 1 and the summation starts from k = 0. In the second

sum, let k = n+ 1. Then n = k − 1 and k = 1 when n = 0. Thus we have

∞∑
k=0

(k + 1)ak+1x
k −

∞∑
k=1

2ak−1x
k = a1 +

∞∑
k=1

[(k + 1)ak+1 − 2ak−1]x
k = 0.

In order for this power series to equal zero, each coefficient must be zero. That is,

a1 = 0,

(k + 1)ak+1 − 2ak−1 = 0, k ≥ 1
⇒ a1 = 0,

ak+1 = 2ak−1/(k + 1) , k ≥ 1.

Since a1 = 0, it follows from this recurrence relation that all odd coefficients are zeros. Indeed,

a3 =
2a1

3
= 0, a5 =

2a3

5
= 0, etc.

For even coefficients, we have

k = 1 : a2 = 2a0/2 ,

k = 3 : a4 = 2a2/4 = 2[2a0/2]/4 = 22a0/(2 · 4) ,

k = 5 : a6 = 2a4/6 = 2[22a0/(2 · 4)]/6 = 23a0/(2 · 4 · 6) ,
...
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The pattern for the even coefficients is now apparent. Namely,

a2k =
2ka0

2 · 4 · · · (2k) =
2ka0

2k(1 · 2 · · · k) =
a0

k!
, k = 1, 2, . . . .

This formula remains correct for k = 0 as well with 0! := 1. Thus

y(x) =

∞∑
k=0

a0

k!
x2k = a0

∞∑
k=0

x2k

k!
,

where a0 is an arbitrary constant.

21. Since x = 0 is an ordinary point for this differential equation, we will assume that the solution

has a power series expansion with a positive radius of convergence about the point x = 0.

Thus, we have

y(x) =

∞∑
n=0

anx
n ⇒ y′(x) =

∞∑
n=1

nanx
n−1 ⇒ y′′(x) =

∞∑
n=2

n(n− 1)anx
n−2 .

By plugging these expressions into the differential equation, we obtain

y′′ − xy′ + 4y =
∞∑

n=2

n(n− 1)anx
n−2 − x

∞∑
n=1

nanx
n−1 + 4

∞∑
n=0

anx
n = 0

⇒
∞∑

n=2

n(n− 1)anx
n−2 −

∞∑
n=1

nanx
n +

∞∑
n=0

4anx
n = 0.

In order for each power series to sum over the same powers of x, we will shift the index in

the first summation by letting k = n− 2, and we will let k = n in the other two power series.

Thus, we have
∞∑

k=0

(k + 2)(k + 1)ak+2x
k −

∞∑
k=1

kakx
k +

∞∑
k=0

4akx
k = 0.

Next we want all of the summations to start at the same point. Therefore, we will take the

first term in the first and last power series out of the summation sign. This yields

(2)(1)a2x
0 +

∞∑
k=1

(k + 2)(k + 1)ak+2x
k −

∞∑
k=1

kakx
k + 4a0x

0 +
∞∑

k=1

4akx
k = 0

⇒ 2a2 + 4a0 +

∞∑
k=1

(k + 2)(k + 1)ak+2x
k −

∞∑
k=1

kakx
k +

∞∑
k=1

4akx
k = 0
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⇒ 2a2 + 4a0 +

∞∑
k=1

[(k + 2)(k + 1)ak+2 + (−k + 4)ak] x
k = 0.

By setting each coefficient of the power series equal to zero, we see that

2a2 + 4a0 = 0 ⇒ a2 =
−4a0

2
= −2a0 ,

(k + 2)(k + 1)ak+2 + (−k + 4)ak = 0 ⇒ ak+2 =
(k − 4)ak

(k + 2)(k + 1)
, k ≥ 1,

where we have solved the recurrence equation, the last equation above, for ak+2, the coefficient

with the largest subscript. Thus, we have

k = 1 ⇒ a3 =
−3a1

3 · 2 =
−a1

2
,

k = 2 ⇒ a4 =
−2a2

4 · 3 =
(−2)(−4)a0

4 · 3 · 2 =
a0

3
,

k = 3 ⇒ a5 =
−a3

5 · 4 =
(−3)(−1)a1

5 · 4 · 3 · 2 =
a1

40
,

k = 4 ⇒ a6 = 0,

k = 5 ⇒ a7 =
a5

7 · 6 =
(−3)(−1)(1)a1

7 · 6 · 5 · 4 · 3 · 2 =
a1

560
,

k = 6 ⇒ a8 =
2a6

8 · 7 = 0,

k = 7 ⇒ a9 =
3a7

9 · 8 =
(−3)(−1)(1)(3)a1

9!
,

k = 8 ⇒ a10 =
4a8

10 · 9 = 0,

k = 9 ⇒ a11 =
5a9

11 · 10
=

(−3)(−1)(1)(3)(5)a1

11!
.

Now we can see a pattern starting to develop. (Note that it is easier to determine sucha pattern

if we consider specific coefficients that have not been multiplied out.) We first note that a0 and

a1 can be chosen arbitrarily. Next we notice that the coefficients with even subscripts larger

than 4 are zero. We also see that the general formula for a coefficient with an odd subscript

is given by

a2n+1 =
(−3)(−1)(1) · · · (2n− 5)a1

(2n+ 1)!
.
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Notice that this formula is also valid for a3 and a5. Substituting these expressions for the

coefficients into the solution

y(x) =
∞∑

n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + · · · ,

yields

y(x) = a0 + a1x− 2a0x
2 − a1

2
x3 +

a0

3
x4 +

a1

40
x5 + · · ·

+
(−3)(−1)(1) · · · (2n− 5)a1

(2n + 1)!
x2n+1 + · · ·

= a0

[
1 − 2x2 +

x4

3

]
+ a1

[
x− x3

2
+
x5

40
+ · · ·+ (−3)(−1)(1) · · · (2n− 5)

(2n + 1)!
x2n+1 + · · ·

]
= a0

[
1 − 2x2 +

x4

3

]
+ a1

[
x+

∞∑
k=1

(−3)(−1)(1) · · · (2k − 5)

(2k + 1)!
x2k+1

]
.

29. Since x = 0 is an ordinary point for this differential equation, we can assume that a solution

to this problem is given by

y(x) =
∞∑

n=0

anx
n ⇒ y′(x) =

∞∑
n=1

nanx
n−1 ⇒ y′′(x) =

∞∑
n=2

n(n− 1)anx
n−2 .

By substituting the initial conditions, y(0) = 1 and y′(0) = −2, into the first two equations

above, we see that

y(0) = a0 = 1, and y′(0) = a1 = −2.

Next we will substitute the expressions found above for y(x), y′(x), and y′′(x) into the differ-

ential equation to obtain

y′′ + y′ − xy =

∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=1

nanx
n−1 − x

∞∑
n=0

anx
n = 0

⇒
∞∑

n=2

n(n− 1)anx
n−2 +

∞∑
n=1

nanx
n−1 −

∞∑
n=0

anx
n+1 = 0.

By setting k = n − 2 in the first power series above, k = n − 1 in the second power series

above, and k = n + 1 in the last power series, we can shift the indices so that x is raised to
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the power k in each power series. Thus, we obtain

∞∑
k=0

(k + 2)(k + 1)ak+2x
k +

∞∑
k=0

(k + 1)ak+1x
k −

∞∑
k=1

ak−1x
k = 0.

We can start all of the summations at the same point if we remove the first term from each

of the first two power series above. Therefore, we have

(2)(1)a2 +
∞∑

k=1

(k + 2)(k + 1)ak+2x
k + (1)a1 +

∞∑
k=1

(k + 1)ak+1x
k −

∞∑
k=1

ak−1x
k = 0

⇒ 2a2 + a1 +

∞∑
k=1

[(k + 2)(k + 1)ak+2 + (k + 1)ak+1 − ak−1]x
k = 0.

By equating coefficients, we see that all of the coefficients of the terms in the power series

above must be zero. Thus, we have

2a2 + a1 = 0 ⇒ a2 =
−a1

2
,

(k + 2)(k + 1)ak+2 + (k + 1)ak+1 − ak−1 = 0

⇒ ak+1 =
ak−1 − (k + 1)ak+1

(k + 2)(k + 1)
, k ≥ 1.

Thus, we see that

k = 1 ⇒ a3 =
a0 − 2a2

3 · 2 =
a0

6
+
a1

6
.

Using the fact that a0 = 1 and a1 = −2, which we found from the initial conditions, we

calculate

a2 =
−(−2)

2
= 1,

a3 =
1

6
+

−2

6
= −1

6
.

By substituting these coefficients, we obtain the cubic polynomial approximation

y(x) = 1 − 2x+ x2 − x3

6
.

The graphs of the linear, quadratic and cubic polynomial approximations are easily generated

by using the software supplied with the text.
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31. The point x0 = 0 is an ordinary point for the given equation since p(x) = 2x/(x2 + 2) and

q(x) = 3/(x2 + 2) are analytic at zero. Hence we can express a general solution in the form

y(x) =

∞∑
n=0

anx
n .

Substituting this expansion into the given differential equation yields

(x2 + 2)
∞∑

n=2

n(n− 1)anx
n−2 + 2x

∞∑
n=1

nanx
n−1 + 3

∞∑
n=0

anx
n = 0

⇒
∞∑

n=2

n(n− 1)anx
n +

∞∑
n=2

2n(n− 1)anx
n−2 +

∞∑
n=1

2nanx
n +

∞∑
n=0

3anx
n = 0.

To sum over like powers xk, we put k = n− 2 into the second summation and k = n into the

other summations. This gives

∞∑
k=2

k(k − 1)akx
k +

∞∑
k=0

2(k + 2)(k + 1)ak+2x
k +

∞∑
k=1

2kakx
k +

∞∑
k=0

3akx
k = 0.

Next we separate the terms corresponding to k = 0 and k = 1 and combine the rest under

one summation.

(4a2 + 3a0) + (12a3 + 5a1)x+
∞∑

k=2

[k(k − 1)ak + 2(k + 2)(k + 1)ak+2 + 2kak + 3ak] x
k = 0.

Setting the coefficients equal to zero and simplifying, we get

4a2 + 3a0 = 0,

12a3 + 5a1 = 0,

(k2 + k + 3)ak + 2(k + 2)(k + 1)ak+2 = 0, k ≥ 2

⇒
a2 = −3a0/4 ,

a3 = −5a1/12 ,

ak+2 = −(k2 + k + 3)ak/[2(k + 2)(k + 1)], k ≥ 2.

From the initial conditions, we have

a0 = y(0) = 1 and a1 = y′(0) = 2.
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Therefore,

a2 = −3(1)/4 = −3/4 ,

a3 = −5(2)/12 = −5/6 ,

and the cubic polynomial approximation for the solution is

y(x) = a0 + a1x+ x2x
2 + a3x

3 = 1 + 2x− 3x2

4
− 5x3

6
.

33. In Problem 7, Exercises 8.2 we showed that the radius of convergence of a power series∑∞
n=0 a2nx

2n is ρ = 1/
√
L, where

L = lim
n→∞

∣∣∣∣a2(n+1)

a2n

∣∣∣∣ .
In the series (13), a2n = (−1)n/n! and so

L = lim
n→∞

∣∣∣∣(−1)n+1/(n+ 1)!

(−1)n/n!

∣∣∣∣ = lim
n→∞

1

n+ 1
= 0.

Therefore,
√
L = 0 and ρ = ∞.

35. With the given values of parameters, we have an initial value problem

0.1q′′(t) +

(
1 +

t

10

)
q′(t) +

1

2
q(t) = 0, q(0) = 10, q′(0) = 0.

Simplifying yields

q′′(t) + (10 + t) q′(t) + 5q(t) = 0, q(0) = 10, q′(0) = 0.

The point t = 0 is an ordinary point for this equation. Let q(t) =
∑∞

n=0 ant
n be the power

series expansion of q(t) about t = 0. Substituting this series into the above differential

equation, we obtain

∞∑
n=2

n(n− 1)ant
n−2 + (10 + t)

∞∑
n=1

nant
n−1 + 5

∞∑
n=0

ant
n = 0

⇒
∞∑

n=2

n(n− 1)ant
n−2 +

∞∑
n=1

10nant
n−1 +

∞∑
n=1

nant
n +

∞∑
n=0

5ant
n = 0.
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Setting k = n − 2 in the first summation, k = n− 1 in the second summation, and k = n in

the last two summations, we obtain

∞∑
k=0

(k + 2)(k + 1)ak+2t
k +

∞∑
k=0

10(k + 1)ak+1t
k +

∞∑
k=1

kakt
k +

∞∑
k=0

5akt
k = 0.

Separating the terms corresponding to k = 0 and combining the rest under one sum yields

(2a2 + 10a1 + 5a0) +

∞∑
k=1

[(k + 2)(k + 1)ak+2 + 10(k + 1)ak+1 + (k + 5)ak] t
k = 0.

Setting the coefficients equal to zero, we obtain the recurrence relations

2a2 + 10a1 + 5a0 = 0,

(k + 2)(k + 1)ak+2 + 10(k + 1)ak+1 + (k + 5)ak = 0, k ≥ 1.
(8.7)

Next we use the initial conditions to find a0 and a1.

a0 = q(0) = 10, a1 = q′(0) = 0.

From the first equation in (8.7) we have

a2 =
−10a1 − 5a0

2
= −25.

Taking k = 1 and k = 2 in the second equation in (8.7), we find a3 and a4.

k = 1 : 6a3 + 20a2 + 6a1 = 0 ⇒ a3 = −(20a2 + 6a1)/6 = 250/3,

k = 2 : 12a4 + 30a3 + 7a2 = 0 ⇒ a4 = −(30a3 + 7a2)/12 = −775/4.

Hence

q(t) = 10 + (0)t− 25t2 +
250t3

3
− 775t4

4
+ · · · = 10 − 25t2 +

250t3

3
− 775t4

4
+ · · · .

EXERCISES 8.4: Equations with Analytic Coefficients, page 456

3. For this equation, p(x) = 0 and q(x) =
−3

1 + x+ x2
. Therefore, singular points will occur

when

1 + x+ x2 = 0 ⇒ x = −1

2
±

√
3

2
i.
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Thus, x = 1 is an ordinary point for this equation, and we can find a power series solution

with a radius of convergence of at least the minimum of the distances between 1 and points

(−1/2) ± (
√

3/2)i, which, in fact, are equal. Recall that the distance between two complex

numbers, z1 = a + bi and z2 = c+ di, is given by

dist (z1, z2) =
√

(a− c)2 + (b− d)2.

Thus, the distance between (1 + 0 · i) and (−1/2) + (
√

3/2)i is√√√√[1 −
(
−1

2

)]2

+

[
0 −

√
3

2

]2

=

√
9

4
+

3

4
=

√
3.

Therefore, the radius of convergence for the power series solution of this differential equation

about x = 1 will be at least ρ =
√

3.

9. We see that x = 0 and x = 2 are the only singular points for this differential equation and,

thus, x = 1 is an ordinary point. Therefore, according to Theorem 5 on page 451 of the text,

there exists a power series solution of this equation about the point x = 1 with a radius of

convergence of at least one, the distance from 1 to either 0 or 2. That is, we have a general

solution for this differential equation of the form

y(x) =

∞∑
n=0

an(x− 1)n ,

which is convergent for all x at least in the interval (0, 2), the interval on which the inequality

|x− 1| < 1 is satisfied. To find this solution we will proceed as in Example 3 on page 453 of

the text. Thus, we make the substitution t = x− 1, which implies that x = t+ 1. (Note that

dx/dt = 1.) We then define a new function

Y (t) := y(t+ 1) = y(x)

⇒ dY

dt
=

(
dy

dx

)(
dx

dt

)
=

(
dy

dx

)
· 1 =

dy

dx

⇒ d2Y

dt2
=

d

dt

(
dY

dt

)
=

d

dt

(
dy

dx

)
=

(
d2y

dx2

)(
dx

dt

)
=
d2y

dx2
.
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Hence, with the substitutions t = x − 1 and Y (t) = y(t + 1), we transform the differential

equation, (x2 − 2x) y′′(x) + 2y(x) = 0, into the differential equation[
(t+ 1)2 − 2(t+ 1)

]
y′′(t+ 1) + 2y(t+ 1) = 0

⇒ [
(t+ 1)2 − 2(t+ 1)

]
Y ′′(t) + 2Y (t) = 0

⇒ (
t2 − 1

)
Y ′′(t) + 2Y (t) = 0. (8.8)

To find a general solution to (8.8), we first note that zero is an ordinary point of equation

(8.8). Thus, we can assume that we have a power series solution of equation (8.8) of the form

Y (t) =

∞∑
n=0

ant
n ,

which converges for all t in (−1, 1). (This means that x = t + 1 will be in the interval (0, 2)

as desired.) Substituting into equation (8.8) yields

(
t2 − 1

) ∞∑
n=2

n(n− 1)ant
n−2 + 2

∞∑
n=0

ant
n = 0

⇒
∞∑

n=2

n(n− 1)ant
n −

∞∑
n=2

n(n− 1)ant
n−2 +

∞∑
n=0

2ant
n = 0.

Making the shift in the index, k = n − 2, in the second power series above and replacing n

with k in the other two power series allows us to take each summation over the same power

of t. This gives us

∞∑
k=2

k(k − 1)akt
k −

∞∑
k=0

(k + 2)(k + 1)ak+2t
k +

∞∑
k=0

2akt
k = 0.

In order to start all of these summations at the same point, we must take the first two terms

out of the summation sign in the last two power series. Thus we have,

∞∑
k=2

k(k − 1)akt
k − (2)(1)a2 − (3)(2)a3t−

∞∑
k=2

(k + 2)(k + 1)ak+2t
k

+2a0 + 2a1t+

∞∑
k=2

2akt
k = 0
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⇒ 2a0 − 2a2 + (2a1 − 6a3) t+

∞∑
k=2

[k(k − 1)ak − (k + 2)(k + 1)ak+2 + 2ak] t
k = 0.

For this power series to equal zero, each coefficient must be zero. Thus, we have

2a0 − 2a2 = 0 ⇒ a2 = a0 , 2a1 − 6a3 = 0 ⇒ a3 =
a1

3
,

k(k − 1)ak − (k + 2)(k + 1)ak+2 + 2ak = 0, k ≥ 2

⇒ ak+2 =
k(k − 1)ak + 2ak

(k + 2)(k + 1)
, k ≥ 2 ⇒ ak+2 =

(k2 − k + 2)ak

(k + 2)(k + 1)
, k ≥ 2.

Therefore, we see that

k = 2 ⇒ a4 =
4a2

4 · 3 =
a2

3
=
a0

3
,

k = 3 ⇒ a5 =
8a3

5 · 4 =
2a1

15
, etc.

Plugging these values for the coefficients into the power series solution,

Y (t) =
∞∑

n=0

ant
n = a0 + a1t+ a2t

2 + a3t
3 + a4t

4 + · · · ,

yields

Y (t) = a0 + a1t+ a0t
2 +

a1t
3

3
+
a0t

4

3
+

2a1t
5

15
+ · · ·

⇒ Y (t) = a0

(
1 + t2 +

t4

3
+ · · ·

)
+ a1

(
t+

t3

3
+

2t5

15
+ · · ·

)
.

Lastly, we want to change back to the independent variable x. To do this, we recall that

Y (t) = y(t+ 1). Thus, if t = x− 1, then

Y (t) = Y (x− 1) = y ([x− 1] + 1) = y(x).

Thus, we replace t with x−1 in the solution just found, and we obtain a power series expansion

for a general solution in the independent variable x. Substituting, we have

y(x) = a0

[
1 + (x− 1)2 +

1

3
(x− 1)4 + · · ·

]
+ a1

[
(x− 1) +

1

3
(x− 1)3 +

2

15
(x− 1)5 + · · ·

]
.
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17. Here p(x) = 0 and q(x) = − sin x both of which are analytic everywhere. Thus, x = π is an

ordinary point for this differential equation, and there are no singular points. Therefore, by

Theorem 5 on page 451 of the text, we can assume that this equation has a general power

series solution about the point x = π with an infinite radius of convergence (i.e., ρ = ∞).

That is, we assume that we have a solution to this differential equation given by

y(x) =
∞∑

n=0

an(x− π)n

[
⇒ y′(x) =

∞∑
n=1

nan(x− π)n−1

]
,

which converges for all x. If we apply the initial conditions, y(π) = 1 and y′(π) = 0, we

see that a0 = 1 and a1 = 0. To find a general solution of this differential equation, we will

combine the methods of Example 3 and Example 4 on pages 453–455 of the text. Thus, we

will first define a new function, Y (t), using the transformation t = x− π. Thus, we define

Y (t) := y(t+ π) = y(x).

Hence, by the chain rule (using the fact that x = t + π which implies that dx/dt = 1), we

have dY/dt = (dy/dx)(dx/dt) = dy/dx, and similarly d2Y/dt2 = d2y/dx2. We now solve the

transformed differential equation

d2Y

dt2
− sin(t+ π)Y (t) = 0 ⇒ d2Y

dt2
+ (sin t)Y (t) = 0, (8.9)

where we have used the fact that sin(t+π) = − sin t. When we have found the solution Y (t),

we will use the fact that y(x) = Y (x − π) to obtain the solution to the original differential

equation in terms of the independent variable x. Hence, we seek a power series solution to

equation (8.9) of the form

Y (t) =

∞∑
n=0

ant
n ⇒ Y ′(t) =

∞∑
n=1

nant
n−1 ⇒ Y ′′(t) =

∞∑
n=2

n(n− 1)ant
n−2 .

Since the initial conditions, y(π) = 1 and y′(π) = 0, transform into Y (0) = 1 and Y ′(0) = 0,

we must have

Y (0) = a0 = 1 and Y ′(0) = a1 = 0.
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Next we note that q(t) = sin t is an analytic function with a Maclaurin series given by

sin t =
∞∑

n=0

(−1)nt2n+1

(2n+ 1)!
= t− t3

6
+

t5

120
− t7

5040
+ · · · .

By substituting the expressions that we found for Y (t), Y ′′(t), and sin t into equation (8.9),

we obtain ∞∑
n=2

n(n− 1)ant
n−2 +

(
t− t3

6
+

t5

120
− t7

5040
+ · · ·

) ∞∑
n=0

ant
n = 0.

Therefore, expanding this last equation (and explicitly showing only terms of up to order

four), yields(
2a2 + 6a3t+ 12a4t

2 + 20a5t
3 + 30a6t

4 + · · ·)+ t
(
a0 + a1t+ a2t

2 + a3t
3 + · · ·)

−t
3

6
(a0 + a1t+ · · ·) + · · · = 0

⇒ (
2a2 + 6a3t+ 12a4t

2 + 20a5t
3 + 30a6t

4 + · · ·)+ t
(
a0 + a1t+ a2t

2 + a3t
3 + · · ·)

+

(
−a0t

3

6
− a1t

4

6
− · · ·

)
+ · · · = 0.

By grouping these terms according to their powers of t, we obtain

2a2 + (6a3 + a0) t+ (12a4 + a1) t
2 +
(
20a5 + a2 − a0

6

)
t3 +

(
30a6 + a3 − a1

6

)
t4 + · · · = 0.

Setting these coefficients to zero and recalling that a0 = 1 and a1 = 0 yields the system of

equations

2a2 = 0 ⇒ a2 = 0,

6a3 + a0 = 0 ⇒ a3 =
−a0

6
=

−1

6
,

12a4 + a1 = 0 ⇒ a4 =
−a1

12
= 0,

20a5 + a2 − a0

6
= 0 ⇒ a5 =

a0

6
− a2

20
=

1

6
20

=
1

120
,

30a6 + a3 − a1

6
= 0 ⇒ a6 =

a1

6
− a3

30
=

0 +
1

6
30

=
1

180
.
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Plugging these coefficients into the power series solution

Y (t) =

∞∑
n=0

ant
n = a0 + a1t+ a2t

2 + · · · ,

yields the solution to equation (8.9):

Y (t) = 1 + 0 + 0 − t3

6
+ 0 +

t5

120
+

t6

180
+ · · · = 1 − t3

6
+

t5

120
+

t6

180
+ · · · .

Lastly we want to find the solution to the original equation with the independent variable x.

In order to do this, we recall that t = x− π and Y (x− π) = y(x). Therefore, by substituting

these values into the equation above, we obtain the solution

y(x) = 1 − 1

6
(x− π)3 +

1

120
(x− π)5 +

1

180
(x− π)6 + · · · .

21. We assume that this differential equation has a power series solution with a positive radius of

convergence about the point x = 0. This is reasonable because all of the coefficients and the

forcing function g(x) = sin x are analytic everywhere. Thus, we assume that

y(x) =

∞∑
n=0

anx
n ⇒ y′(x) =

∞∑
n=1

nanx
n−1.

By substituting these expressions and the Maclaurin expansion for sin x into the differential

equation, y′(x) − xy(x) = sin x, we obtain

∞∑
n=1

nanx
n−1 − x

∞∑
n=0

anx
n =

∞∑
n=0

(−1)n x2n+1

(2n+ 1)!
.

In the first power series on the left, we make the shift k = n− 1. In the second power series

on the left, we make the shift k = n+ 1. Thus, we obtain

∞∑
k=0

(k + 1)ak+1x
k −

∞∑
k=1

ak−1x
k =

∞∑
n=0

(−1)n x2n+1

(2n + 1)!
.

Separating out the first term of the first power series on the left yields

a1 +

∞∑
k=1

(k + 1)ak+1x
k −

∞∑
k=1

ak−1x
k =

∞∑
n=0

(−1)n x2n+1

(2n+ 1)!
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⇒ a1 +

∞∑
k=1

[(k + 1)ak+1 − ak−1] x
k =

∞∑
n=0

(−1)n x2n+1

(2n + 1)!
.

Therefore, by expanding both of the power series, we have

a1 + (2a2 − a0) x+ (3a3 − a1) x
2 + (4a4 − a2) x

3 + (5a5 − a3)x
4

+ (6a6 − a4) x
5 + (7a7 − a5) x

6 + · · · = x− x3

6
+

x5

120
− x7

5040
+ · · · .

By equating the coefficients of like powers of x, we obtain

a1 = 0,

2a2 − a0 = 1 ⇒ a2 =
a0 + 1

2
,

3a3 − a1 = 0 ⇒ a3 =
a1

3
= 0,

4a4 − a2 =
−1

6
⇒ a4 =

a2 − 1/6

4
=
a0

8
+

1

12
,

5a5 − a3 = 0 ⇒ a5 =
a3

5
= 0,

6a6 − a4 =
1

120
⇒ a6 =

a4 − 1/120

6
=
a0

48
+

11

720
.

Substituting these coefficients into the power series solution and noting that a0 is an arbitrary

number, yields

y(x) =

∞∑
n=0

anx
n

= a0 + 0 +

(
a0

2
+

1

2

)
x2 + 0 +

(
a0

8
+

1

12

)
x4 + 0 +

(
a0

48
+

11

720

)
x6 + · · ·

= a0

[
1 +

1

2
x2 +

1

8
x4 +

1

48
x6 + · · ·

]
+

[
1

2
x2 +

1

12
x4 +

11

720
x6 + · · ·

]
.

27. Observe that x = 0 is an ordinary point for this differential equation. Therefore, we can

assume that this equation has a power series solution about the point x = 0 with a positive
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radius of convergence. Thus, we assume that

y(x) =
∞∑

n=0

anx
n ⇒ y′(x) =

∞∑
n=1

nanx
n−1 ⇒ y′′(x) =

∞∑
n=2

n(n− 1)anx
n−2 .

The Maclaurin series for tanx is

tan x = x+
x3

3
+

2x5

15
+ · · · ,

which is given in the table on the inside front cover of the text. Substituting the expressions

for y(x), y′(x), y′′(x), and the Maclaurin series for the function tanx into the differential

equation, (1 − x2)y′′ − y′ + y = tanx, yields

(
1 − x2

) ∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=1

nanx
n−1 +

∞∑
n=0

anx
n = x+

x3

3
+

2x5

15
+ · · ·

⇒
∞∑

n=2

n(n− 1)anx
n−2 −

∞∑
n=2

n(n− 1)anx
n −

∞∑
n=1

nanx
n−1 +

∞∑
n=0

anx
n

= x+
x3

3
+

2x5

15
+ · · · .

By shifting the indices of the power series on the left-hand side of this equation, we obtain

∞∑
k=0

(k+2)(k+1)ak+2x
k−

∞∑
k=2

k(k−1)akx
k −

∞∑
k=0

(k+1)ak+1x
k +

∞∑
k=0

akx
k = x+

x3

3
+

2x5

15
+ · · · .

Removing the first two terms from the summation notation in the first, third and fourth power

series above yields

(2)(1)a2 + (3)(2)a3x+

∞∑
k=2

(k + 2)(k + 1)ak+2x
k −

∞∑
k=2

k(k − 1)akx
k − (1)a1 − (2)a2x

−
∞∑

k=2

(k + 1)ak+1x
k + a0 + a1x+

∞∑
k=2

akx
k = x+

x3

3
+

2x5

15
+ · · ·

⇒ (2a2 − a1 + a0) + (6a3 − 2a2 + a1) x

+

∞∑
k=2

[(k + 2)(k + 1)ak+2 − k(k − 1)ak − (k + 1)ak+1 + ak] x
k = x+

x3

3
+

2x5

15
+ · · · .
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By equating the coefficients of the two power series, we see that

2a2 − a1 + a0 = 0 ⇒ a2 =
a1 − a0

2
,

6a3 − 2a2 + a1 = 1 ⇒ a3 =
2a2 − a1 + 1

6
=

1 − a0

6
,

4 · 3a4 − 2 · 1a2 − 3a3 + a2 = 0 ⇒ a4 =
a2 + 3a3

12
=
a1 − 2a0 + 1

24
.

Therefore, noting that a0 and a1 are arbitrary, we can substitute these coefficients into the

power series solution y(x) =
∑∞

n=0 anx
n = a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + · · · to obtain

y(x) = a0 + a1x+
(a1

2
− a0

2

)
x2 +

(
1

6
− a0

6

)
x3 +

(
a1

24
− a0

12
+

1

24

)
x4 + · · ·

= a0

(
1 − 1

2
x2 − 1

6
x3 − 1

12
x4 + · · ·

)
+ a1

(
x+

1

2
x2 +

1

24
x4 + · · ·

)
+

(
1

6
x3 +

1

24
x4 + · · ·

)
.

EXERCISES 8.5: Cauchy-Euler (Equidimensional) Equations Revisited, page 460

5. Notice that, since x > 0, we can multiply this differential equation by x2 and rewrite it to

obtain

x2 d
2y

dx2
− 5x

dy

dx
+ 13y = 0.

We see that this is a Cauchy-Euler equation. Thus, we will assume that a solution has the

form

y(x) = xr ⇒ y′(x) = rxr−1 ⇒ y′′(x) = r(r − 1)xr−2 .

Substituting these expressions into the differential equation above yields

r(r − 1)xr − 5rxr + 13xr = 0

⇒ (
r2 − 6r + 13

)
xr = 0 ⇒ r2 − 6r + 13 = 0.

We obtained this last equation by using the assumption that x > 0. (We also could arrive at

this equation by using equation (4) on page 458 of the text.) Using the quadratic formula, we
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see that the roots to this equation are

r =
6 ±√

36 − 52

2
= 3 ± 2i.

Therefore, using formulas (5) and (6) on page 458 of the text with complex conjugates roots

(and using Euler’s formula), we have two linearly independent solutions give by

y1(x) = x3 cos(2 lnx), y2(x) = x3 sin(2 lnx).

Hence the general solution to this equation is given by

y(x) = c1x
3 cos(2 lnx) + c2x

3 sin(2 ln x).

7. This equation is a third order Cauchy-Euler equation, and, thus, we will assume that a solution

has the form y(x) = xr. This implies that

y′(x) = rxr−1 ⇒ y′′(x) = r(r − 1)xr−2 ⇒ y′′′(x) = r(r − 1)(r − 2)xr−3.

By substituting these expressions into the differential equation, we obtain

[r(r − 1)(r − 2) + 4r(r − 1) + 10r − 10]xr = 0

⇒ [
r3 + r2 + 8r − 10

]
xr = 0 ⇒ r3 + r2 + 8r − 10 = 0.

By inspection we see that r = 1 is a root of this last equation. Thus, one solution to this

differential equation will be given by y1(x) = x and we can factor the indicial equation above

as follows:

(r − 1)(r2 + 2r + 10) = 0.

Therefore, using the quadratic formula, we see that the roots to this equation are r = 1,−1±3i.

Thus, we can find two more linearly independent solutions to this equation by using Euler’s

formula as was done on page 458 of the text. Thus, three linearly independent solutions to

this problem are given by

y1(x) = x, y2(x) = x−1 cos(3 lnx), y3(x) = x−1 sin(3 lnx).

Hence, the general solution to this differential equation is

y(x) = c1x+ c2x
−1 cos(3 ln x) + c3x

−1 sin(3 lnx).
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13. We first must find two linearly independent solutions to the associated homogeneous equation.

Since this is a Cauchy-Euler equation, we assume that there are solutions of the form

y(x) = xr ⇒ y′(x) = rxr−1 ⇒ y′′(x) = r(r − 1)xr−2 .

Substituting these expressions into the associated homogeneous equation yields

[r(r − 1) − 2r + 2] xr = 0 ⇒ r2 − 3r + 2 = 0 ⇒ (r − 1)(r − 2) = 0.

Thus, the roots to this indicial equation are r = 1, 2. Therefore, a general solution to the

associated homogeneous equation is

yh(x) = c1x+ c2x
2.

For the variation of parameters method, let y1(x) = x and y2(x) = x2, and then assume that

a particular solution has the form

yp(x) = v1(x)y1(x) + v2(x)y2(x) = v1(x)x+ v2(x)x
2.

In order to find v1(x) and v2(x), we would like to use formula (10) on page 195 of the text.

To use equation (10), we must first find the Wronskian of y1 and y2. Thus, we compute

W [y1, y2] (x) = y1(x)y
′
2(x) − y2(x)y

′
1(x) = 2x2 − x2 = x2.

Next we must write the differential equation given in this problem in standard form. When

we do this, we see that g(x) = x−5/2. Therefore, by equation (10), we have

v1(x) =

∫ −x−5/2x2

x2
dx =

∫
(−x−5/2)dx =

2

3
x−3/2

and

v2(x) =

∫
x−5/2x

x2
dx =

∫
x−7/2dx =

−2

5
x−5/2.

Thus, a particular solution is given by

yp(x) =

(
2

3
x−3/2

)
x+

(−2

5
x−5/2

)
x2 =

4

15
x−1/2.

Therefore, a general solution of the nonhomogeneous differential equation is given by

y(x) = yh(x) + yp(x) = c1x+ c2x
2 +

4

15
x−1/2.
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19. (a) For this linear differential operator L, we have

L [xr] (x) = x3
[
r(r − 1)(r − 2)xr−3

]
+ x
[
rxr−1

]− xr

= r(r − 1)(r − 2)xr + rxr − xr

=
(
r3 − 3r2 + 3r − 1

)
xr = (r − 1)3xr.

(b) From part (a) above, we see that r = 1 is a root of multiplicity three of the indicial

equation. Thus, we have one solution given by

y1(x) = x. (8.10)

To find two more linearly independent solutions, we use a method similar to that used

in the text. By taking the partial derivative of L [xr] (x) = (r − 1)3xr with respect to r,

we have

∂

∂r
{L [xr] (x)} =

∂

∂r

{
(r − 1)3xr

}
= 3(r − 1)2xr + (r − 1)3xr lnx

⇒ ∂2

∂r2
{L [xr] (x)} =

∂

∂r

{
3(r − 1)2xr + (r − 1)3xr ln x

}
= 6(r − 1)xr + 6(r − 1)2xr ln x+ (r − 1)3xr(ln x)2.

Since r − 1 is a factor of every term in ∂ {L [xr] (x)} /∂r and ∂2 {L [xr] (x)} /∂r2 above,

we see that
∂

∂r
{L [xr] (x)}

∣∣∣
r=1

= 0, (8.11)

and
∂2

∂r2
{L [xr] (x)}

∣∣∣
r=1

= 0, (8.12)

We can use these facts to find the two solutions that we seek. In order to find a second

solution, we would like an alternative form for

∂ {L [xr] (x)}
∂r

∣∣∣∣
r=1

.

Using the fact that

L[y](x) = x3y′′′(x) + xy′(x) − y(x)
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and proceeding as in equation (9) on page 458 of the text with w(r, x) = xr, we have

∂

∂r
{L [xr] (x)} =

∂

∂r
{L[w](x)} =

∂

∂r

{
x3 ∂

3w

∂x3
+ x

∂w

∂x
− w

}
= x3 ∂4w

∂r∂x3
+ x

∂2w

∂r∂x
− ∂w

∂r
= x3 ∂4w

∂x3∂r
+ x

∂2w

∂x∂r
− ∂w

∂r

= x3 ∂3

∂x3

(
∂w

∂r

)
+ x

∂

∂x

(
∂w

∂r

)
− ∂w

∂r
= L

[
∂w

∂r

]
(x),

where we are using the fact that mixed partials of w(r, x) are equal. Therefore, combining

this with equation (8.11) above yields

∂

∂r
{L [xr] (x)}

∣∣∣
r=1

L

[
∂xr

∂r

∣∣∣
r=1

]
= L

[
xr ln x

∣∣
r=1

]
= L[x ln x] = 0.

Thus, a second linearly independent solution is given by

y2(x) = x ln x.

To find a third solution, we will use equation (8.12) above. Hence, we would like to find

an alternative form for ∂2 {L [xr] (x)} /∂r2. To do this, we use the fact that

∂

∂r
{L [xr] (x)} = x3 ∂4w

∂r∂x3
+ x

∂2w

∂r∂x
− ∂w

∂r
,

which we found above and the fact that mixed partial derivatives of w(r, x) are equal.

Thus, we have

∂2

∂r2
{L [xr] (x)} =

∂

∂r

[
∂

∂r
{L [xr] (x)}

]
=

∂

∂r

{
x3 ∂4w

∂r∂x3
+ x

∂2w

∂r∂x
− ∂w

∂r

}
= x3 ∂5w

∂r2∂x3
+ x

∂3w

∂r2∂x
− ∂2w

∂r2
= x3 ∂5w

∂x3∂r2
+ x

∂3w

∂x∂r2
− ∂2w

∂r2

= x3 ∂3

∂x3

(
∂2w

∂r2

)
+ x

∂

∂x

(
∂2w

∂r2

)
− ∂2w

∂r2
= L

[
∂2w

∂r2

]
(x) = 0.

Therefore, combining this with equation (8.12) above yields

∂2

∂r2
{L [xr] (x)}

∣∣∣
r=1

= L

[
∂2 (xr)

∂r2

∣∣∣
r=1

]
= L

[
x(ln x)2

]
= 0,
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where we have used the fact that ∂2xr/∂r2 = xr(ln x)2. Thus we see that another solution

is

y3(x) = x(ln x)2,

which, by inspection, is linearly independent from y1 and y2. Thus, a general solution to

the differential equation is y(x) = C1x+ C2x ln x+ C3x(ln x)
2.

EXERCISES 8.6: Method of Frobenius, page 472

5. By putting this equation in standard form, we see that

p(x) == − x− 1

(x2 − 1)2
= − x− 1

(x− 1)2(x+ 1)2
= − 1

(x− 1)(x+ 1)2
,

and

q(x) =
3

(x2 − 1)2
=

3

(x− 1)2(x+ 1)2
.

Thus, x = 1,−1 are singular points of this equation. To check if x = 1 is regular, we note

that

(x− 1)p(x) = − 1

(x+ 1)2
and (x− 1)2q(x) =

3

(x+ 1)2
.

These functions are analytic at x = 1. Therefore, x = 1 is a regular singular point for this

differential equation. Next we check the singular point x = −1. Here

(x+ 1)p(x) = − 1

(x− 1)(x+ 1)

is not analytic at x = −1. Therefore, x = −1 is an irregular singular point for this differential

equation.

13. By putting this equation in standard form, we see that

p(x) =
x2 − 4

(x2 − x− 2)2
=

(x− 2)(x+ 2)

(x− 2)2(x+ 1)2
=

x+ 2

(x− 2)(x+ 1)2
,

q(x) =
−6x

(x− 2)2(x+ 1)2)
.

Thus, we have

(x− 2)p(x) =
x+ 2

(x+ 1)2
and (x− 2)2q(x) =

−6x

(x+ 1)2
.
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Therefore, x = 2 is a regular singular point of this differential equation. We also observe that

lim
x→2

(x− 2)p(x) = lim
x→2

x+ 2

(x+ 1)2
=

4

9
= p0 ,

lim
x→2

(x− 2)2q(x) = − lim
x→2

6x

(x+ 1)2
= −12

9
= −4

3
= q0 .

Thus, we can use equation (16) on page 463 of the text to obtain the indicial equation

r(r − 1) +
4r

9
− 4

3
= 0 ⇒ r2 − 5r

9
− 4

3
= 0.

By the quadratic formula, we see that the roots to this equation and, therefore, the exponents

of the singularity x = 2, are given by

r1 =
5 +

√
25 + 432

18
=

5 +
√

457

18
,

r2 =
5 −√

457

18
.

21. Here p(x) = x−1 and q(x) = 1. This implies that xp(x) = 1 and x2q(x) = x2. Therefore, we

see that x = 0 is a regular singular point for this differential equation, and so we can use the

method of Frobenius to find a solution to this problem. (Note also that x = 0 is the only

singular point for this equation.) Thus, we will assume that this solution has the form

w(r, x) = xr

∞∑
n=0

anx
n =

∞∑
n=0

anx
n+r .

We also notice that

p0 = lim
x→0

xp(x) = lim
x→0

1 = 1,

q0 = lim
x→0

x2q(x) = lim
x→0

x2 = 0.

Hence, we see that the indicial equation is given by

r(r − 1) + r = r2 = 0.

This means that r1 = r2 = 0. Since x = 0 is the only singular point for this differential

equation, we observe that the series solution w(0, x) which we will find by the method of
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Frobenius converges for all x > 0. To find the solution, we note that

w(r, x) =

∞∑
n=0

anx
n+r

⇒ w′(r, x) =

∞∑
n=0

(n+ r)anx
n+r−1

⇒ w′′(r, x) =

∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r−2.

Notice that the power series for w′ and w′′ start at n = 0. Substituting these expressions into

the differential equation and simplifying yields

∞∑
n=0

(n + r)(n+ r − 1)anx
n+r +

∞∑
n=0

(n+ r)anx
n+r +

∞∑
n=0

anx
n+r+2 = 0.

Next we want each power series to sum over xk+r. Thus, we let k = n in the first and second

power series and shift the index in the last power series by letting k = n + 2. Therefore, we

have ∞∑
k=0

(k + r)(k + r − 1)akx
k+r +

∞∑
k=0

(k + r)akx
k+r +

∞∑
k=2

ak−2x
k+r = 0.

We will separate out the first two terms from the first two power series above so that we can

start all of our power series at the same place. Thus, we have

(r − 1)ra0x
r + r(1 + r)a1x

1+r +
∞∑

k=2

(k + r)(k + r − 1)akx
k+r

+ra0x
r + (1 + r)a1x

1+r +
∞∑

k=2

(k + r)akx
k+r +

∞∑
k=2

ak−2x
k+r = 0

⇒ [r(r − 1) + r] a0x
r + [r(r + 1) + (r + 1)] a1x

1+r

+

∞∑
k=2

[(k + r)(k + r − 1)ak + (k + r)ak + ak−2]x
k+r = 0.

By equating coefficients and assuming that a0 �= 0, we obtain

r(r − 1) + r = 0 (the indicial equation),

[r(r + 1) + (r + 1)] a1 = 0 ⇒ (r + 1)2a1 = 0,
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and, for k ≥ 2, the recurrence relation

(k + r)(k + r − 1)ak + (k + r)ak + ak−2 = 0 ⇒ ak =
−ak−2

(k + r)2
, k ≥ 2.

Using the fact (which we found from the indicial equation above) that r1 = 0, we observe that

a1 = 0. Next, using the recurrence relation (and the fact that r1 = 0), we see that

ak =
−ak−2

k2
, k ≥ 2.

Hence,

k = 2 ⇒ a2 =
−a0

4
,

k = 3 ⇒ a3 =
−a1

9
= 0 ,

k = 4 ⇒ a4 =
−a2

16
=

−−a0

4
16

=
a0

64
,

k = 5 ⇒ a5 =
−a3

25
= 0 ,

k = 6 ⇒ a6 =
−a4

36
=

−a0

64
36

= − a0

2304
.

Substituting these coefficients into the solution

w(0, x) =

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6 + · · · ,

we obtain the series solution for x > 0 given by

w(0, x) = a0

[
1 − 1

4
x2 +

1

64
x4 − 1

2304
x6 + · · ·

]
.

25. For this equation, we see that xp(x) = x/2 and x2q(x) = −(x+3)/4. Thus, x = 0 is a regular

singular point for this equation and we can use the method of Frobenius to find a solution.

To this end, we compute

lim
x→0

xp(x) = lim
x→0

x

2
= 0, and lim

x→0
x2q(x) = lim

x→0

−(x+ 3)

4
=

−3

4
.
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Therefore, by equation (16) on page 463 of the text, the indicial equation is

r(r − 1) − 3

4
= 0 ⇒ 4r2 − 4r − 3 = 0 ⇒ (2r + 1)(2r − 3) = 0.

This indicial equation has roots r1 = 3/2 and r2 = −1/2. By the method of Frobenius, we

can assume that a solution to this differential equation will have the form

w(r, x) =

∞∑
n=0

anx
n+r

⇒ w′(r, x) =

∞∑
n=0

(n + r)anx
n+r−1

⇒ w′′(r, x) =

∞∑
n=0

(n+ r − 1)(n+ r)anx
n+r−2 ,

where r = r1 = 3/2. Since x = 0 is the only singular point for this equation, we see that

the solution, w(3/2, x), converges for all x > 0. The first step in finding this solution is to

plug w(r, x) and its first and second derivatives (which we have found above by term by term

differentiation) into the differential equation. Thus, we obtain

∞∑
n=0

4(n+ r − 1)(n+ r)anx
n+r +

∞∑
n=0

2(n+ r)anx
n+r+1 −

∞∑
n=0

anx
n+r+1 −

∞∑
n=0

3anx
n+r = 0.

By shifting indices, we can sum each power series over the same power of x, namely xk+r.

Thus, with the substitution k = n in the first and last power series and the substitution

k = n + 1 in the two remaining power series, we obtain

∞∑
k=0

4(k + r − 1)(k + r)akx
k+r +

∞∑
k=1

2(k + r − 1)ak−1x
k+r −

∞∑
k=1

ak−1x
k+r −

∞∑
k=0

3akx
k+r = 0.

Next removing the first term (the k = 0 term) from the first and last power series above and

writing the result as a single power series yields

4(r − 1)ra0x
r +

∞∑
k=1

4(k + r − 1)(k + r)akx
k+r +

∞∑
k=1

2(k + r − 1)ak−1x
k+r

−
∞∑

k=1

ak−1x
k+r − 3a0x

r −
∞∑

k=1

3akx
k+r = 0
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⇒ [4(r − 1)r − 3] a0x
r

+

∞∑
k=1

[4(k + r − 1)(k + r)ak + 2(k + r − 1)ak−1 − ak−1 − 3ak] x
k+r = 0.

By equating coefficients we see that each coefficient in the power series must be zero. Also we

are assuming that a0 �= 0. Therefore, we have

4(r − 1)r − 3 = 0, (the indicial equation),

4(k + r − 1)(k + r)ak + 2(k + r − 1)ak−1 − ak−1 − 3ak = 0, k ≥ 1.

Thus, the recurrence equation is given by

ak =
(3 − 2k − 2r)ak−1

4(k + r − 1)(k + r) − 3
, k ≥ 1.

Therefore, for r = r1 = 3/2, we have

ak =
−2kak−1

4(k + 1/2)(k + 3/2) − 3
, k ≥ 1 ⇒ ak =

−ak−1

2(k + 2)
, k ≥ 1.

Thus, we see that

k = 1 ⇒ a1 =
−a0

2 · 3 =
−a0

20 · 3!
,

k = 2 ⇒ a2 =
−a1

2 · 4 =
a0

2 · 2 · 3 · 4 =
a0

21 · 4!
,

k = 3 ⇒ a3 =
−a2

2 · 5 =
−a0

22 · 5!
,

k = 4 ⇒ a4 =
−a3

2 · 6 =
a0

23 · 6!
.

Inspection of this sequence shows that we can write the nth coefficient, an, for n ≥ 1 as

an =
(−1)na0

2n−1(n+ 2)!
.

Substituting these coefficients into the solution given by

w

(
3

2
, x

)
=

∞∑
n=0

anx
n+(3/2) ,
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yields a power series solution for x > 0 given by

w

(
3

2
, x

)
= a0x

3/2 + a0

∞∑
n=1

(−1)nxn+(3/2)

2n−1(n+ 2)!
.

But since substituting n = 0 into the general coefficient, an, yields (−1)0a0/(2
−12!) = a0, the

solution that we found above can be written as

w

(
3

2
, x

)
= a0

∞∑
n=0

(−1)nxn+(3/2)

2n−1(n+ 2)!
.

27. In this equation, we see that p(x) = −1/x and q(x) = −1. Thus, the only singular point is

x = 0. Since xp(x) = −1 and x2q(x) = −x2, we see that x = 0 is a regular singular point for

this equation and so we can use the method of Frobenius to find a solution to this equation.

We also note that the solution that we find by this method will converge for all x > 0. To

find this solution we observe that

p0 = lim
x→0

xp(x) = lim
x→0

(−1) = −1 and q0 = lim
x→0

x2q(x) = lim
x→0

(−x2) = 0.

Thus, according to equation (16) on page 463 of the text, the indicial equation for the point

x = 0 is

r(r − 1) − r = 0 ⇒ r(r − 2) = 0.

Therefore, the roots to the indicial equation are r1 = 2, r2 = 0. Hence, we will use the method

of Frobenius to find the solution w(2, x). If we let

w(r, x) =

∞∑
n=0

anx
n+r ,

then

w′(r, x) =

∞∑
n=0

(n+ r)anx
n+r−1 , and w′′(r, x) =

∞∑
n=0

(n+ r − 1)(n+ r)anx
n+r−2 .

By substituting these expressions into the differential equation and simplifying, we obtain

∞∑
n=0

(n+ r − 1)(n+ r)anx
n+r−1 −

∞∑
n=0

(n+ r)anx
n+r−1 −

∞∑
n=0

anx
n+r+1 = 0.
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Next we shift the indices by letting k = n−1 in the first two power series above and k = n+1

in the last power series above. Therefore, we have

∞∑
k=−1

(k + r)(k + r + 1)ak+1x
k+r −

∞∑
k=−1

(k + r + 1)ak+1x
k+r −

∞∑
k=1

ak−1x
k+r = 0.

We can start all three of these summations at the same term, the k = 1 term, if we separate

out the first two terms (the k = −1 and k = 0 terms) from the first two power series. Thus,

we have

(r − 1)ra0x
r−1 + r(r + 1)a1x

r +
∞∑

k=1

(k + r)(k + r + 1)ak+1x
k+r

−ra0x
r−1 − (r + 1)a1x

r −
∞∑

k=1

(k + r + 1)ak+1x
k+r −

∞∑
k=1

ak−1x
k+r = 0

⇒ [(r − 1)r − r] a0x
r−1 + [r(r + 1) − (r + 1)] a1x

r

+

∞∑
k=1

[(k + r)(k + r + 1)ak+1 − (k + r + 1)ak+1 − ak−1] x
k+r = 0.

By equating coefficients and assuming that a0 �= 0, we obtain

r(r − 1) − r = 0, (the indicial equation),

(r + 1)(r − 1)a1 = 0, (8.13)

(k + r)(k + r + 1)ak+1 − (k + r + 1)ak+1 − ak−1 = 0, k ≥ 1,

where the last equation above is the recurrence relation. Simplifying this recurrence relation

yields

ak+1 =
ak−1

(k + r + 1)(k + r − 1)
, k ≥ 1. (8.14)

Next we let r = r1 = 2 in equation (8.13) and in the recurrence relation, equation (8.14), to

obtain

3a1 = 0 ⇒ a1 = 0,

ak+1 =
ak−1

(k + 3)(k + 1)
, k ≥ 1.
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Thus, we have

k = 1 ⇒ a2 =
a0

4 · 2 ,
k = 2 ⇒ a3 =

a1

5 · 3 = 0 ,

k = 3 ⇒ a4 =
a2

6 · 4 =
a0

6 · 4 · 4 · 2 =
a0

24 · 3 · 2 · 2 · 1 · 1 =
a0

24 · 3! · 2!
,

k = 4 ⇒ a5 =
a3

7 · 5 = 0 ,

k = 5 ⇒ a6 =
a4

8 · 6 =
a0

8 · 6 · 24 · 3! · 2!
=

a0

26 · 4! · 3!
.

By inspection we can now see that the coefficients of the power series solution w(2, x) are

a2n−1 = 0

and

a2n =
a0

22n · (n+ 1)!n!
,

for all n ≥ 1. Thus, substituting these coefficients into the power series solution yields the

solution

w(2, x) = a0

∞∑
n=0

x2n+2

22n · (n + 1)!n!
.

35. In applying the method of Frobenius to this third order linear differential equation, we will

seek a solution of the form

w(r, x) =

∞∑
n=0

anx
n+r

⇒ w′(r, x) =

∞∑
n=0

(n+ r)anx
n+r−1

⇒ w′′(r, x) =

∞∑
n=0

(n + r − 1)(n+ r)anx
n+r−2

⇒ w′′′(r, x) =
∞∑

n=0

(n + r − 2)(n+ r − 1)(n+ r)anx
n+r−3 ,

where we have differentiated term by term. Substituting these expressions into the differential

equation and simplifying yields
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∞∑
n=0

6(n + r − 2)(n+ r − 1)(n+ r)anx
n+r +

∞∑
n=0

13(n+ r − 1)(n+ r)anx
n+r

+

∞∑
n=0

(n+ r)anx
n+r +

∞∑
n=0

(n + r)anx
n+r+1 +

∞∑
n=0

anx
n+r+1 = 0.

By the shift of index k = n + 1 in the last two power series above and the shift k = n in all

of the other power series, we obtain

∞∑
k=0

6(k + r − 2)(k + r − 1)(k + r)akx
k+r +

∞∑
k=0

13(k + r − 1)(k + r)akx
k+r

+

∞∑
k=0

(k + r)akx
k+r +

∞∑
k=1

(k − 1 + r)ak−1x
k+r +

∞∑
k=1

ak−1x
k+r = 0.

Next we remove the first term from each of the first three power series above so that all of

these series start at k = 1. Thus, we have

6(r − 2)(r − 1)ra0x
r +

∞∑
k=1

6(k + r − 2)(k + r − 1)(k + r)akx
k+r

+13(r − 1)ra0x
r +

∞∑
k=1

13(k + r − 1)(k + r)akx
k+r + ra0x

r +
∞∑

k=1

(k + r)akx
k+r

+

∞∑
k=1

(k − 1 + r)ak−1x
k+r +

∞∑
k=1

ak−1x
k+r = 0

⇒ [6(r − 2)(r − 1)r + 13(r − 1)r + r] a0x
r

+
∞∑

k=1

[6(k + r − 2)(k + r − 1)(k + r)ak + 13(k + r − 1)(k + r)ak

+(k + r)ak + (k − 1 + r)ak−1 + ak−1] x
k+r = 0. (8.15)

If we assume that a0 �= 0 and set the coefficient of xr equal to zero, we find that the indicial

equation is

6(r − 2)(r − 1)r + 13(r − 1)r + r = 0 ⇒ r2(6r − 5) = 0.

Hence, the roots to the indicial equation are 0, 0, and 5/6. We will find the solution associated

with the largest of these roots. That is, we will find w(5/6, x). Also, from equation (8.15), we
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see that we have the recurrence relation

6(k + r − 2)(k + r − 1)(k + r)ak + 13(k + r − 1)(k + r)ak

+(k + r)ak + (k − 1 + r)ak−1 + ak−1 = 0, k ≥ 1

⇒ ak =
−ak−1

6(k + r − 2)(k + r − 1) + 13(k + r − 1) + 1
, k ≥ 1.

If we assume that r = 5/6, then this recurrence relation simplifies to

ak =
−ak−1

k(6k + 5)
, k ≥ 1.

Therefore, we have

k = 1 ⇒ a1 =
−a0

11
,

k = 2 ⇒ a2 =
−a1

34
=

a0

374
,

k = 3 ⇒ a3 =
−a2

69
=

−a0

25, 806
.

By substituting these coefficients into the solution w(5/6, x) =
∑∞

n=0 anx
n+(5/6), we obtain

w

(
5

6
, x

)
= a0

(
x5/6 − x11/6

11
+
x17/6

374
− x23/6

25, 806
+ · · ·

)
.

41. If we let z = 1/x (⇒ dz/dx = −1/x2), then we can define a new function Y (z) as

Y (z) := y

(
1

z

)
= y(x).

Thus, by the chain rule, we have

dy

dx
=
dY

dx
=

(
dY

dz

)(
dz

dx

)
=

(
dY

dz

)(
− 1

x2

)
(8.16)

⇒ −x2 dy

dx
=
dY

dz
. (8.17)

Therefore, using the product rule and chain rule, we see that

d2y

dx2
=

d2Y

dx2
=

d

dx

(
dY

dx

)
=

d

dx

[(
− 1

x2

)(
dY

dz

)]
(by (8.16) above)
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=
d

dx

(
− 1

x2

)
×
(
dY

dz

)
+

(
− 1

x2

)
× d

dx

(
dY

dz

)
(by product rule)

=

(
2

x3

)
×
(
dY

dz

)
+

(
− 1

x2

)
×
[(

d2Y

dz2

)(
dz

dx

)]
(by chain rule)

=

(
2

x3

)
×
(
dY

dz

)
+

(
− 1

x2

)2

×
(
d2Y

dz2

) (
since

dz

dx
= − 1

x2

)
=

2

x3

dY

dz
+

1

x4

d2Y

dz2
.

Hence, we have

x3 d
2y

dx2
= 2

dY

dz
+

1

x

d2Y

dz2
= 2

dY

dz
+ z

d2Y

dz2
. (8.18)

By using the fact that Y (z) = y(x) and equations (8.17) and (8.18) above, we can now

transform the original differential equation into the differential equation

2
dY

dz
+ z

d2Y

dz2
+
dY

dz
− Y = 0 ⇒ zY ′′ + 3Y ′ − Y = 0. (8.19)

We will now solve this transformed differential equation. To this end, we first note that

p(z) =
3

z
⇒ zp(z) = 3,

and

q(z)
−1

z
⇒ z2g(z) = −z.

Therefore, z = 0 is a regular singular point of this equation and so infinity is a regular singular

point of the original equation.

To find a power series solution for equation (8.19), we first compute

p0 = lim
z→0

zp(z) = 3 and q0 = lim
z→0

z2q(z) = 0.

Thus, the indicial equation for equation (8.19) is

r(r − 1) + 3r = 0 ⇒ r(r + 2) = 0.

Hence, this indicial equation has roots r1 = 0 and r2 = −2. We seek a solution of the form

w(r, z) =

∞∑
n=0

anz
n+r.
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Substituting this expression into equation (8.19) above yields

z
∞∑

n=0

(n + r − 1)(n+ r)anz
n+r−2 + 3

∞∑
n=0

(n+ r)anz
n+r−1 −

∞∑
n=0

anz
n+r = 0.

By simplifying, this equation becomes

∞∑
n=0

(n + r − 1)(n+ r)anz
n+r−1 +

∞∑
n=0

3(n+ r)anz
n+r−1 −

∞∑
n=0

anz
n+r = 0.

Making the shift of index k = n− 1 in the first two power series and k = n in the last power

series allows us to sum each power series over the same powers of z, namely zk+r. Thus, we

have

∞∑
k=−1

(k + r)(k + r + 1)ak+1z
k+r +

∞∑
k=−1

3(k + r + 1)ak+1z
n+r −

∞∑
k=0

akz
k+r = 0.

By removing the first term from the first two power series above, we can write these three

summations as a single power series. Therefore, we have

(r − 1)ra0z
r−1 +

∞∑
k=0

(k + r)(k + r + 1)ak+1z
k+r

+3ra0z
r−1 +

∞∑
k=0

3(k + r + 1)ak+1z
n+r −

∞∑
k=0

akz
k+r = 0

⇒ [(r − 1)r + 3r] a0z
r−1 +

∞∑
k=0

[(k + r)(k + r + 1)ak+1 + 3(k + r + 1)ak+1 − ak] z
k+r = 0.

Equating coefficients and assuming that a0 �= 0 yields the indicial equation, (r−1)r+3r = 0,

and the recurrence relation

(k + r)(k + r + 1)ak+1 + 3(k + r + 1)ak+1 − ak = 0, k ≥ 0

⇒ ak+1 =
ak

(k + r + 1)(k + r + 3)
, k ≥ 0.

Thus, with r = r1 = 0, we obtain the recurrence relation

ak+1 =
ak

(k + 1)(k + 3)
, k ≥ 3.
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Since a0 is an arbitrary number, we see from this recurrence equation that the next three

coefficients are given by

k = 0 ⇒ a1 =
a0

3
,

k = 1 ⇒ a2 =
a1

8
=
a0

24
,

k = 2 ⇒ a3 =
a2

15
=

a0

360
.

Thus, from the method of Frobenius, we obtain a power series solution for equation (8.19)

given by

Y (z) = w(0, z) =
∞∑

n=0

anz
n = a0

(
1 +

1

3
z +

1

24
z2 +

1

360
z3 + · · ·

)
.

In order to find the solution of the original differential equation, we again make the substitution

z = 1/x and Y (z) = Y (x−1) = y(x). Therefore, in the solution found above, we replace the

z’s with 1/x to obtain the solution given by

y(x) = Y
(
x−1
)

= a0

(
1 +

1

3
x−1 +

1

24
x−2 +

1

360
x−3 + · · ·

)
.

EXERCISES 8.7: Finding a Second Linearly Independent Solution, page 482

3. In Problem 21 of Exercises 8.6, we found one power series solution for this differential equation

about the point x = 0 given by

y1(x) = 1 − 1

4
x2 +

1

64
x4 − 1

2304
x6 + · · · ,

where we let a0 = 1. We also found that the roots to the indicial equation are r1 = r2 = 0.

Thus, to find a second linearly independent solution about the regular singular point x = 0,

we will use part (b) of Theorem 7 on page 475 of the text. Therefore, we see that this second

linearly independent solution will have the form given by

y2(x) = y1(x) ln x+
∞∑

n=1

bnx
n

⇒ y′2(x) = y′1(x) ln x+ x−1y1(x) +

∞∑
n=1

nbnx
n−1
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⇒ y′′2(x) = y′′1(x) ln x+ 2x−1y′1(x) − x−2y1(x) +

∞∑
n=1

n(n− 1)bnx
n−2 .

Substituting these expressions into the differential equation yields

x2

{
y′′1(x) ln x+ 2x−1y′1(x) − x−2y1(x) +

∞∑
n=1

n(n− 1)bnx
n−2

}

+x

{
y′1(x) ln x+ x−1y1(x) +

∞∑
n=1

nbnx
n−1

}
+ x2

{
y1(x) ln x+

∞∑
n=1

bnx
n

}
= 0,

which simplifies to

x2y′′1(x) ln x+ 2xy′1(x) − y1(x) +

∞∑
n=1

n(n− 1)bnx
n

+xy′1(x) ln x+ y1(x) +
∞∑

n=1

nbnx
n + x2y1(x) ln x+

∞∑
n=1

bnx
n+2 = 0,

⇒ (
x2y′′1(x) + xy′1(x) + x2y1(x)

)
ln x+ 2xy′1(x)

+

∞∑
n=1

n(n− 1)bnx
n +

∞∑
n=1

nbnx
n +

∞∑
n=1

bnx
n+2 = 0.

Therefore, since y1(x) is a solution to the differential equation, the term in braces is zero and

the above equation reduces to

2xy′1(x) +
∞∑

n=1

n(n− 1)bnx
n +

∞∑
n=1

nbnx
n +

∞∑
n=1

bnx
n+2 = 0.

Next we make the substitution k = n+ 2 in the last power series above and the substitution

k = n in the other two power series so that we can sum all three of the power series over the

same power of x, namely xk. Thus, we have

2xy′1(x) +

∞∑
k=1

k(k − 1)bkx
k +

∞∑
k=1

kbkx
k +

∞∑
k=3

bk−2x
k = 0.

By separating out the first two terms in the first two summations above and simplifying, we

obtain

2xy′1(x) + 0 + 2b2x
2 +

∞∑
k=3

k(k − 1)bkx
k + b1x+ 2b2x

2 +

∞∑
k=3

kbkx
k +

∞∑
k=3

bk−2x
k = 0
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⇒ 2xy′1(x) + b1x+ 4b2x
2 +

∞∑
k=3

(
k2bk + bk−2

)
xk = 0. (8.20)

By differentiating the series for y1(x) term by term, we obtain

y′1(x) = −1

2
x+

1

16
x3 − 1

384
x5 + · · · .

Thus, substituting this expression for y′1(x) into equation (8.20) above and simplifying yields{
−x2 +

1

8
x4 − 1

192
x6 + · · ·

}
+ b1x+ 4b2x

2 +
∞∑

k=3

(
k2bk + bk−2

)
xk = 0.

Therefore, by equating coefficients, we see that

b1 = 0;

4b2 − 1 = 0 ⇒ b2 =
1

4
;

9b3 + b1 = 0 ⇒ b3 = 0;
1

8
+ 16b4 + b2 = 0 ⇒ b4 =

−3

128
;

25b5 + b3 = 0 ⇒ b5 = 0;
−1

192
+ 36b6 + b4 = 0 ⇒ b6 =

11

13, 824
.

Substituting these coefficients into the solution

y2(x) = y1(x) ln x+

∞∑
n=1

bnx
n ,

yields

y2(x) = y1(x) ln x+
1

4
x2 − 3

128
x4 +

11

13, 824
x6 + · · · .

Thus, a general solution of this differential equation is given by

y(x) = c1y1(x) + c2y2(x),

where

y1(x) = 1 − 1

4
x2 +

1

64
x4 − 1

2304
x6 + · · · ,

y2(x) = y1(x) ln x+
1

4
x2 − 3

128
x4 +

11

13, 824
x6 + · · · .
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7. In Problem 25 of Section 8.6, we found a solution to this differential equation about the regular

singular point x = 0 given by

y1(x) =

∞∑
n=0

(−1)nxn+(3/2)

2n−1(n+ 2)!
= x3/2 − 1

6
x5/2 +

1

48
x7/2 + · · · ,

where we let a0 = 1. We also found that the roots to the indicial equation for this problem

are r1 = 3/2 and r2 = −1/2, and so r1 − r2 = 2. Thus, in order to find a second linearly

independent solution about x = 0, we will use part (c) of Theorem 7 on page 475 of the text.

Therefore, we will assume that this second solution has the form

y2(x) = Cy1(x) ln x+
∞∑

n=0

bnx
n−(1/2) , b0 �= 0

⇒ y′2(x) = Cy′1(x) ln x+ C
1

x
y1(x) +

∞∑
n=0

(
n− 1

2

)
bnx

n−(3/2)

⇒ y′′2(x) = Cy′′1(x) ln x+ 2C
1

x
y′1(x) − C

1

x2
y1(x) +

∞∑
n=0

(
n− 3

2

)(
n− 1

2

)
bnx

n−(5/2) .

Substituting these expressions into the differential equation yields

4x2

[
Cy′′1(x) ln x+ 2C

1

x
y′1(x) − C

1

x2
y1(x) +

∞∑
n=0

(
n− 3

2

)(
n− 1

2

)
bnx

n−(5/2)

]

+2x2

[
Cy′1(x) ln x+ C

1

x
y1(x) +

∞∑
n=0

(
n− 1

2

)
bnx

n−(3/2)

]

−(x+ 3)

[
Cy1(x) ln x+

∞∑
n=0

bnx
n−(1/2)

]
= 0.

Multiplying through, we get[
4x2Cy′′1(x) lnx+ 8Cxy′1(x) − 4Cy1(x) +

∞∑
n=0

4

(
n− 3

2

)(
n− 1

2

)
bnx

n−(1/2)

]

+

[
2x2Cy′1(x) ln x+ 2Cxy1(x) +

∞∑
n=0

2

(
n− 1

2

)
bnx

n+(1/2)

]

−
[
Cxy1(x) ln x+

∞∑
n=0

bnx
n+(1/2) + 3Cy1(x) ln x+

∞∑
n=0

3bnx
n−(1/2)

]
= 0,
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which simplifies to

C
[
4x2y′′1(x) + 2x2y′1(x) − xy1(x) − 3y1(x)

]
ln x+ 8Cxy′1(x) + 2C(x− 2)y1(x)

+

∞∑
n=0

(2n− 3) (2n− 1) bnx
n−(1/2) +

∞∑
n=0

(2n− 1) bnx
n+(1/2)

−
∞∑

n=0

bnx
n+(1/2) −

∞∑
n=0

3bnx
n−(1/2) = 0.

Since y1(x) is a solution to the differential equation, the term in brackets is zero. By shifting

indices so that each power series is summed over the same power of x, we have

8Cxy′1(x) + 2C(x− 2)y1(x) +

∞∑
k=0

(2k − 3) (2k − 1) bkx
k−(1/2)

+

∞∑
k=1

(2k − 3) bk−1x
k−(1/2) −

∞∑
k=1

bk−1x
k−(1/2) −

∞∑
k=0

3bkx
k−(1/2) = 0.

By writing all of these summations as a single power series (noting that the k = 0 term of the

first and last summations add to zero), we obtain

8Cxy′1(x) + 2C(x− 2)y1(x) +

∞∑
k=0

(2k − 3) (2k − 1) bkx
k−(1/2)

+
∞∑

k=1

[(2k − 3) (2k − 1) bk + (2k − 3) bk−1 − bk−1 − 3bk] x
k−(1/2) = 0.

Substituting into this equation the expressions for y1(x) and y′1(x) given by

y1(x) =
∞∑

n=0

(−1)nxn+(3/2)

2n−1(n + 2)!
, y′1(x) =

∞∑
n=0

(−1)n[n+ (3/2)]xn+(1/2)

2n−1(n + 2)!
,

yields

∞∑
n=0

8C(−1)n[n + (3/2)]xn+(3/2)

2n−1(n+ 2)!
+

∞∑
n=0

2C(−1)nxn+(5/2)

2n−1(n+ 2)!

−
∞∑

n=0

4C(−1)nxn+(3/2)

2n−1(n+ 2)!
+

∞∑
k=1

[4k(k − 2)bk + 2(k − 2)bk−1] x
k−(1/2) = 0,
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where we have simplified the expression inside the last summation. Combining the first and

third power series yields

∞∑
n=0

8C(−1)n(n+ 1)xn+(3/2)

2n−1(n+ 2)!
+

∞∑
n=0

2C(−1)nxn+(5/2)

2n−1(n+ 2)!

+

∞∑
k=1

[4k(k − 2)bk + 2(k − 2)bk−1] x
k−(1/2) = 0, (8.21)

By writing out the terms up to order x7/2, we obtain

8C

[
x3/2 − 1

3
x5/2 +

3

16
x7/2 + · · ·

]
+ 2C

[
x5/2 − 1

6
x7/2 + · · ·

]
+
[
(−4b1 − 2b0)x

1/2 + (12b3 + 2b2)x
5/2 + (32b4 + 4b3)x

7/2 + · · ·] = 0.

Setting the coefficients equal to zero, yields

−4b1 − 2b0 = 0 ⇒ b1 = −b0/2;

8C = 0 ⇒ C = 0;

−(8/3)C + 2C + 12b3 + 2b2 = 0 ⇒ b3 = −b2/6;

(2/3)C − (1/3)C + 32b4 + 4b3 = 0 ⇒ b4 = −b3/8 = b2/48.

From this we see that b0 and b2 are arbitrary constants and that C = 0. Also, since C = 0, we

can use the last power series in (8.21) to obtain the recurrence equation bk = bk−1/(2k). Thus,

every coefficient after b4 will depend only on b2 (not on b0). Substituting these coefficients

into the solution,

y2(x) = Cy1(x) lnx+

∞∑
n=0

bnx
n−(1/2) ,

yields

y2(x) = b0

[
x−1/2 − 1

2
x1/2

]
+ b2

[
x3/2 − 1

6
x5/2 +

1

48
x7/2 + · · ·

]
The expression in the brackets following b2 is just the series expansion for y1(x). Hence, in

order to obtain a second linearly independent solution, we must choose b0 to be nonzero.

Taking b0 = 1 and b2 = 0 gives

y2(x) = x−1/2 − 1

2
x1/2 .
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Therefore, a general solution is

y(x) = c1y1(x) + c2y2(x),

where

y1(x) = x3/2 − 1

6
x5/2 +

1

48
x7/2 + · · · and y2(x) = x−1/2 − 1

2
x1/2 .

17. In Problem 35 of Section 8.6, we assumed that there exists a series solution to this problem of

the form w(r, x) =
∑∞

n=0 anx
n+r. This led to the equation (cf. equation (8.15), of the solution

to Problem 35, Exercises 8.6)

r2(6r − 5)a0x
r +

∞∑
k=1

{
(k + r)2[6(k + r) − 5]ak + (k + r)ak−1

}
xk+r = 0. (8.22)

From this we found the indicial equation r2(6r − 5) = 0, which has roots r = 0, 0, 5/6. By

using the root 5/6, we found the solution w(5/6, x). Hence one solution is

y1(x) = x5/6 − x11/6

11
+
x17/6

374
− x23/6

25, 806
+ · · · ,

where we have chosen a0 = 1 in w(5/6, x). We now seek two more linearly independent

solutions to this differential equation. To find a second linearly independent solution, we will

use the root r = 0 and set the coefficients in equation (8.22) to zero to obtain the recurrence

relation

k2(6k − 5)ak + kak−1 = 0, k ≥ 1.

Solving for ak in terms of ak−1 gives

ak =
−ak−1

k(6k − 5)
, k ≥ 1.

Thus, we have

k = 1 ⇒ a1 = −a0 ,

k = 2 ⇒ a2 =
−a1

14
=
a0

14
,
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k = 3 ⇒ a3 =
−a2

39
=

−a0

546
,

k = 4 ⇒ a4 =
−a3

76
=

a0

41, 496
,

k = 5 ⇒ a5 =
−a4

125
=

−a0

5, 187, 000
.

Plugging these coefficients into the solution w(0, x) and setting a0 = 1 yields a second linearly

independent solution

y2(x) = 1 − x+
1

14
x2 − 1

546
x3 +

1

41, 496
x4 − 1

5, 187, 000
x5 + · · · .

To find a third linearly independent solution, we will use the repeated root r = 0 and assume

that, as in the case of second order equations with repeated roots, the solution that we seek

will have the form

y3(x) = y2(x) ln x+

∞∑
n=1

cnx
n .

Since the first three derivatives of y3(x) are given by

y′3(x) = y′2(x) ln x+ x−1y2(x) +

∞∑
n=1

ncnx
n−1 ,

y′′3(x) = y′′2(x) ln x+ 2x−1y′2(x) − x−2y2(x) +

∞∑
n=1

(n− 1)ncnx
n−2 ,

y′′′3 (x) = y′′′2 (x) ln x+ 3x−1y′′2(x) − 3x−2y′2(x) + 2x−3y2(x) +

∞∑
n=1

(n− 2)(n− 1)ncnx
n−3 ,

substituting y3(x) into the differential equation yields

6x3y′′′(x) + 13x2y′′(x) +
(
x+ x2

)
y′(x) + xy(x)

= 6x3

[
y′′′2 (x) ln x+ 3x−1y′′2(x) − 3x−2y′2(x) + 2x−3y2(x) +

∞∑
n=1

(n− 2)(n− 1)ncnx
n−3

]

+13x2

[
y′′2(x) ln x+ 2x−1y′2(x) − x−2y2(x) +

∞∑
n=1

(n− 1)ncnx
n−2

]

+
(
x+ x2

) [
y′2(x) ln x+ x−1y2(x) +

∞∑
n=1

ncnx
n−1

]
+ x

[
y2(x) ln x+

∞∑
n=1

cnx
n

]
= 0.
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Since y2(x) is a solution to the given equation, this simplifies to

18x2y′′2(x) + 8xy′2(x) + xy2(x) +

∞∑
n=1

6(n− 2)(n− 1)ncnx
n

+
∞∑

n=1

13(n− 1)ncnx
n +

∞∑
n=1

ncnx
n +

∞∑
n=1

ncnx
n+1 +

∞∑
n=1

cnx
n+1 = 0.

By shifting indices and then starting all of the resulting power series at the same point, we

can combine all of the summations above into a single power series. Thus, we have

18x2y′′2(x) + 8xy′2(x) + xy2(x)

+c1x+

∞∑
k=2

[6(k − 2)(k − 1)kck + 13(k − 1)kck + kck + kck−1] x
k = 0. (8.23)

By computing y′2(x) and y′′2(x), we obtain

y′2(x) = −1 +
1

7
x− 1

182
x2 +

1

10374
x3 + · · · ,

y′′2(x) =
1

7
− 1

91
x+

1

3458
x2 + · · · .

By substituting these expressions into equation (8.23), we have

18x2

(
1

7
− x

91
+

x2

3458
+ · · ·

)
+ 8x

(
−1 +

x

7
− x2

182
+

x3

10374
+ · · ·

)
+x

(
1 − x+

x2

14
− x3

546
+

x4

41, 496
+ · · ·

)
+ c1x+

∞∑
k=2

[
(6k3 − 5k2)ck + kck−1

]
xk = 0.

Writing out the terms up to orderx3 we find

(−7 + c1) x+

(
19

7
+ 28c2 + 2c1

)
x2 +

(
− 31

182
+ 117c3 + 3c2

)
x3 + · · · = 0.

By equating coefficients to zero, we obtain

−7 + c1 = 0 ⇒ c1 = 7;

19/7 + 28c2 + 2c1 = 0 ⇒ c2 = −117/196;

−31/182 + 117c3 + 3c2 = 0 ⇒ c3 = 4997/298116.
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Therefore, plugging these coefficients into the expansion

y3(x) = y2(x) ln x+
∞∑

n=1

cnx
n ,

yields a third linearly independent solution is given by

y3(x) = y2(x) ln x+ 7x− 117

196
x2 +

4997

298116
x3 + · · · .

Thus, a general solution is

y(x) = c1y1(x) + c2y2(x) + c3y3(x),

where

y1(x) = x5/6 − x11/6

11
+
x17/6

374
− x23/6

25, 806
+ · · · ,

y2(x) = 1 − x+
x2

14
− x3

546
+

x4

41, 496
− x5

5, 187, 000
+ · · · ,

y3(x) = y2(x) ln x+ 7x− 117x2

196
+

4997x3

298, 116
+ · · · .

23. We will try to find a solution of the form

y(x) =
∞∑

n=0

anx
n+r

⇒ y′(x) =

∞∑
n=0

(n + r)anx
n+r−1

⇒ y′′(x) =

∞∑
n=0

(n + r)(n+ r − 1)anx
n+r−2 .

Therefore, we substitute these expressions into the differential equation to obtain

x2y′′ + y′ − 2y = x2
∞∑

n=0

(n+ r)(n+ r − 1)anx
n+r−2 +

∞∑
n=0

(n+ r)anx
n+r−1 − 2

∞∑
n=0

anx
n+r = 0

⇒
∞∑

k=0

(k + r)(k + r − 1)akx
k+r +

∞∑
k=−1

(k + r + 1)ak+1x
k+r −

∞∑
k=0

2akx
k+r = 0
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⇒ ra0x
r−1 +

∞∑
k=0

[(k + r)(k + r − 1)ak + (k + r + 1)ak+1 − 2ak]x
k+r = 0,

where we have changed all of the indices and the starting point for the second summation so

that we could write these three power series as a single power series. By assuming that a0 �= 0

and ra0x
r−1 = 0, we see that r = 0. Plugging r = 0 into the coefficients in the summation

and noting that each of these coefficients must be zero yields the recurrence relation

k(k − 1)ak + (k + 1)ak+1 − 2ak = 0, k ≥ 0

⇒ ak+1 = (2 − k)ak, k ≥ 0.

Thus, we see that the coefficients of the solution are given by

k = 0 ⇒ a1 = 2a0 ; k = 1 ⇒ a2 = a1 = 2a0 ;

k = 2 ⇒ a3 = 0 ; k = 3 ⇒ a4 = −a3 = 0 .

Since each coefficient is a multiple of the previous coefficient, we see that an = 0 for n ≥ 3. If

we take a0 = 1, then one solution is

y1(x) = 1 + 2x+ 2x2 .

We will now use the reduction of order procedure described in Problem 31, Section 6.1, on

page 326 of the text to find a second linearly independent solution. Thus we seek for a solution

of the form

y(x) = y1(x)v(x)

⇒ y′(x) = y′1(x)v(x) + y1(x)v
′(x)

⇒ y′′(x) = y′′1(x)v(x) + 2y′1(x)v
′(x) + y1(x)v

′′(x).

Substituting y(x), y′(x), and y′′(x) into the given equation yields

x2y′′ + y′ − 2y = x2 [y′′1v + 2y′1v
′ + y1v

′′] + [y′1v + y1v
′] − 2 [y1v]

=
[
x2y1

]
v′′ +

[
2x2y′1 + y1

]
v′ +

[
x2y′′1 + y′1 − 2y1

]
v

=
[
x2y1

]
v′′ +

[
2x2y′1 + y1

]
v′ = 0
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(since y1 is a solution, the coefficient at v equals to zero). With w = v′, the last equation

becomes a first order separable equation which can be solved by methods of Section 2.2.

Namely, [
x2y1(x)

]
w′(x) +

[
2x2y′1(x) + y1(x)

]
w(x) = 0

⇒ dw

w
= −2x2y′1(x) + y1(x)

x2y1(x)
dx = −

(
2y′(x)
y1(x)

+
1

x2

)
dx

⇒ ln |w| = −
∫

2y′(x)dx
y1(x)

−
∫
dx

x2
= −2 ln |y1(x)| + 1

x

⇒ w(x) = exp

[
−2 ln |y1(x)| + 1

x

]
=

e1/x

[y1(x)]2
, (8.24)

where we have taken zero integration constant and positive function w. Since

[y1(x)]
2 = 4x4 + 8x3 + 8x2 + 4x+ 1 and

e1/x = 1 + x−1 +
x−2

2
+
x−3

6
+
x−4

24
+ · · ·

(we have used the Maclaurin expansion for ez with z = 1/x), performing long division with

descending powers of x in each polynomial, we see that

e1/x

[y1(x)]2
=

1 + x−1 +
x−2

2
+
x−3

6
+
x−4

24
+ · · ·

4x4 + 8x3 + 8x2 + 4x+ 1
=

1

4
x−4 − 1

4
x−5 +

1

8
x−6 + · · · .

Therefore, (8.24) yields

v′(x) = w(x) =
1

4
x−4 − 1

4
x−5 +

1

8
x−6 + · · ·

⇒ v(x) =

∫ (
1

4
x−4 − 1

4
x−5 +

1

8
x−6 + · · ·

)
dx = − 1

12
x−3 +

1

16
x−4 − 1

40
x−5 + · · ·

and so

y(x) = y1(x)v(x) =
[
1 + 2x+ 2x2

] [− 1

12
x−3 +

1

16
x−4 − 1

40
x−5 + · · ·

]
= −1

6
x−1 − 1

24
x−2 − 1

120
x−3 + · · · .

is a second linearly independent solution. Thus, a general solution to this differential equation

is given by y(x) = c1y1(x) + c2y2(x), where

y1(x) = 1 + 2x+ 2x2 and y2(x) = −1

6
x−1 − 1

24
x−2 − 1

120
x−3 + · · · .
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EXERCISES 8.8: Special Functions, page 493

1. For this problem, we see that γ = 1/2, α+β+1/4, and α×β = 2. First we note that γ is not

an integer. Next, by solving in the last two equations above simultaneously for α and β, we

see that either α = 1 and β = 1 or α = 2 and β = 1. Therefore, by assuming that α = 1 and

β = 2, equations (10) on page 485 and (17) on page 486 of the text yield the two solutions

y1(x) = F

(
1, 2;

1

2
; x

)
and y2(x) = x1/2F

(
3

2
,
5

2
;
3

2
; x

)
.

Therefore, a general solution for this differential equation is given by

y(x) = c1F

(
1, 2;

1

2
; x

)
+ c2x

1/2F

(
3

2
,
5

2
;
3

2
; x

)
.

Notice that

F (α, β; γ; x) = 1 +
∞∑

n=0

(α)n(β)n

n!(γ)n

xn = 1 +
∞∑

n=0

(β)n(α)n

n!(γ)n

xn = F (β, α; γ; x).

Therefore, letting α = 2 and β = 1 yields an equivalent form of the same solution given by

y(x) = c1F

(
2, 1;

1

2
; x

)
+ c2x

1/2F

(
5

2
,
3

2
;
3

2
; x

)
.

13. This equation can be written as

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0.

Thus, ν2 = 1/4 which implies that ν = 1/2. Since this is not an integer (even though 2ν is

an integer), by the discussion on page 487 of the text, two linearly independent solutions to

this problem are given by equations (25) and (26) also on page 487, that is

y1(x) = J1/2(x) =
∞∑

n=0

(−1)n

n!Γ (3/2 + n)

(x
2

)2n+1/2

,

y2(x) = J−1/2(x) =

∞∑
n=0

(−1)n

n!Γ (1/2 + n)

(x
2

)2n−1/2

.

Therefore, a general solution to this differential equation is given by

y(x) = c1J1/2(x) + c2J−1/2(x).
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15. In this problem ν = 1. Thus, one solution to this differential equation is given by

y1(x) = J1(x) =

∞∑
n=0

(−1)n

n!Γ (2 + n)

(x
2

)2n+1

.

By the discussion on page 487 of the text, J−1(x) and J1(x) are linearly dependent. Thus,

J−1(x) will not be a second linearly independent solution for this problem. But, a second

linearly independent solution will be given by equation (30) on page 488 of the text with

m = 1. That is we have

y2(x) = Y1(x) = lim
ν→1

cos(νπ)Jν(x) − J−ν(x)

sin(νπ)
.

Therefore, a general solution to this differential equation is given by

y(x) = c1J1(x) + c2Y1(x).

21. Let y(x) = xνJν(x). Then, by equation (31) on page 488 of the text, we have

y′(x) = xνJν−1(x).

Therefore, we see that

y′′(x) = Dx [y′(x)] = Dx [xνJν−1(x)] = Dx

{
x
[
xν−1Jν−1(x)

]}
= xν−1Jν−1(x) + xDx

[
xν−1Jν−1(x)

]
= xν−1Jν−1(x) + xνJν−2(x).

Notice that in order to take the last derivative above, we have again used equation (31) on

page 488 of the text. By substituting these expressions into the left-hand side of the first

differential equation given in the problem, we obtain

xy′′ + (1 − 2ν)y′ + xy = x
[
xν−1Jν−1(x) + xνJν−2(x)

]
+ (1 − 2ν) [xνJν−1(x)] + x [xνJν(x)]

= xνJν−1(x) + xν+1Jν−2(x) + xνJν−1(x) − 2νxνJν−1(x) + xν+1Jν(x). (8.25)

Notice that by equation (33) on page 488 of the text, we have

Jν(x) =
2(ν − 1)

x
Jν−1(x) − Jν−2(x)
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⇒ xν+1Jν(x) = 2(ν − 1)xνJν−1(x) − xν+1Jν−2(x).

Replacing xν+1Jν(x) in equation (8.25) with the above expression and simplifying yields

xy′′ + (1 − 2ν)y′ + xy = xνJν−1(x) + xν+1Jν−2(x) + xνJν−1(x)

−2νxνJν−1(x) + 2(ν − 1)xνJν−1(x) − xν+1Jν−2(x) = 0.

Therefore, y(x) = xνJν(x) is a solution to this type of differential equation.

In order to find a solution to the differential equation xy′′−2y′ +xy = 0, we observe that this

equation is of the same type as the equation given above with

1 − 2ν = −2 ⇒ ν =
3

2
.

Thus, a solution to this equation will be

y(x) = x3/2J3/2(x) = x3/2

∞∑
n=0

(−1)n

n!Γ(5/2 + n)

(x
2

)2n+3/2

.

29. In Legendre polynomials, n is a fixed nonnegative integer. Thus, in the first such polynomial,

n equals zero. Therefore, we see that [n/2] = [0/2] = 0 and, by equation (43) on page 491 of

the text, we have

P0(x) = 2−0 (−1)00!

0!0!0!
x0 = 1.

Similarly, we have

n = 1 ⇒
[
1

2

]
= 0 ⇒ P1(x) = 2−1 (−1)02!

1!0!1!
x1 = x,

n = 2 ⇒
[
2

2

]
= 1 ⇒ P2(x) = 2−2

(
(−1)04!

2!0!2!
x2 +

(−1)12!

1!1!0!
x0

)
=

3x2 − 1

2
,

n = 3 ⇒
[
3

2

]
= 1 ⇒ P3(x) = 2−3

(
(−1)06!

3!0!3!
x3 +

(−1)14!

2!1!1!
x1

)
=

5x3 − 3x

2
,

n = 4 ⇒
[
4

2

]
= 2 ⇒ P4(x) = 2−4

(
(−1)08!

4!0!4!
x4 +

(−1)16!

3!1!2!
x2 +

(−1)24!

2!2!0!
x0

)
=

35x4 − 30x2 + 3

8
.
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37. Since the Taylor series expansion of an analytic function f(t) about t = 0 is given by

f(t) =
∞∑

n=0

f (n)(0)

n!
tn ,

we see that H(x) is just the nth derivative of y(t) = e2tx−t2 with respect to t evaluated at the

point t = 0 (treating x as a fixed parameter). Therefore, we have

y(t) = e2tx−t2 ⇒ H0(x) = y(0) = e0 = 1,

y′(t) = (2x− 2t)e2tx−t2 ⇒ H1(x) = y′(0) = 2xe0 = 2x,

y′′(t) = [−2 + (2x− 2t)2] e2tx−t2 ⇒ H2(x) = y′′(0) = [−2 + (2x)2] e0 = 4x2 − 2,

y′′′(t) = [−6(2x− 2t) + (2x− 2t)3] e2tx−t2 ⇒ H3(x) = y′′′(0) = 8x3 − 12x.

39. To find the first four Laguerre polynomials, we need to find the first four derivatives of the

function y(x) = xne−x. Therefore, we have

y(0)(x) = xne−x ,

y′(x) =
(
nxn−1 − xn

)
e−x ,

y′′(x) =
(
n(n− 1)xn−2 − 2nxn−1 + xn

)
e−x ,

y′′′(x) =
(
n(n− 1)(n− 2)xn−3 − 3n(n− 1)xn−2 + 3nxn−1 − xn

)
e−x .

Substituting these expressions into Rodrigues’s formula and plugging in the appropriate values

of n yields

L0(x) =
ex

0!
x0e−x = 1,

L1(x) =
ex

1!

[
1x1−1 − x1

]
e−x = 1 − x,

L2(x) =
ex

2!

[
2(2 − 1)x2−2 − 2 · 2x2−1 + x2

]
e−x =

2 − 4x+ x2

2
,

L3(x) =
ex

3!

[
3(3 − 1)(3 − 2)x3−3 − 3 · 3(3 − 1)x3−2 + 3 · 3x3−1 − x3

]
e−x

=
6 − 18x+ 9x2 − x3

6
.
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REVIEW PROBLEMS: page 497

1. (a) To construct the Taylor polynomials

pn(x) = y(0) +
y′(0)

1!
x+

y′′(0)

2!
x2 + · · · + y(n)(0)

n!
xn

approximating the solution to the given initial value problem, we need y(0), y′(0), etc.

y(0) is provided by the initial condition, y(0) = 1. The value of y′(0) can be deduced

from the differential equation itself. We have

y′(0) = (0)y(0) − y(0)2 = (0)(1) − (1)2 = −1.

Differentiating both sides of the given equation, y′ = xy − y2, and substituting x = 0

into the resulting equation, we get

y′′ = y + xy′ − 2yy′

⇒ y′′(0) = y(0) + (0)y′(0) − 2y(0)y′(0) = (1) + (0)(−1) − 2(1)(−1) = 3.

Differentiating once more yields

y′′′ = y′ + y′ + xy′′ − 2y′y′ − 2yy′′

⇒ y′′′(0) = (−1) + (−1) + (0)(3) − 2(−1)(−1) − 2(1)(3) = −10.

Thus,

p3(x) = 1 +
−1

1!
x+

3

2!
x2 +

−10

3!
x3 = 1 − x+

3x2

2
− 5x3

3
.

(b) The values of z(0) and z′(0) are given. Namely, z(0) = −1 and z′(0) = 1. Substituting

x = 0 into the given equation yields

z′′(0) − (0)3z′(0) + (0)z(0)2 = 0 ⇒ z′′(0) = 0.

We now differentiate the given equation and evaluate the result at x = 0.

z′′′ − 3x2z′ − x3z′′ + z2 + 2xzz′ = 0
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⇒ z′′′(0) = 3(0)2z′(0) + (0)3z′′(0) − z(0)2 − 2(0)z(0)z′(0) = −1.

One more differentiation yields

z(4) − 6xz′ − 3x2z′′ − 3x2z′′ − x3z′′′ + 2zz′ + 2zz′ + 2xz′z′ + 2xzz′′ = 0

⇒ z(4)(0) = −4z(0)z′(0) = 4.

Hence,

p4(x) = −1 +
1

1!
x+

0

2!
x2 +

−1

3!
x3 +

4

4!
x4 = −1 + x− x3

6
+
x4

6
.

3. (a) Since both p(x) = x2 and q(x) = −2 are analytic at x = 0, a general solution to the

given equation is also analytic at this point. Thus, it has an expansion

y =
∞∑

k=0

akx
k

⇒ y′ =
∞∑

k=1

kakx
k−1

⇒ y′′ =

∞∑
k=2

k(k − 1)akx
k−2 .

Substituting these expansions for y, y′, and y′′ into the original equation yields
∞∑

k=2

k(k − 1)akx
k−2 + x2

∞∑
k=1

kakx
k−1 − 2

∞∑
k=0

akx
k = 0

⇒
∞∑

k=2

k(k − 1)akx
k−2 +

∞∑
k=1

kakx
k+1 −

∞∑
k=0

2akx
k = 0.

We now shift the indices of summation so that all three sums contain like powers xn. In

the first sum, we let k − 2 = n; in the second sum, let k + 1 = n; and let k = n in the

third sum. This yields
∞∑

n=0

(n+ 2)(n+ 1)an+2x
n +

∞∑
n=2

(n− 1)an−1x
n −

∞∑
n=0

2anx
n = 0.

Separating the terms corresponding to n = 0 and n = 1, and combining the rest under

one summation, we obtain

(2a2 − 2a0) + (6a3 − 2a1) x+

∞∑
n=2

[(n+ 2)(n+ 1)an+2 + (n− 1)an−1 − 2an] xn = 0.
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Therefore,

2a2 − 2a0 = 0,

6a3 − 2a1 = 0,

(n+ 2)(n+ 1)an+2 + (n− 1)an−1 − 2an = 0, n ≥ 2.

This yields

a2 = a0, a3 =
a1

3
, and an+2 =

2an − (n− 1)an−1

(n + 2)(n+ 1)
, n ≥ 2.

Hence,

y(x) = a0 + a1x+ a2x
2 + a3x

3 + · · · = a0 + a1x+ a0x
2 +

a1

3
x3 + · · ·

= a0

(
1 + x2 + · · ·)+ a1

(
x+

x3

3
+ · · ·

)
.

5. Clearly, x = 2 is an ordinary point for the given equation because p(x) = x−2 and q(x) = −1

are analytic everywhere. Thus we seek for a solution of the form

w(x) =

∞∑
k=0

ak(x− 2)k .

Differentiating this power series yields

w′(x) =

∞∑
k=1

kak(x− 2)k−1 and w′′(x) =

∞∑
k=2

k(k − 1)ak(x− 2)k−2 .

Therefore,

w′′ + (x− 2)w′ − w =

∞∑
k=2

k(k − 1)ak(x− 2)k−2 + (x− 2)

∞∑
k=1

kak(x− 2)k−1

−
∞∑

k=0

ak(x− 2)k = 0

⇒
∞∑

k=2

k(k − 1)ak(x− 2)k−2 +
∞∑

k=1

kak(x− 2)k −
∞∑

k=0

ak(x− 2)k = 0.

Shifting the index of summation in the first sum yields

∞∑
n=0

(n+ 2)(n+ 1)an+2(x− 2)n +

∞∑
n=1

nan(x− 2)n −
∞∑

n=0

an(x− 2)n = 0
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⇒
[
2a2 +

∞∑
n=1

(n+ 2)(n+ 1)an+2(x− 2)n

]
+

∞∑
n=1

nan(x− 2)n −
[
a0 +

∞∑
n=1

an(x− 2)n

]
= 0

⇒ (2a2 − a0) +

∞∑
n=1

[(n+ 2)(n+ 1)an+2 + nan − an] (x− 2)n = 0,

where we have separated the terms corresponding to n = 0 and collected the rest under one

summation. In order that the above power series equals zero, it must have all zero coefficients.

Thus,

2a2 − a0 = 0,

(n+ 2)(n+ 1)an+2 + nan − an = 0, n ≥ 1

⇒ a2 = a0/2 ,

an+2 = (1 − n)an/[(n + 2)(n+ 1)] , n ≥ 1.

For n = 1 and n = 2, the last equation gives a3 = 0 and a4 = −a2/12 = −a0/24. Therefore,

w(x) = a0 + a1(x− 2) + a2(x− 2)2 + a3(x− 2)3 + a4(x− 2)4 + · · ·
= a0 + a1(x− 2) +

a0

2
(x− 2)2 + (0)(x− 2)3 − 1

24
a0(x− 2)4 + · · ·

= a0

[
1 +

(x− 2)2

2
− (x− 2)4

24
+ · · ·

]
+ a1(x− 2).

7. (a) The point x = 0 is a regular singular point for the given equation because

p(x) =
−5x

x2
= −5

x
, q(x) =

9 − x

x2
,

and the limits

p0 = lim
x→0

xp(x) = lim
x→0

(−5) = −5,

q0 = lim
x→0

x2q(x) = lim
x→0

(9 − x) = 9

exist. The indicial equation (3) on page 461 of the text becomes

r(r − 1) + (−5)r + 9 = 0 ⇒ r2 − 6r + 9 = 0 ⇒ (r − 3)2 = 0.
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Hence, r = 3 is the exponent of the singularity x = 0, and a solution to the given

differential equation has the form

y = x3
∞∑

k=0

akx
k =

∞∑
k=0

akx
k+3 .

Substituting this power series into the given equation yields

x2

( ∞∑
k=0

akx
k+3

)′′

− 5x

( ∞∑
k=0

akx
k+3

)′

+ (9 − x)

( ∞∑
k=0

akx
k+3

)
= 0

⇒
∞∑

k=0

(k + 3)(k + 2)akx
k+3 −

∞∑
k=0

5(k + 3)akx
k+3 + (9 − x)

∞∑
k=0

akx
k+3 = 0

⇒
∞∑

k=0

[(k + 3)(k + 2) − 5(k + 3) + 9] akx
k+3 −

∞∑
k=0

akx
k+4 = 0

⇒
∞∑

k=0

k2akx
k+3 −

∞∑
k=0

akx
k+4 = 0

⇒
∞∑

n=1

n2anx
n+3 −

∞∑
n=1

an−1x
n+3 = 0

⇒
∞∑

n=1

(
n2an − an−1

)
xn+3 = 0 .

Thus,

n2an − an−1 = 0 or an =
an−1

n2
, n ≥ 1.

This recurrence relation yields

n = 1 : a1 = a0/(1)2 = a0 ,

n = 2 : a2 = a1/(2)2 = a0/4 ,

n = 3 : a3 = a2/(3)2 = (a0/4) /9 = a0/36 .

Therefore,

y(x) = x3
(
a0 + a1x+ a2x

2 + a3x
3 + · · ·)

= x3
(
a0 + a0x+

a0

4
x2 +

a0

36
x3 + · · ·

)
= a0

(
x3 + x4 +

x5

4
+
x6

36
+ · · ·

)
.
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CHAPTER 9: Matrix Methods for Linear Systems

EXERCISES 9.1: Introduction, page 507

3. We start by expressing right-hand sides of all equations as dot products.

x+ y + z = [1, 1, 1] · [x, y, z], 2z − x = [−1, 0, 2] · [x, y, z], 4y = [0, 4, 0] · [x, y, z].

Thus, by definition of the product of a matrix and column vector, the matrix form is given by
x

y

z


′

=


1 1 1

−1 0 2

0 4 0



x

y

z

 .
7. First we have to express the second derivative, y′′, as a first derivative in order to rewrite the

equation as a first order system. Denoting y′ by v we get

y′ = v,

mv′ + bv + ky = 0
or

y′ = v,

v′ = − k

m
y − b

m
v .

Expressing the right-hand side of each equation as a dot product, we obtain

v = [0, 1] · [y, v], − k

m
y − b

m
v =

[
− k

m
,− b

m

]
· [y, v].

Thus, the matrix form of the system is[
y

v

]′
=

[
0 1

−k/m −b/m

][
y

v

]
.

11. Introducing the auxiliary variables

x1 = x, x2 = x′, x3 = y, x4 = y′ ,
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we can rewrite the given system in normal form:

x′1 = x2

x′3 = x4

x′2 + 3x1 + 2x3 = 0

x′4 − 2x1 = 0

or

x′1 = x2

x′2 = −3x1 − 2x3

x′3 = x4

x′4 = 2x1 .

Since

x2 = [0, 1, 0, 0] · [x1, x2, x3, x4], −3x1 − 2x3 = [−3, 0,−2, 0] · [x1, x2, x3, x4],

x4 = [0, 0, 0, 1] · [x1, x2, x3, x4], 2x1 = [2, 0, 0, 0] · [x1, x2, x3, x4],

the matrix is given by 
x1

x2

x3

x4


′

=


0 1 0 0

−3 0 −2 0

0 0 0 1

2 0 0 0



x1

x2

x3

x4

 .

EXERCISES 9.2: Review 1: Linear Algebraic Equations, page 512

3. By subtracting 2 times the first equation from the second, we eliminate x1 from the latter.

Similarly, x1 is eliminated from the third equation by subtracting the first equation from it.

So we get

x1 + 2x2 + x3 = −3,

−3x3 = 6,

x2 − 3x3 = 6

or

(interchanging last two equations)

x1 + 2x2 + x3 = −3,

x2 − 3x3 = 6,

x3 = −2.

The second unknown, x2, can be eliminated from the first equation by subtracting 2 times

the first one from it:

x1 + 7x3 = −15,

x2 − 3x3 = 6,

x3 = −2.
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Finally, we eliminate x3 from the first two equations by adding (−7) times and 3 times,

respectively, the third equation. This gives

x1 = −1,

x2 = 0,

x3 = −2.

7. Subtracting 3 times the first equation from the second equation yields

−x1 + 3x2 = 0,

0 = 0.

The last equation is trivially satisfied, so we ignore it. Thus, just one equation remains:

−x1 + 3x2 = 0 ⇒ x1 = 3x2 .

Choosing x2 as a free variable, we get x1 = 3s, x2 = s, where s is any number.

9. We eliminate x1 from the first equation by adding (1 − i) times the second equation to it:

[2 − (1 + i)(1 − i)]x2 = 0,

−x1 − (1 + i)x2 = 0.

Since (1 − i)(1 + i) = 12 − i2 = 1 − (−1) = 2, we obtain

0 = 0,

−x1 − (1 + i)x2 = 0
⇒ x2 = − 1

1 + i
x1 =

−1 + i

2
x1 .

Assigning an arbitrary complex value to x1, say 2s, we see that the system has infinitely many

solutions given by

x1 = 2s, x2 = (−1 + i)s, where s is any complex number.

11. It is slightly more convenient to put the last equation at the top:

−x1 + x2 + 5x3 = 0,

2x1 + x3 = −1,

−3x1 + x2 + 4x3 = 1.

571



Chapter 9

We then eliminate x1 from the second equation by adding 2 times the first one to it; and by

subtracting 3 times the first equation from the third, we eliminate x1 in the latter.

−x1 + x2 + 5x3 = 0,

−2x2 − 11x3 = 1,

2x2 + 11x3 = −1.

To make the computations more convenient, we multiply the first equation by 2.

−2x1 + 2x2 + 10x3 = 0,

−2x2 − 11x3 = 1,

2x2 + 11x3 = −1.

Now we add the second equation to each of the remaining, and obtain

−2x1 − x3 = 1,

−2x2 − 11x3 = 1,

0 = 0

or
−2x1 − x3 = 1,

−2x2 − 11x3 = 1.

Choosing x3 as free variable, i.e., x3 = s, yields x1 = −(s + 1)/2, x2 = −(11s + 1)/2,

−∞ < s <∞.

13. The given system can be written in the equivalent form

(2 − r)x1 − 3x2 = 0,

x1 − (2 + r)x2 = 0.

The variable x1 can be eliminated from the first equation by subtracting (2 − r) times the

second equation:

[−3 + (2 − r)(2 + r)]x2 = 0,

x1 − (2 + r)x2 = 0
or

(1 − r2) x2 = 0,

x1 − (2 + r)x2 = 0.

If 1 − r2 �= 0, i.e., r �= ±1, then the first equation implies x2 = 0. Substituting this into

the second equation, we get x1. Thus, the given system has a unique (zero) solution for any

r �= ±1, in particular, for r = 2.
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If r = 1 or r = −1, then the first equation in the latter system becomes trivial 0 = 0, and the

system degenerates to

x1 − (2 + r)x2 = 0 ⇒ x1 = (2 + r)x2 .

Therefore, there are infinitely many solutions to the given system of the form

x1 = (2 + r)s, x2 = s, s ∈ (−∞,∞), r = ±1 .

In particular, for r = 1 we obtain

x1 = 3s, x2 = s, s ∈ (−∞,∞).

EXERCISES 9.3: Review 2: Matrices and Vectors, page 521

5. (a) AB =

[
1 −2

2 −3

][
1 0

1 1

]
=

[
1 − 2 0 − 2

2 − 3 0 − 3

]
=

[
−1 −2

−1 −3

]
.

(b) AC =

[
1 −2

2 −3

][
−1 1

2 1

]
=

[
−1 − 4 1 − 2

−2 − 6 2 − 3

]
=

[
−5 −1

−8 −1

]
.

(c) By the Distributive Property of matrix multiplication given on page 515 of the text, we

have

A (B + C) = AB + AC =

[
−1 −2

−1 −3

]
+

[
−5 −1

−8 −1

]
=

[
−6 −3

−9 −4

]
.

13. Authors note: We will use Ri + cRj → Rk to denote the row operation “add row i to c times

row j and place the result into row k.” We will use cRj → Rk to denote the row operation

“multiply row j by c and place the result into row k.”

As in Example 1 on page 517 of the text, we will perform row-reduction on the matrix [A|I].
Thus, we have

[A|I] =


−2 −1 1

2 1 0

3 1 −1

∣∣∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1


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R2 +R1 → R2

2R3 + 3R1 → R3


−2 −1 1

0 0 1

0 −1 1

∣∣∣∣∣∣∣∣
1 0 0

1 1 0

3 0 2



R1 − R3 → R1


−2 0 0

0 0 1

0 −1 1

∣∣∣∣∣∣∣∣
−2 0 −2

1 1 0

3 0 2


−R1/2 → R1

R3 → R2

R2 → R3


1 0 0

0 −1 1

0 0 1

∣∣∣∣∣∣∣∣
1 0 1

3 0 2

1 1 0



−R2 +R3 → R2


1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣∣
1 0 1

−2 1 −2

1 1 0

 .
Therefore, the inverse matrix is

A−1 =


1 0 1

−2 1 −2

1 1 0

 .
To check the algebra, it’s a good idea to multiply A by A−1 to verify that the product is the

identity matrix.

19. Authors note: We will use Ri + cRj → Rk to denote the row operation “add row i to c times

row j and place the result into row k.” We will use cRj → Rk to denote the row operation

“multiply row j by c and place the result into row k.”

To find the inverse matrix X−1(t), we will again use the method of Example 1 on page 517 of

the text. Thus, we start with

[X(t)|I] =


et e−t e2t

et −e−t 2e2t

et e−t 4e2t

∣∣∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1


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R2 − R1 → R2

R3 − R1 → R3


et e−t e2t

0 −2e−t e2t

0 0 3e2t

∣∣∣∣∣∣∣∣
1 0 0

−1 1 0

−1 0 1


−R2/2 → R2

R3/3 → R3


et e−t e2t

0 e−t −e2t/2

0 0 e2t

∣∣∣∣∣∣∣∣
1 0 0

1/2 −1/2 0

−1/3 0 1/3


R1 − R3 → R1

R2 −R3/2 → R2


et e−t 0

0 e−t 0

0 0 e2t

∣∣∣∣∣∣∣∣
4/3 0 −1/3

1/3 −1/2 1/6

−1/3 0 1/3



R1 −R2 → R1


et 0 0

0 e−t 0

0 0 e2t

∣∣∣∣∣∣∣∣
1 1/2 −1/2

1/3 −1/2 1/6

−1/3 0 1/3


e−tR1 → R1

etR2 → R2

e−2tR3 → R3


1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣∣
e−t e−t/2 −e−t/2

et/3 −et/2 et/6

−e−2t/3 0 e−2t/3

 .
Thus, the inverse matrix X−1(t) is given by the matrix

X−1(t) =


e−t e−t/2 −e−t/2

et/3 −et/2 et/6

−e−2t/3 0 e−2t/3

 .
23. We will calculate this determinant by first finding its cofactor expansion about row 1. There-

fore, we have ∣∣∣∣∣∣∣∣
1 0 0

3 1 2

1 5 −2

∣∣∣∣∣∣∣∣ = (1)

∣∣∣∣∣ 1 2

5 −2

∣∣∣∣∣− 0 + 0 = −2 − 10 = −12.

37. We first calculate X′(t) by differentiating each entry of X(t). Therefore, we have

X′(t) =

[
2e2t 3e3t

−2e2t −6e3t

]
.
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Thus, substituting the matrix X(t) into the differential equation and performing matrix mul-

tiplication yields[
2e2t 3e3t

−2e2t −6e3t

]
=

[
1 −1

2 4

][
e2t e3t

−e2t −2e3t

]
=

[
e2t + e2t e3t + 2e3t

2e2t − 4e2t 2e3t − 8e3t

]
.

Since this equation is true, we see that X(t) does satisfy the given differential equation.

39. (a) To calculate
∫

A(t) dt, we integrate each entry of A(t) to obtain∫
A(t) dt =

[ ∫
t dt

∫
e,dt∫

1 dt
∫
e,dt

]
=

[
t2/2 + c1 et + c2

t+ c3 et + c4

]
.

(b) Taking the definite integral of each entry of B(t) yields

1∫
0

B(t) dt =

[ ∫ 1

0
cos t dt − ∫ 1

0
sin t dt∫ 1

0
sin t dt

∫ 1

0
cos t dt

]
=

[
sin t

∣∣1
0

cos t
∣∣1
0

− cos t
∣∣1
0

sin t
∣∣1
0

]
=

[
sin 1 cos 1 − 1

1 − cos 1 sin 1

]
.

(c) By the product rule on page 521 of the text, we see that

d

dt
[A(t)B(t)] = A(t)B′(t) + A′(t)B(t).

Therefore, we first calculate A′(t) and B′(t) by differentiating each entry of A(t) and

B(t), respectively, to obtain

A′(t) =

[
1 et

0 et

]
and B′(t) =

[
− sin t − cos t

cos t − sin t

]
.

Hence, by matrix multiplication we have

d

dt
[A(t)B(t)] = A(t)B′(t) + A′(t)B(t)

=

[
t et

1 et

][
− sin t − cos t

cos t − sin t

]
+

[
1 et

0 et

][
cos t − sin t

sin t cos t

]

=

[
et cos t− t sin t −t cos t− et sin t

et cos t− sin t − cos t− et sin t

]
+

[
cos t+ et sin t et cos t− sin t

et sin t et cos t

]

=

[
(1 + et) cos t+ (et − t) sin t (et − t) cos t− (et + 1) sin t

et cos t+ (et − 1) sin t (et − 1) cos t− et sin t

]
.
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EXERCISES 9.4: Linear Systems in Normal Form, page 530

1. To write this system in matrix form, we will define the vectors x(t) = col[x(t), y(t)] (which

means that x′(t) = col[x′(t), y′(t)]) and f(t) = col[t2, et], and the matrix

A(t) =

[
3 −1

−1 2

]
.

Thus, this system becomes the equation in matrix form given by[
x′(t)

y′(t)

]
=

[
3 −1

−1 2

][
x(t)

y(t)

]
+

[
t2

et

]
.

We can see that this equation is equivalent to the original system by performing matrix

multiplication and addition to obtain the vector equation[
x′(t)

y′(t)

]
=

[
3x(t) − y(t)

−x(t) + 2y(t)

]
+

[
t2

et

]
=

[
3x(t) − y(t) + t2

−x(t) + 2y(t) + et

]
.

Since two vectors are equal only when their corresponding components are equal, we see that

this vector equation implies that

x′(t) = 3x(t) − y(t) + t2 ,

y′(t) = −x(t) + 2y(t) + et ,

which is the original system.

5. This equation can be written as a first order system in normal form by using the substitutions

x1(t) = y(t) and x2(t) = y′(t). With these substitutions this differential equation becomes the

system

x′1(t) = 0 · x1(t) + x2(t),

x′2(t) = 10x1(t) + 3x2(t) + sin t.

We can then write this system as a matrix differential equation by defining the vectors x(t) =

col[x1(t), x2(t)] (which means that x′(t) = col[x′1(t), x
′
2(t)]), f(t) = col[0, sin t], and the matrix

A =

[
0 1

10 3

]
.
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Hence, the system above in normal form becomes the differential equation given in matrix

form by [
x′1(t)

x′2(t)

]
=

[
0 1

10 3

][
x1(t)

x2(t)

]
+

[
0

sin t

]
.

(As in Problem 1 above, we can see that this equation in matrix form is equivalent to the

system by performing matrix multiplication and addition and then noting that corresponding

components of equal vectors are equal.)

7. This equation can be written as a first order system in normal form by using the substitutions

x1(t) = w(t), x2(t) = w′(t), x3(t) = w′′(t), and x4(t) = w′′′(t). With these substitutions this

differential equation becomes the system

x′1(t) = 0 · x1(t) + x2(t) + 0 · x3(t) + 0 · x4(t),

x′2(t) = 0 · x1(t) + 0 · x2(t) + x3(t) + 0 · x4(t),

x′3(t) = 0 · x1(t) + 0 · x2(t) + 0 · x3(t) + x4(t),

x′4(t) = −x1(t) + 0 · x2(t) + 0 · x3(t) + 0 · x4(t) + t2 .

We can then write this system as a matrix differential equation x′ = Ax by defining the vectors

x(t) = col[x1(t), x2(t), x3(t), x4(t)] (which means that x′(t) = col[x′1(t), x
′
2(t), x

′
3(t), x

′
4(t)]),

f(t) = col[0, 0, 0, t2], and the matrix

A =


0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

 .

That is, the given fourth order differential equation is equivalent to the matrix system
x′1(t)

x′2(t)

x′3(t)

x′4(t)

 =


0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0



x1(t)

x2(t)

x3(t)

x4(t)

+


0

0

0

t2

 .
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17. Notice that by scalar multiplication these vector functions can be written as
e2t

0

5e2t

 ,


e2t

e2t

−e2t

 ,


0

e3t

0

 .
Thus, as in Example 2 on page 526 of the text, we will prove that these vectors are linearly

independent by showing that the only way that we can have

c1


e2t

0

5e2t

+ c2


e2t

e2t

−e2t

+ c3


0

e3t

0

 = 0

for all t in (−∞,∞) is for c1 = c2 = c3 = 0. Since the equation above must be true for all t,

it must be true for t = 0. Thus, c1, c2, and c3 must satisfy

c1


1

0

5

+ c2


1

1

−1

+ c3


0

1

0

 = 0,

which is equivalent to the system

c1 + c2 = 0,

c2 + c3 = 0,

5c1 − c2 = 0.

By solving the first and last of these equations simultaneously, we see that c1 = c2 = 0.

Substituting these values into the second equation above yields c3 = 0. Therefore, the original

set of vectors must be linearly independent on the interval (−∞,∞).

21. Since it is given that these vectors are solutions to the system x′(t) = Ax(t), in order to

determine whether they are linearly independent, we need only calculate their Wronskian.

If their Wronskian is never zero, then these vectors are linearly independent and so form a

fundamental solution set. If the Wronskian is identically zero, then the vectors are linearly

dependent, and they do not form a fundamental solution set. Thus, we observe

W [x1,x2,x3] (t) =

∣∣∣∣∣∣∣∣
e−t et e3t

2e−t 0 −e3t

e−t et 2e3t

∣∣∣∣∣∣∣∣
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= e−t

∣∣∣∣∣ 0 −e3t

et 2e3t

∣∣∣∣∣− et

∣∣∣∣∣ 2e−t −e3t

e−t 2e3t

∣∣∣∣∣+ e3t

∣∣∣∣∣ 2e−t 0

e−t et

∣∣∣∣∣
= e−t

(
0 + e4t

)− et
(
4e2t + e2t

)
+ e3t(2 − 0) = −2e3t �= 0,

where we have used cofactors to calculate the determinant. Therefore, this set of vectors

is linearly independent and so forms a fundamental solution set for the system. Thus, a

fundamental matrix is given by

X(t) =


e−t et e3t

2e−t 0 −e3t

e−t et 2e3t

 ,
and a general solution of the system will be

x(t) = X(t)c = c1


e−t

2e−t

e−t

+ c2


et

0

et

+ c3


e3t

−e3t

2e3t

 .

27. In order to show that X(t) is a fundamental matrix for the system, we must first show that

each of its column vectors is a solution. Thus, we substitute each of the vectors

x1(t) =


6e−t

−e−t

−5e−t

 , x2(t) =


−3e−2t

e−2t

e−2t

 , x3(t) =


2e3t

e3t

e3t


into the given system to obtain

Ax1(t) =


0 6 0

1 0 1

1 1 0




6e−t

−e−t

−5e−t

 =


−6e−t

e−t

5e−t

 = x′
1(t),

Ax2(t) =


0 6 0

1 0 1

1 1 0




−3e−2t

e−2t

e−2t

 =


6e−2t

−2e−2t

−2e−2t

 = x′
2(t),
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Ax3(t) =


0 6 0

1 0 1

1 1 0




2e3t

e3t

e3t

 =


6e3t

3e3t

3e3t

 = x′
3(t).

Therefore, each column vector of X(t) is a solution to the system on (−∞,∞).

Next we must show that these vectors are linearly independent. Since they are solutions to a

differential equation in matrix form, it is enough to show that their Wronskian is never zero.

Thus, we find

W (t) =

∣∣∣∣∣∣∣∣
6e−t −3e−2t 2e3t

−e−t e−2t e3t

−5e−t e−2t e3t

∣∣∣∣∣∣∣∣
= 6e−t

∣∣∣∣∣ e−2t e3t

e−2t e3t

∣∣∣∣∣+ 3e−2t

∣∣∣∣∣ −e−t e3t

−5e−t e3t

∣∣∣∣∣+ 2e3t

∣∣∣∣∣ −e−t e−2t

−5e−t e−2t

∣∣∣∣∣
= 6e−t

(
et − et

)
+ 3e−2t

(−e2t + 5e2t
)

+ 2e3t
(−e−3t + 5e−3t

)
= 20 �= 0,

where we have used cofactors to calculate the determinant. Hence, these three vectors are

linearly independent. Therefore, X(t) is a fundamental matrix for this system.

We will now find the inverse of the matrix X(t) by performing row-reduction on the matrix

[X(t)|I] −→ [I|X−1(t)].

Thus, we have

[X(t)|I] =


6e−t −3e−2t 2e3t

−e−t e−2t e3t

−5e−t e−2t e3t

∣∣∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1


−R2 → R1

R1 → R2


e−t −e−2t −e3t

6e−t −3e−2t 2e3t

−5e−t e−2t e3t

∣∣∣∣∣∣∣∣
0 −1 0

1 0 0

0 0 1


R2 − 6R1 → R2

R3 + 5R1 → R3


e−t −e−2t −e3t

0 3e−2t 8e3t

0 −4e−2t −4e3t

∣∣∣∣∣∣∣∣
0 −1 0

1 6 0

0 −5 1


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−R3/4 → R2

R2 → R3


e−t −e−2t −e3t

0 e−2t e3t

0 3e−2t 8e3t

∣∣∣∣∣∣∣∣
0 −1 0

0 5/4 −1/4

1 6 0


R1 +R2 → R1

R3 − 3R2 → R3


e−t 0 0

0 e−2t e3t

0 0 5e3t

∣∣∣∣∣∣∣∣
0 1/4 −1/4

0 5/4 −1/4

1 9/4 3/4


1

5
R3 → R3


e−t 0 0

0 e−2t e3t

0 0 e3t

∣∣∣∣∣∣∣∣
0 1/4 −1/4

0 5/4 −1/4

1/5 9/20 3/20



R2 −R3 → R2


e−t 0 0

0 e−2t 0

0 0 e3t

∣∣∣∣∣∣∣∣
0 1/4 −1/4

−1/5 4/5 −2/5

1/5 9/20 3/20


etR1 → R1

e2tR2 → R2

e−3tR3 → R3


1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣∣
0 et/4 −et/4

−e2t/5 4e2t/5 −2e2t/5

e−3t/5 9e−3t/20 3e−3t/20

 .
Therefore, we see that

X−1(t) =


0 et/4 −et/4

−e2t/5 4e2t/5 −2e2t/5

e−3t/5 9e−3t/20 3e−3t/20

 .
We now can use Problem 26 to find the solution to this differential equation for any initial

value. For the initial value given here we note that t0 = 0. Thus, substituting t0 = 0 into the

matrix X−1(t) above yields

X−1(0) =


0 1/4 −1/4

−1/5 4/5 −2/5

1/5 9/20 3/20

 .
Hence, we see that the solution to this problem is given by

x(t) = X(t)X−1(0)x(0)
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=


6e−t −3e−2t 2e3t

−e−t e−2t e3t

−5e−t e−2t e3t




0 1/4 −1/4

−1/5 4/5 −2/5

1/5 9/20 3/20




−1

0

1



=


6e−t −3e−2t 2e3t

−e−t e−2t e3t

−5e−t e−2t e3t




−1/4

−1/5

−1/20

 =


−(3/2)e−t + (3/5)e−2t − (1/10)e3t

(1/4)e−t − (1/5)e−2t − (1/20)e3t

(5/4)e−t − (1/5)e−2t − (1/20)e3t

 .
There are two short cuts that can be taken to solve the given problem. First, since we only

need X−1(0), it suffices to compute the inverse of X(0), not X(t). Second, by producing

X−1(t) we automatically know that detX(0) �= 0 and hence X(t) is a fundamental matrix.

Thus, it was not really necessary to compute the Wronskian.

33. Let φ(t) be an arbitrary solution to the system x′(t) = A(t)x(t) on the interval I. We want

to find c = col(c1, c2, . . . , cn) so that

φ(t) = c1x1(t) + c2x2(t) + · · · + cnxn(t),

where x1,x2, . . . ,xn are n linearly independent solutions for this system. Since

c1x1(t) + c2x2(t) + · · ·+ cnxn(t) = X(t)c ,

where X(t) is the fundamental matrix whose columns are the vectors x1,x2, . . . ,xn, this

equation can be written as

φ(t) = X(t)c (9.1)

Since x1,x2, . . . ,xn are linearly independent solutions of the system x′(t) = A(t)x(t), their

Wronskian is never zero. Therefore, as was discussed on page 528 of the text, X(t) has an

inverse at each point in I. Thus, at t0, a point in I, X−1(t0) exists and equation (9.1) becomes

φ (t0) = X (t0) c ⇒ X−1 (t0)φ (t0) = X−1 (t0)X (t0) c = c .

Hence, if we define c0 to be the vector c0 = X−1(t0)φ (t0), then equation (9.1) is true at the

point t0 (i. e. φ(t0) = X(t0)X
−1(t0)φ(t0)). To see that, for this definition of c0, equation

(9.1) is true for all t in I (and so this is the vector that we seek), notice that φ(t) and X(t)c0
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are both solutions to same initial value problem (with the initial value given at the point t0).

Therefore, by the uniqueness of solutions, Theorem 2 on page 525 of the text, these solutions

must be equal on I, which means that φ(t) = X(t)c0 for all t in I.

EXERCISES 9.5: Homogeneous Linear Systems with Constant Coefficients, page 541

5. The characteristic equation for this matrix is given by

|A − rI| =

∣∣∣∣∣∣∣∣
1 − r 0 0

0 −r 2

0 2 −r

∣∣∣∣∣∣∣∣ = (1 − r)

∣∣∣∣∣ −r 2

2 −r

∣∣∣∣∣
= (1 − r)

(
r2 − 4

)
= (1 − r)(r − 2)(r + 2) = 0.

Thus, the eigenvalues of this matrix are r = 1, 2,−2. Substituting the eigenvalue r = 1, into

equation (A − rI)u = 0 yields

(A − I)u =


0 0 0

0 −1 2

0 2 −1



u1

u2

u3

 =


0

0

0

 , (9.2)

which is equivalent to the system

−u2 + 2u3 = 0,

2u2 − u3 = 0.

This system reduces to the system u2 = 0, u3 = 0, which does not assign any value to u1.

Thus, we can let u1 be any value, say u1 = s, and u2 = 0, u3 = 0 and the system given by

(9.2) will be satisfied. From this we see that the eigenvectors associated with the eigenvalue

r = 1 are given by

u1 = col (u1, u2, u3) = col(s, 0, 0) = scol(1, 0, 0).

For r = 2 we observe that the equation (A− rI)u = 0 becomes

(A − 2I)u =


−1 0 0

0 −2 2

0 2 −2



u1

u2

u3

 =


0

0

0

 ,
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whose corresponding system of equations reduces to u1 = 0, u2 = u3. Therefore, we can pick

u2 to be any value, say u2 = s (which means that u3 = s), and we find that the eigenvectors

for this matrix associated with the eigenvalue r = 2 are given by

u2 = col (u1, u2, u3) = col(0, s, s) = scol(0, 1, 1).

For r = −2, we solve the equation

(A + 2I)u =


3 0 0

0 2 2

0 2 2



u1

u2

u3

 =


0

0

0

 ,
which reduces to the system u1 = 0, u2 = −u3. Hence, u3 is arbitrary, and so we will let u3 = s

(which means that u2 = −s). Thus, solutions to this system and, therefore, eigenvectors for

this matrix associated with the eigenvalue r = −2 are given by the vectors

u3 = col (u1, u2, u3) = col(0,−s, s) = scol(0,−1, 1).

13. We must first find the eigenvalues and eigenvectors associated with the given matrix A. Thus,

we note that the characteristic equation for this matrix is given by

|A− rI| =

∣∣∣∣∣∣∣∣
1 − r 2 2

2 −r 3

2 3 −r

∣∣∣∣∣∣∣∣ = 0

⇒ (1 − r)

∣∣∣∣∣ −r 3

3 −r

∣∣∣∣∣− 2

∣∣∣∣∣ 2 3

2 −r

∣∣∣∣∣ + 2

∣∣∣∣∣ 2 −r
2 3

∣∣∣∣∣ = 0

⇒ (1 − r)
(
r2 − 9

)− 2(−2r − 6) + 2(6 + 2r) = (1 − r)(r − 2)(r + 2) = 0

⇒ (r + 3)[(1 − r)(r − 3) + 8] = 0 ⇒ (r + 3)(r − 5)(r + 1) = 0.

Therefore, the eigenvalues are r = −3,−1, 5. To find an eigenvector associated with the

eigenvalue r = −3, we must find a vector u = col(u1, u2, u3) which satisfies the equation

(A + 3I)u = 0. Thus, we have

(A + 3I)u =


4 2 2

2 3 3

2 3 3



u1

u2

u3

 =


0

0

0

 ⇒


2 0 0

0 1 1

0 0 0



u1

u2

u3

 =


0

0

0

 ,
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where we have obtained the last equation above by using elementary row operations. This

equation is equivalent to the system u1 = 0, u2 = −u3. Hence, if we let u3 have the arbitrary

value s1, then we see that, for the matrix A, the eigenvectors associated with the eigenvalue

r = −3 are given by

u = col (u1, u2, u3) = col (0,−s1, s1) = s1col(0,−1, 1).

Thus, if we choose s1 = 1, then vector u1 = col(0,−1, 1) is one eigenvector associated with this

eigenvalue. For the eigenvalue r = −1, we must find a vector u which satisfies the equation

(A + I)u = 0. Thus, we see that

(A + I)u =


2 2 2

2 1 3

2 3 1



u1

u2

u3

 =


0

0

0

 ⇒


1 2 0

0 1 −1

0 0 0



u1

u2

u3

 =


0

0

0

 ,
which is equivalent to the system u1 = −2u2, u3 = u2. Therefore, if we let u2 = s2, then

we see that vectors which satisfy the equation (A + I)u = 0 and, hence, eigenvectors for the

matrix A associated with the eigenvalue r = −1 are given by

u = col (u1, u2, u3) = col (−2s2, s2, s2) = s2col(−2, 1, 1).

By letting s2 = 1, we find that one such vector will be the vector u2 = col(−2, 1, 1). In

order to find an eigenvector associated with the eigenvalue r = 5, we will solve the equation

(A − 5I)u = 0. Thus, we have

(A− 5I)u =


−4 2 2

2 −5 3

2 3 −5



u1

u2

u3

 =


0

0

0

 ⇒


1 0 −1

0 1 −1

0 0 0



u1

u2

u3

 =


0

0

0

 ,
which is equivalent to the system u1 = u3, u2 = u3. Thus, if we let u3 = s3, then, for the

matrix A, the eigenvectors associated with the eigenvalue r = 5 are given by

u = col (u1, u2, u3) = col (s3, s3, s3) = s3col(1, 1, 1).
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Hence, by letting s3 = 1, we see that one such vector will be the vector u3 = col(1, 1, 1).

Therefore, by Corollary 1 on page 538 of the text, we see that a fundamental solution set for

this equation is given by {
e−3tu1 , e

−tu2 , e
5tu3

}
.

Thus, a general solution for this system is

x(t) = c1e
−3tu1 + c2e

−tu2 + c3e
5tu3 = c1e

−3t


0

−1

1

+ c2e
−t


−2

1

1

+ c3e
5t


1

1

1

 .
21. A fundamental matrix for this system has three columns which are linearly independent

solutions. Therefore, we will first find three such solutions. To this end, we will first find the

eigenvalues for the matrix A by solving the characteristic equation given by

|A − rI| =

∣∣∣∣∣∣∣∣
−r 1 0

0 −r 1

8 −14 7 − r

∣∣∣∣∣∣∣∣ = 0

⇒ −r
∣∣∣∣∣ −r 1

−14 7 − r

∣∣∣∣∣−
∣∣∣∣∣ 0 1

8 7 − r

∣∣∣∣∣ = 0

⇒ r3 − 7r2 + 14r − 8 = 0 ⇒ (r − 1)(r − 2)(r − 4) = 0.

Hence, this matrix has three distinct eigenvalues, r = 1, 2, 4, and, according to Theorem 6

on page 538 of the text, the eigenvectors associated with these eigenvalues will be linearly

independent. Thus, these eigenvectors will be used in finding the three linearly independent

solutions which we seek. To find an eigenvector, u = col(u1, u2, u3), associated with the

eigenvalue r = 1, we will solve the equation (A − I)u = 0. Therefore, we have

(A− I)u =


−1 1 0

0 −1 1

8 −14 6



u1

u2

u3

 =


0

0

0

 ⇒


−1 0 1

0 −1 1

0 0 0



u1

u2

u3

 =


0

0

0

 ,
which is equivalent to the system u1 = u3, u2 = u3. Thus, by letting u3 = 1 (which implies

that u1 = u2 = 1), we find that one eigenvector associated with the eigenvalue r = 1 is given
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by the vector u1 = col(1, 1, 1). To find an eigenvector associated with the eigenvalue r = 2,

we solve the equation

(A − 2I)u =


−2 1 0

0 −2 1

8 −14 5



u1

u2

u3

 =


0

0

0

 ⇒


4 0 −1

0 2 −1

0 0 0



u1

u2

u3

 =


0

0

0

 ,
which is equivalent to the system 4u1 = u3, 2u2 = u3. Hence, letting u3 = 4 implies that

u1 = 1 and u2 = 2. Therefore, one eigenvector associated with the eigenvalue r = 2 is the

vector u2 = col(1, 2, 4). In order to find an eigenvector associated with the eigenvalue r = 4,

we will solve the equation

(A−4I)u =


−4 1 0

0 −4 1

8 −14 3



u1

u2

u3

 =


0

0

0

 ⇒


16 0 −1

0 4 −1

0 0 0



u1

u2

u3

 =


0

0

0

 ,
which is equivalent to the system 16u1 = u3, 4u2 = u3. Therefore, letting u3 = 16 implies

that u1 = 1 and u2 = 4. Thus, one eigenvector associated with the eigenvalue r = 4 is the

vector u3 = col(1, 4, 16). Therefore, by Theorem 5 on page 536 of the text (or Corollary 1),

we see that three linearly independent solutions of this system are given by etu1, e
2tu2, and

e4tu3. Thus, a fundamental matrix for this system will be the matrix
et e2t e4t

et 2e2t 4e4t

et 4e2t 16e4t

 .
33. Since the coefficient matrix for this system is a 3×3 real symmetric matrix, by the discussion

on page 540 of the text, we know that we can find three linearly independent eigenvectors for

this matrix. Therefore, to find the solution to this initial value problem, we must first find

three such eigenvectors. To do this we first find eigenvalues for this matrix. Therefore, we

solve the characteristic equation given by

|A− rI| =

∣∣∣∣∣∣∣∣
1 − r −2 2

−2 1 − r −2

2 −2 1 − r

∣∣∣∣∣∣∣∣ = 0
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⇒ (1 − r)

∣∣∣∣∣ 1 − r −2

−2 1 − r

∣∣∣∣∣+ 2

∣∣∣∣∣ −2 −2

2 1 − r

∣∣∣∣∣ + 2

∣∣∣∣∣ −2 1 − r

2 −2

∣∣∣∣∣ = 0

⇒ (1 − r)
[
(1 − r)2 − 4

]
+ 2 [−2(1 − r) + 4] + 2 [4 − 2(1 − r)] = 0

⇒ (1 − r)(r − 3)(r + 1) + 8(r + 1) = −(r + 1)(r − 5)(r + 1) = 0.

Thus, the eigenvalues are r = −1 and r = 5, with r = −1 an eigenvalue of multiplicity two.

In order to find an eigenvector associated with the eigenvalue r = 5, we solve the equation

(A− 5I)u =


−4 −2 2

−2 −4 −2

2 −2 −4



u1

u2

u3

 =


0

0

0

 ⇒


1 0 −1

0 1 1

0 0 0



u1

u2

u3

 =


0

0

0

 .
This equation is equivalent to the system u1 = u3, u2 = −u3. Thus, if we let u3 = 1, we see that

for this coefficient matrix an eigenvector associated with the eigenvalue r = 5 is given by the

vector u1 = col(u1, u2, u3) = col(1,−1, 1). We must now find two more linearly independent

eigenvectors for this coefficient matrix. By the discussion above, these eigenvectors will be

associated with the eigenvalue r = 1. Thus, we solve the equation

(A + I)u =


2 −2 2

−2 2 −2

2 −2 2



u1

u2

u3

 =


0

0

0

 ⇒


1 −1 1

0 0 0

0 0 0



u1

u2

u3

 =


0

0

0

, (9.3)

which is equivalent to the equation u1 − u2 + u3 = 0. Therefore, if we arbitrarily assign the

value s to u2 and v to u3, we see that u1 = s − v, and solutions to equation (9.3) above will

be given by

u =


s− v

s

v

 = s


1

1

0

+ v


−1

0

1

 .
By taking s = 1 and v = 0, we see that one solution to equation (9.3) will be the vector

u2 = col(1, 1, 0). Hence, this is one eigenvector for the coefficient matrix. Similarly, by letting

s = 0 and v = 1, we find a second eigenvector will be the vector u3 = col(−1, 0, 1). Since the

eigenvectors u1, u2, and u3 are linearly independent, by Theorem 5 on page 536 of the text,
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we see that a general solution for this system will be given by

x(t) = c1e
5t


1

−1

1

+ c2e
−t


1

1

0

+ c3e
−t


−1

0

1

 .
To find a solution which satisfies the initial condition, we must solve the equation

x(0) = c1


1

−1

1

+ c2


1

1

0

+ c3


−1

0

1

 ⇒


1 1 −1

−1 1 0

1 0 1



c1

c2

c3

 =


−2

−3

2

 .
This equation can be solved by either using elementary row operations on the augmented

matrix associated with this equation or by solving the system

c1 + c2 − c3 = −2,

−c1 + c2 = −3,

c1 + c3 = 2.

By either method we find that c1 = 1, c2 = −2, and c3 = 1. Therefore, the solution to this

initial value problem is given by

x(t) = e5t


1

−1

1

− 2e−t


1

1

0

+ e−t


−1

0

1



=


e5t − 2e−t − e−t

−e5t − 2e−t + 0

e5t + 0 + e−t

 =


−3e−t + e5t

−2e−t − e5t

e−t + e5t

 .

37. (a) In order to find the eigenvalues for the matrix A, we will solve the characteristic equation

|A− rI| =

∣∣∣∣∣∣∣∣
2 − r 1 6

0 2 − r 5

0 0 2 − r

∣∣∣∣∣∣∣∣ = 0 ⇒ (2 − r)3 = 0.
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Thus, r = 2 is an eigenvalue of multiplicity three. To find the eigenvectors for the matrix

A associated with this eigenvalue, we solve the equation

(A− 2I)u =


0 1 6

0 0 5

0 0 0



u1

u2

u3

 =


0

0

0

 .
This equation is equivalent to the system u2 = 0, u3 = 0. Therefore, we can assign u1 to

be any arbitrary value, say u1 = s, and we find that the vector

u = col(u1, u2, u3) = col(s, 0, 0) = scol(1, 0, 0)

will solve this equation and will, thus, be an eigenvector for the matrix A. We also notice

that the vectors u = scol(1, 0, 0) are the only vectors that will solve this equation, and,

hence, they will be the only eigenvectors for the matrix A.

(b) By taking s = 1, we find that, for the matrix A, one eigenvector associated with the

eigenvalue r = 2 will be the vector u1 = col(1, 0, 0). Therefore, by the way eigenvalues

and eigenvectors were defined (as was discussed in the text on page 533), we see that

one solution to the system x′ = Ax will be given by the vector

x1(t) = e2tu1 = e2t


1

0

0

 .
(c) We know that u1 = col(1, 0, 0) is an eigenvector for the matrix A associated with the

eigenvalue r = 2. Thus, u1 satisfies the equation

(A − 2I)u1 = 0 ⇒ Au1 = 2u1 . (9.4)

We want to find a constant vector u2 = col(v1, v2, v3) such that

x2(t) = te2tu1 + e2tu2

will be a second solution to the system x′ = Ax. To do this, we will first show that

x2 will satisfy the equation x′ = Ax if and only if the vector u2 satisfies the equation
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(A − 2I)u2 = u1. To this end, we find that

x′
2(t) = 2te2tu1 + e2tu1 + 2e2tu2 = 2te2tu1 + e2t (u1 + 2u2) ,

where we have used the fact that u1 and u2 are constant vectors. We also have

Ax2(t) = A (te2tu1 + e2tu2)

= A (te2tu1) + A (e2tu2) , distributive property of matrix multiplication

(page 515 of the text)

= te2t (Au1) + e2t (Au2) , associative property of matrix multiplication

(page 515 of the text)

= 2te2tu1 + e2tAu2, by equation (9.4) above.

Thus, if x2(t) is to be a solution to the given system we, must have

x′
2(t) = Ax2(t)

⇒ 2te2tu1 + e2t (u1 + 2u2) = 2te2tu1 + e2tAu2

⇒ e2t (u1 + 2u2) = e2tAu2 .

By dividing both sides of this equation by the nonzero term e2t, we obtain

u1 + 2u2 = Au2 ⇒ (A − 2I)u2 = u1 .

Since all of these steps are reversible, if a vector u2 satisfies this last equation, then

x2(t) = te2tu1 + e2tu2 will be a solution to the system x′ = Ax. Now we can use the

formula (A − 2I)u2 = u1 to find the vector u2 = col(v1, v2, v3). Hence, we solve the

equation

(A − 2I)u2 =


0 1 6

0 0 5

0 0 0



v1

v2

v3

 =


1

0

0

 .
This equation is equivalent to the system v2+6v3 = 1, 5v3 = 0, which implies that v2 = 1,

v3 = 0. Therefore, the vector u2 = col(0, 1, 0) will satisfy the equation (A − 2I)u2 = u1

and, thus,

x2(t) = te2t


1

0

0

+ e2t


0

1

0


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will be a second solution to the given system. We can see by inspection x2(t) and

x1(t) = e2tu1 are linearly independent.

(d) To find a third linearly independent solution to this system we will try to find a solution

of the form x3(t) =
t2

2
e2tu1 + te2tu2 + e2tu3, where u3 is a constant vector that we must

find, and u1 and u2 are the vectors that we found in parts (b) and (c), respectively.

To find the vector u3, we will proceed as we did in part (c) above. We will first show

that x3(t) will be a solution to the given system if and only if the vector u3 satisfies the

equation (A − 2I)u3 = u2 . To do this we observe that

x′
3(t) = te2tu1 + t2e2tu1 + e2tu2 + 2te2tu2 + 2e2tu3 .

Also, using the facts that

(A− 2I)u1 = 0 ⇒ Au1 = 2u1 (9.5)

and

(A − 2I)u2 = u1 ⇒ Au2 = u1 + 2u2 , (9.6)

we have

Ax3(t) = A

(
t2

2
e2tu1 + te2tu2 + e2tu3

)

= A

(
t2

2
e2tu1

)
+ A (te2tu2) + +A (e2tu3) , distributive property

=
t2

2
e2t (Au1) + te2t (Au2) + e2t (Au3) , associative property

=
t2

2
e2t (2u1) + te2t (u1 + 2u2) + e2tAu3, equations (9.5) and (9.6)

= t2e2tu1 + te2tu1 + 2te2tu2 + e2tAu3 .

Therefore, for x3(t) to satisfy the given system, we must have

x′
3(t) = Ax3(t)
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⇒ te2tu1 + t2e2tu1 + e2tu2 + 2te2tu2 + 2e2tu3 = t2e2tu1 + te2tu1 + 2te2tu2 + e2tAu3

⇒ e2tu2 + 2e2tu3 = e2tAu3

⇒ u2 + 2u3 = Au3

⇒ (A − 2I)u3 = u2 .

Again since these steps are reversible, we see that, if a vector u3 satisfies the equation

(A − 2I)u3 = u2, then the vector

x3(t) =
t2

2
e2tu1 + te2tu2 + e2tu3

will be a third linearly independent solution to the given system. Thus, we can use this

equation to find the vector u3 = col(v1, v2, v3). Hence, we solve

(A − 2I)u3 =


0 1 6

0 0 5

0 0 0



v1

v2

v3

 =


0

1

0

 .
This equation is equivalent to the system v2 + 6v3 = 0, 5v3 = 1, which implies that

v3 = 1/5, v2 = −6/5. Therefore, if we let u3 = col(0,−6/5, 1/5), then

x3(t) =
t2

2
e2t


1

0

0

+ te2t


0

1

0

+ e2t


0

−6/5

1/5


will be a third solution to the given system and we see by inspection that this solution

is linearly independent from the solutions x1(t) and x2(t).

(e) Notice that

(A− 2I)3u3 = (A− 2I)2 [(A − 2I)u3]

= (A− 2I)2u2 = (A− 2I) [(A − 2I)u2] = (A − 2I)u1 = 0.

43. According to Problem 42, we will look for solutions of the form x(t) = tru, where r is an

eigenvalue for the coefficient matrix and u is an associated eigenvector. To find the eigenvalues
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for this matrix, we solve the equation

|A − rI| =

∣∣∣∣∣ 1 − r 3

−1 5 − r

∣∣∣∣∣ = 0

⇒ (1 − r)(5 − r) + 3 = 0

⇒ r2 − 6r + 8 = 0 ⇒ (r − 2)(r − 4) = 0.

Therefore, the coefficient matrix has the eigenvalues r = 2, 4. Since these are distinct eigen-

values, Theorem 6 on page 538 of the text assures us that their associated eigenvectors will

be linearly independent. To find an eigenvector u = col(u1, u2) associated with the eigenvalue

r = 2, we solve the system

(A − 2I)u =

[
−1 3

−1 3

][
u1

u2

]
=

[
0

0

]
,

which is equivalent to the equation −u1 + 3u2 = 0. Thus, if we let u2 = 1 then, in order to

satisfy this equation, we must have u1 = 3. Hence, we see that the vector u1 = col(3, 1) will

be an eigenvector for the coefficient matrix of the given system associated with the eigenvalue

r = 2. Therefore, according to Problem 42, one solution to this system will be given by

x1(t) = t2u1 = t2

[
3

1

]
.

To find an eigenvector associated with the eigenvalue r = 4, we solve the equation

(A − 4I)u =

[
−3 3

−1 1

][
u1

u2

]
=

[
0

0

]
,

which is equivalent to the equation u1 = u2. Thus, if we let u2 = 1, then we must have

u1 = 1 and so an eigenvector associated with the eigenvalue r = 4 will be given by the vector

u2 = col(1, 1). Therefore, another solution to the given system will be

x2(t) = t4u2 = t4

[
1

1

]
.
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Clearly the solutions x1(t) and x2(t) are linearly independent. So the general solution to the

given system with t > 0 will be

x(t) = c1t
2

[
3

1

]
+ c2t

4

[
1

1

]
= c1

[
3t2

t2

]
+ c2

[
t4

t4

]
.

EXERCISES 9.6: Complex Eigenvalues, page 549

3. To find the eigenvalues for the matrix A, we solve the characteristic equation given by

|A− rI| =

∣∣∣∣∣∣∣∣
1 − r 2 −1

0 1 − r 1

0 −1 1 − r

∣∣∣∣∣∣∣∣ = 0

⇒ (1 − r)

∣∣∣∣∣ 1 − r 1

−1 1 − r

∣∣∣∣∣− 0 + 0 = 0

⇒ (1 − r)
[
(1 − r)2 + 1

]
= (1 − r)

(
r2 − 2r + 2

)
= 0.

By this equation and the quadratic formula, we see that the roots to the characteristic equation

and, therefore, the eigenvalues for the matrix A are r = 1, and r = 1±i. To find an eigenvector

u = col(u1, u2, u3) associated with the real eigenvalue r = 1, we solve the system

(A − I)u =


0 2 −1

0 0 1

0 −1 0



u1

u2

u3

 =


0

0

0

 ,
which implies that u2 = 0, u3 = 0. Therefore, we can set u1 arbitrarily to any value, say

u1 = s. Then the vectors

u = col(u1, u2, u3) = col(s, 0, 0) = scol(1, 0, 0)

will satisfy the above equation and, therefore, be eigenvectors for the matrix A. Hence, if we

set s = 1, we see that one eigenvector associated with the eigenvalue r = 1 will be the vector

u1 = col(1, 0, 0). Therefore, one solution to the given system will be

x1(t) = etu1 = et


1

0

0

 .
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In order to find an eigenvector z = col(z1, z2, z3) associated with the complex eigenvalue

r = 1 + i, we solve the equation

[A − (1 + i)I]z =


−i 2 −1

0 −i 1

0 −1 i



z1

z2

z3

 =


0

0

0

 .
This equation is equivalent to the system

−iz1 + 2z2 − z3 = 0 and − iz2 + z3 = 0.

Thus, if we let z2 = s, then we see that z3 = is and

−iz1 = −2z2 + z3 = −2s + is ⇒ (i)(−iz1) = (i)(−2s+ is)

⇒ z1 = −2is− s = −s− 2is ,

where we have used the fact that i2 = −1. Hence, eigenvectors associated with the eigenvalue

r = 1+i will be z = scol(−1−2i, 1, i). By taking s = 1, we see that one eigenvector associated

with this eigenvalue will be the vector

z1 =


−1 − 2i

1

i

 =


−1

1

0

+ i


−2

0

1

 .
Thus, by the notation on page 545 of the text, we have α = 1, β = 1, a = col(−1, 1, 0), and

b = col(−2, 0, 1). Therefore, according to formulas (6) and (7) on page 546 of the text, two

more linearly independent solutions to the given system will be given by

x2(t) = (et cos t)a − (et sin t)b and x3(t) = (et sin t)a + (et cos t)b.

Hence, the general solution to the system given in this problem will be

x(t) = c1x2(t) + c2x3(t) + c3x1(t)

= c1e
t cos t


−1

1

0

− c1e
t sin t


−2

0

1

+ c2e
t sin t


−1

1

0

+ c2e
t cos t


−2

0

1

+ c3e
t


1

0

0

.
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7. In order to find a fundamental matrix for this system, we must first find three linearly indepen-

dent solutions. Thus, we seek the eigenvalues for the matrix A by solving the characteristic

equation given by

|A− rI| =

∣∣∣∣∣∣∣∣
−r 0 1

0 −r −1

0 1 −r

∣∣∣∣∣∣∣∣ = 0

⇒ −r
∣∣∣∣∣ −r −1

1 −r

∣∣∣∣∣− 0 + 0 = 0 ⇒ −r (r2 + 1
)

= 0.

Hence, the eigenvalues for the matrix A will be r = 0 and r = ±i. To find an eigenvector

u = col(u1, u2, u3) associated with the real eigenvalue r = 0, we solve the equation

(A − 0I)u =


0 0 1

0 0 −1

0 1 0



u1

u2

u3

 =


0

0

0

 ,
which is equivalent to the system u3 = 0, u2 = 0. Thus, if we let u1 have the arbitrary value

u1 = s, then the vectors

u = col(u1, u2, u3) = col(s, 0, 0) = scol(1, 0, 0)

will satisfy this equation and will, therefore, be eigenvectors for the matrix A associated with

the eigenvalue r = 0. Hence, by letting s = 1, we find that one of these eigenvectors will be

the vector u = col(1, 0, 0). Thus, one solution to the given system will be

x1(t) = e0u =


1

0

0

 .
To find two more linearly independent solutions for this system, we will first look for an

eigenvector associated with the complex eigenvalue r = i. That is, we seek a vector, say,

z = col(z1, z2, z3) which satisfies the equation

(A− iI)z =


−i 0 1

0 −i −1

0 1 −i



z1

z2

z3

 =


0

0

0

 ,
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which is equivalent to the system

iz1 = z3 and iz2 = −z3 .

Thus, if we let z3 be any arbitrary value, say z3 = is, (which means that we must have z1 = s

and z2 = −s), then we see that the vectors, given by

z = col(z1, z2, z3) = col(s,−s, is) = scol(1,−1, i),

will be eigenvectors for the matrix A associated with the eigenvalue r = i. Therefore, by

letting s = 1, we find that one of these eigenvectors will be the vector

z =


1

−1

i

 =


1

−1

0

+ i


0

0

1

 .
From this, by the notation given on page 546 of the text, we see that α = 0, β = 1, a =

col(1,−1, 0), and b = col(0, 0, 1). Therefore, by formulas (6) and (7) on page 546 of the text,

two more linearly independent solutions for this system will be

x2(t) = (cos t)a − (sin t)b =


cos t

− cos t

0

−


0

0

sin t

 =


cos t

− cos t

sin t


and

x3(t) = (sin t)a + (cos t)b =


sin t

− sin t

0

+


0

0

cos t

 =


sin t

− sin t

cos t

 .
Finally, since a fundamental matrix for the system given in this problem must have three

columns which are linearly independent solutions of the system, we see that such a funda-

mental matrix will be given by the matrix

X(t) =


1 cos t sin t

0 − cos t − sin t

0 − sin t cos t

 .
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17. We will assume that t > 0. According to Problem 42 in Exercises 9.5, a solution to this

Cauchy-Euler system will have the form x(t) = tru, where r is an eigenvalue for the coefficient

matrix of the system and u is an eigenvector associated with this eigenvalue. Therefore, we

first must find the eigenvalues for this matrix by solving the characteristic equation given by

|A− rI| =

∣∣∣∣∣∣∣∣
−1 − r −1 0

2 −1 − r 1

0 1 −1 − r

∣∣∣∣∣∣∣∣ = 0

⇒ (−1 − r)

∣∣∣∣∣ −1 − r 1

1 −1 − r

∣∣∣∣∣+
∣∣∣∣∣ 2 1

0 −1 − r

∣∣∣∣∣ = 0

⇒ (−1 − r)
[
(−1 − r)2 − 1

]
+ 2(−1 − r) = −(1 + r)

(
r2 + 2r + 2

)
= 0.

From this equation and by using the quadratic formula, we see that the eigenvalues for this

coefficient matrix will be r = −1,−1± i. The eigenvectors associated with the real eigenvalue

r = −1 will be the vectors u = col(u1, u2, u3) which satisfy the equation

(A + I)u =


0 −1 0

2 0 1

0 1 0



u1

u2

u3

 =


0

0

0

 ,
which is equivalent to the system u2 = 0, 2u1 +u3 = 0. Thus, by letting u1 = 1 (which means

that u3 = −2), we see that the vector

u = col(u1, u2, u3) = col(1, 0,−2)

satisfies this equation and is, therefore, an eigenvector of the coefficient matrix associated

with the eigenvalue r = −1. Hence, according to Problem 42 of Exercises 9.5, we see that a

solution to this Cauchy-Euler system will be given by

x1(t) = t−1u = t−1


1

0

−2

 =


t−1

0

−2t−1

 .
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To find the eigenvectors z = col(z1, z2, z3) associated with the complex eigenvalue r = −1 + i,

we solve the equation

(A − (−1 + i)I)z =


−i −1 0

2 −i 1

0 1 −i



z1

z2

z3

 =


0

0

0



⇒


−i −1 0

0 i 1

0 0 0



z1

z2

z3

 =


0

0

0

 ,
which is equivalent to the system −iz1 − z2 = 0, iz2 + z3 = 0. Thus, if we let z1 = 1, we must

let z2 = −i and z3 = −1 in order to satisfy this system. Therefore, one eigenvector for the

coefficient matrix associated with the eigenvalue r = −1+i will be the vector z = col(1,−i,−1)

and another solution to this system will be x(t) = t−1+iz. We would like to find real solutions

to this problem. Therefore, we note that by Euler’s formula we have

t−1+i = t−1ti = t−1ei ln t = t−1[cos(ln t) + i sin(ln t)],

where we have made use of our assumption that t > 0. Hence, the solution that we have just

found becomes

x(t) = t−1+iz = t−1[cos(ln t) + i sin(ln t)]z

= t−1[cos(ln t) + i sin(ln t)]


1

−i
−1

 =


t−1 cos(ln t)

t−1 sin(ln t)

−t−1 cos(ln t)

+ i


t−1 sin(ln t)

−t−1 cos(ln t)

−t−1 sin(ln t)

 .
Thus, by Lemma 2 (adapted to systems) on page 172 of the text we see that two more linearly

independent solutions to this Cauchy-Euler system will be

x2(t) =


t−1 cos(ln t)

t−1 sin(ln t)

−t−1 cos(ln t)

 and x3(t) =


t−1 sin(ln t)

−t−1 cos(ln t)

−t−1 sin(ln t)

 ,
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and, hence, a general solution will be given by

x(t) = c1


t−1

0

−2t−1

+ c2


t−1 cos(ln t)

t−1 sin(ln t)

−t−1 cos(ln t)

+ c3


t−1 sin(ln t)

−t−1 cos(ln t)

−t−1 sin(ln t)

 .
EXERCISES 9.7: Nonhomogeneous Linear Systems, page 555

3. We must first find the general solution to the corresponding homogeneous system. Therefore,

we first find the eigenvalues for the coefficient matrix A by solving the characteristic equation

given by

|A− rI| =

∣∣∣∣∣∣∣∣
1 − r −2 2

−2 1 − r 2

2 2 1 − r

∣∣∣∣∣∣∣∣ = 0

⇒ (1 − r)

∣∣∣∣∣ 1 − r 2

2 1 − r

∣∣∣∣∣ + 2

∣∣∣∣∣ −2 2

2 1 − r

∣∣∣∣∣+ 2

∣∣∣∣∣ −2 1 − r

2 2

∣∣∣∣∣ = 0

⇒ (1 − r)
[
(1 − r)2 − 4

]
+ 2 [−2(1 − r) − 4] + 2 [−4 − 2(1 − r)] = 0

⇒ (1 − r)(r2 − 2r − 3) + 4(2r − 6) = 0

⇒ (1 − r)(r + 1)(r − 3) + 8(r − 3) = (r − 3)(r2 − 9) = (r − 3)(r − 3)(r + 3) = 0.

Thus, the eigenvalues for the matrix A are r = 3,−3, where r = 3 is an eigenvalue of

multiplicity two. Notice that, even though the matrix A has only two distinct eigenvalues, we

are still guaranteed three linearly independent eigenvectors because A is a 3×3 real symmetric

matrix. To find an eigenvector associated with the eigenvalue r = −3, we must find a vector

u = col(u1, u2, u3) which satisfies the system

(A + 3I)u =


4 −2 2

−2 4 2

2 2 4



u1

u2

u3

 =


0

0

0

 ⇒


1 0 1

0 1 1

0 0 0



u1

u2

u3

 =


0

0

0

 ,
which is equivalent to the system u1 + u3 = 0, u2 + u3 = 0. Hence, by letting u3 = −1, we

must have u1 = u2 = 1, and so the vector u1 = col(1, 1,−1) will then satisfy the above system.
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Therefore, this vector is an eigenvector for the matrix A associated with the eigenvalue r = −3.

Thus, one solution to the corresponding homogeneous system is given by

x1(t) = e−3tu1 = e−3t


1

1

−1

 .
To find eigenvectors u = col(u1, u2, u3) associated with the eigenvalue r = 3, we solve the

equation given by

(A − 3I)u =


−2 −2 2

−2 −2 2

2 2 −2



u1

u2

u3

 =


0

0

0

 ,
which is equivalent to the equation u1 + u2 − u3 = 0. Thus, if we let u3 = s and u2 = v, then

we must have u1 = s− v. Hence, solutions to the above equation and, therefore, eigenvectors

for A associated with the eigenvalue r = 3 will be the vectors

u =


s− v

v

s

 = s


1

0

1

+ v


−1

1

0

 ,
where s and v are arbitrary scalars. Therefore, letting s = 1 and v = 0 yields the eigenvector

u2 = col(1, 0, 1). Similarly, by letting s = 0 and v = 1, we obtain the eigenvector u3 =

col(−1, 1, 0), which we can see by inspection is linearly independent from u2. Hence, two more

solutions to the corresponding homogeneous system which are linearly independent from each

other and from x1(t) are given by

x2(t) = e3tu2 = e3t


1

0

1

 and x3(t) = e3tu3 = e3t


−1

1

0

 .
Thus, the general solution to the corresponding homogeneous system will be

xh(t) = c1e
−3t


1

1

−1

+ c2e
3t


1

0

1

+ c3e
3t


−1

1

0

 .
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To find a particular solution to the nonhomogeneous system, we note that

f(t) =


2et

4et

−2et

 = et


2

4

−2

 = etg ,

where g = col(2, 4,−2). Therefore, we will assume that a particular solution to the nonhomo-

geneous system will have the form xp(t) = eta, where a = col(a1, a2, a3) is a constant vector

which must be determined. Hence, we see that x′
p(t) = eta. By substituting xp(t) into the

given system, we obtain

eta = Axp(t) + f(t) = Aeta + etg = etAa + etg .

Therefore, we have

eta = etAa + etg ⇒ a = Aa + g ⇒ (I − A)a = g

⇒


0 2 −2

2 0 −2

−2 −2 0



a1

a2

a3

 =


2

4

−2

 .
The last equation above can be solved by either performing elementary row operations on the

augmented matrix or by solving the system

2a2 − 2a3 = 2,

2a1 − 2a3 = 4,

−2a1 − 2a2 = −2.

Either way, we obtain a1 = 1, a2 = 0, and a3 = −1. Thus, a particular solution to the

nonhomogeneous system will be given by

xp(t) = eta = et


1

0

−1

 ,
and so the general solution to the nonhomogeneous system will be

x(t) = xh(t) + xp(t) = c1e
−3t


1

1

−1

+ c2e
3t


1

0

1

+ c3e
3t


−1

1

0

+ et


1

0

−1

 .
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13. We must first find a fundamental matrix for the corresponding homogeneous system x′ = Ax.

To this end, we first find the eigenvalues of the matrix A by solving the characteristic equation

given by

|A− rI| =

∣∣∣∣∣ 2 − r 1

−3 −2 − r

∣∣∣∣∣ = 0 ⇒ (2− r)(−2− r) + 3 = 0 ⇒ r2 − 1 = 0 .

Thus, the eigenvalues of the coefficient matrix A are r = ±1. The eigenvectors associated

with the eigenvalue r = 1 are the vectors u = col(u1, u2) which satisfy the equation

(A − I)u =

[
1 1

−3 −3

][
u1

u2

]
=

[
0

0

]
.

This equation is equivalent to the equation u1 + u2 = 0. Therefore, if we let u1 = 1, then

we have u2 = −1, so one eigenvector of the matrix A associated with the eigenvalue r = 1 is

the vector u1 = col(1,−1). Hence, one solution of the corresponding homogeneous system is

given by

x1(t) = etu1 = et

[
1

−1

]
=

[
et

−et

]
.

To find an eigenvector associated with the eigenvalue r = −1, we solve the equation

(A + I)u =

[
3 1

−3 −1

][
u1

u2

]
=

[
0

0

]
,

which is equivalent to the equation 3u1 + u2 = 0. Since u1 = 1 and u2 = −3 satisfy this

equation, one eigenvector for the matrix A associated with the eigenvalue r = −1 is the

vector u2 = col(1,−3). Thus, another linearly independent solution of the corresponding

homogeneous system is

x2(t) = e−tu2 = e−t

[
1

−3

]
=

[
e−t

−3e−t

]
.

Hence, the general solution of the homogeneous system is given by

xh(t) = c1

[
et

−et

]
+ c2

[
e−t

−3e−t

]
,
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and a fundamental matrix is

X(t) =

[
et e−t

−et −3e−t

]
.

To find the inverse matrix X−1(t), we will perform row-reduction on the matrix [X(t)|I]. Thus,

we have

[X(t)|I] =

[
et e−t

−et −3e−t

∣∣∣∣∣ 1 0

0 1

]
−→

[
et e−t

0 −2e−t

∣∣∣∣∣ 1 0

1 1

]

−→
[
et 0

0 e−t

∣∣∣∣∣ 3/2 1/2

−1/2 −1/2

]
−→

[
1 0

0 1

∣∣∣∣∣ (3/2)e−t (1/2)e−t

−(1/2)e−t −(1/2)e−t

]
.

Therefore, we see that

X−1(t) =

[
(3/2)e−t (1/2)e−t

−(1/2)e−t −(1/2)e−t

]
.

Hence, we have

X−1(t)f(t) =

[
(3/2)e−t (1/2)e−t

−(1/2)e−t −(1/2)e−t

][
2et

4et

]
=

[
5

−3e2t

]
,

and so we have ∫
X−1(t)f(t) dt =

[ ∫
(5)dt

−3
∫
e2tdt

]
=

[
5t

−(3/2)e2t

]
,

where we have taken the constants of integration to be zero. Thus, by equation (8) on page 553

of the text, we see that

xp(t) =

[
et e−t

−et −3e−t

][
5t

−(3/2)e2t

]
=

[
5tet − (3/2)et

−5tet + (9/2)et

]
.

Therefore, by adding xh(t) and xp(t) we obtain

x(t) = c1

[
et

−et

]
+ c2

[
e−t

−3e−t

]
+

[
5tet − (3/2)et

−5tet + (9/2)et

]
.

We remark that this answer is the same as the answer given in the text as can be seen by

replacing c1 by c1 + 9/4.
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15. We must first find a fundamental matrix for the associated homogeneous system. We will do

this by finding the solutions derived from the eigenvalues and the associated eigenvectors for

the coefficient matrix A. Therefore, we find these eigenvalues by solving the characteristic

equation given by

|A− rI| =

∣∣∣∣∣ −4 − r 2

2 −1 − r

∣∣∣∣∣ = 0

⇒ (−4 − r)(−1 − r) − 4 = 0 ⇒ r2 + 5r = 0 .

Thus, the eigenvalues for the matrix A are r = −5, 0. An eigenvector for this matrix associated

with the eigenvalue r = 0 is the vector u = col(u1, u2) which satisfies the equation

Au =

[
−4 2

2 −1

][
u1

u2

]
=

[
0

0

]
.

This equation is equivalent to the equation 2u1 = u2. Therefore, if we let u1 = 1 and u2 = 2,

then the vector u1 = col(1, 2) satisfies this equation and is, therefore, an eigenvector for the

matrix A associated with the eigenvalue r = 0. Hence, one solution to the homogeneous

system is given by

x1(t) = e(0)tu1 =

[
1

2

]
.

To find an eigenvector associated with the eigenvalue r = −5, we solve the equation

(A + 5I)u =

[
1 2

2 4

][
u1

u2

]
=

[
0

0

]
,

which is equivalent to the equation u1 + 2u2 = 0. Thus, by letting u2 = 1 and u1 = −2, the

vector u2 = col(u1, u2) = col(−2, 1) satisfies this equation and is, therefore, an eigenvector for

A associated with the eigenvalue r = −5. Hence, since the two eigenvalues of A are distinct,

we see that another linearly independent solution to the corresponding homogeneous system

is given by

x2(t) = e−5tu2 = e−5t

[
−2

1

]
=

[
−2e−5t

e−5t

]
.
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By combining these two solutions, we see that a general solution to the homogeneous system

is

xh(t) = c1

[
1

2

]
+ c2

[
−2e−5t

e−5t

]
and a fundamental matrix for this system is the matrix

X(t) =

[
1 −2e−5t

2 e−5t

]
.

We will use equation (10) on page 553 of the text to find a particular solution to the nonho-

mogeneous system. Thus, we need to find the inverse matrix X−1(t). This can be done, for

example, by performing row-reduction on the matrix [X(t)|I] to obtain the matrix [I|X−1(t)].

In this way, we find that the required inverse matrix is given by

X−1(t) =

[
1/5 2/5

−(2/5)e5t (1/5)e5t

]
.

Therefore, we have

X−1(t)f(t) =

[
1/5 2/5

−(2/5)e5t (1/5)e5t

][
t−1

4 + 2t−1

]
=

[
t−1 + (8/5)

(4/5)e5t

]
.

From this we see that∫
X−1(t)f(t) dt =

[ ∫
[t−1 + (8/5)] dt∫

(4/5)e5t dt

]
=

[
ln |t| + (8/5)t

(4/25)e5t

]
,

where we have taken the constants of integration to be zero. Hence, by equation (10) on

page 553 of the text, we obtain

xp(t) = X(t)

∫
X−1(t)f(t) dt

=

[
1 −2e−5t

2 e−5t

][
ln |t| + (8/5)t

(4/25)e5t

]
=

[
ln |t| + (8/5)t− (8/25)

2 ln |t| + (16/5)t+ (4/25)

]
.

Adding xh(t) and xp(t) yields the general solution to the nonhomogeneous system given by

x(t) = c1

[
1

2

]
+ c2

[
−2e−5t

e−5t

]
+

[
ln |t| + (8/5)t− (8/25)

2 ln |t| + (16/5)t+ (4/25)

]
.
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21. We will find the solution to this initial value problem by using equation (13) on page 554 of

the text. Therefore, we must first find a fundamental matrix for the associated homogeneous

system. This means that we must find the eigenvalues and corresponding eigenvectors for the

coefficient matrix of this system by solving the characteristic equation

|A− rI| =

∣∣∣∣∣ −r 2

−1 3 − r

∣∣∣∣∣
⇒ −r(3 − r) + 2 = 0 ⇒ r2 − 3r + 2 = 0 ⇒ (r − 2)(r − 1) = 0.

Hence, r = 1, 2 are the eigenvalues for this matrix. To find an eigenvector u = col(u1, u2) for

this coefficient matrix associated with the eigenvalue r = 1, we solve the system

(A− I)u =

[
−1 2

−1 2

][
u1

u2

]
=

[
0

0

]
.

This system is equivalent to the equation u1 = 2u2. Thus, u1 = 2 and u2 = 1 is a set of

values which satisfies this equation and, therefore, the vector u1 = col(2, 1) is an eigenvector

for the coefficient matrix corresponding to the eigenvalue r = 1. Hence, one solution to the

homogeneous system is given by

x1(t) = etu1 = et

[
2

1

]
=

[
2et

et

]
.

Similarly, by solving the equation

(A − 2I)u =

[
−2 2

−1 1

][
u1

u2

]
=

[
0

0

]
,

we find that one eigenvector for the coefficient matrix associated with the eigenvalue r = 2

is u2 = col(u1, u2) = col(1, 1). Thus, another linearly independent solution to the associated

homogeneous problem is given by

x2(t) = e2tu2 = e2t

[
1

1

]
=

[
e2t

e2t

]
.
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By combining these two solutions, we obtain a general solution to the homogeneous system

xh(t) = c1

[
2et

et

]
+ c2

[
e2t

e2t

]
,

and the fundamental matrix

X(t) =

[
2et e2t

et e2t

]
.

In order to use equation (13) on page 554 of the text, we must also find the inverse of the

fundamental matrix. One way of doing this is to perform row-reduction on the matrix [X(t)|I]
to obtain the matrix [I|X−1(t)]. Thus, we find that

X−1(t) =

[
e−t −e−t

−e−2t 2e−2t

]
.

From this we see that

X−1(s)f(s) =

[
e−s −e−s

−e−2s 2e−2s

][
es

−es

]
=

[
2

−3e−s

]
.

(a) Using the initial condition x(0) = col(5, 4), and t0 = 0, we have

X−1(0) =

[
1 −1

−1 2

]
.

Therefore

t∫
t0

X−1(s)f(s) ds =

t∫
0

X−1(s)f(s) ds =

[ ∫ t

0
(2)ds∫ t

0
(−3e−s) ds

]
=

[
2t

3e−t − 3

]
,

from which it follows that

X(t)

t∫
t0

X−1(s)f(s) ds =

[
2et e2t

et e2t

][
2t

3e−t − 3

]
=

[
4tet + 3et − 3e2t

2tet + 3et − 3e2t

]
.

We also find that

X(t)X−1(t0)x0 =

[
2et e2t

et e2t

][
1 −1

−1 2

][
5

4

]
=

[
2et e2t

et e2t

][
1

3

]
=

[
2et + 3e2t

et + 3e2t

]
.
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Hence, by substituting these expressions into equation (13) on page 554 of the text, we

obtain the solution to this initial value problem given by

x(t) = X(t)X−1(t0)x0 + X(t)

t∫
t0

X−1(s)f(s) ds

=

[
2et + 3e2t

et + 3e2t

]
+

[
4tet + 3et − 3e2t

2tet + 3et − 3e2t

]
=

[
4tet + 5et

2tet + 4et

]
.

(b) Using the initial condition x(1) = col(0, 1), and t0 = 1, we have

X−1(1) =

[
e−1 −e−1

−e−2 2e−2

]
.

Therefore

t∫
t0

X−1(s)f(s) ds =

t∫
1

X−1(s)f(s) ds

=

[ ∫ t

1
(2)ds∫ t

1
(−3e−s) ds

]
=

[
2t− 2

3e−t − 3e−1

]
,

from which it follows that

X(t)

t∫
t0

X−1(s)f(s) ds =

[
2et e2t

et e2t

][
2t− 2

3e−t − 3e−1

]

=

[
4tet − 4et + 3et − 3e2t−1

2tet − 2et + 3et − 3e2t−1

]
=

[
4tet − et − 3e2t−1

2tet + et − 3e2t−1

]
.

We also find that

X(t)X−1(t0)x0 =

[
2et e2t

et e2t

][
e−1 −e−1

−e−2 2e−2

][
0

1

]

=

[
2et e2t

et e2t

][
−e−1

2e−2

]
=

[
−2et−1 + 2e2t−2

−et−1 + 2e2t−2

]
.
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Hence, by substituting these expressions into equation (13) on page 554 of the text, we

obtain the solution to this initial value problem given by

x(t) = X(t)X−1(t0)x0 + X(t)

t∫
t0

X−1(s)f(s) ds

=

[
−2et−1 + 2e2t−2

−et−1 + 2e2t−2

]
+

[
4tet − et − 3e2t−1

2tet + et − 3e2t−1

]

=

[
−2et−1 + 2e2t−2 + 4tet − et − 3e2t−1

−et−1 + 2e2t−2 + 2tet + et − 3e2t−1

]
.

(c) Using the initial condition x(5) = col(1, 0), and t0 = 5, we have

X−1(5) =

[
e−5 −e−5

−e−10 2e−10

]
.

Therefore

t∫
t0

X−1(s)f(s) ds =

t∫
5

X−1(s)f(s) ds =

[ ∫ t

5
(2)ds∫ t

5
(−3e−s) ds

]
=

[
2t− 10

3e−t − 3e−5

]
,

from which it follows that

X(t)

t∫
t0

X−1(s)f(s) ds =

[
2et e2t

et e2t

][
2t− 10

3e−t − 3e−5

]

=

[
4tet − 20et + 3et − 3e2t−5

2tet − 10et + 3et − 3e2t−5

]
=

[
4tet − 17et − 3e2t−5

2tet − 7et − 3e2t−5

]
.

We also find that

X(t)X−1(t0)x0 =

[
2et e2t

et e2t

][
e−5 −e−5

−e−10 2e−10

][
1

0

]

=

[
2et e2t

et e2t

][
e−5

−e−10

]
=

[
2et−5 − e2t−10

et−5 − e2t−10

]
.

612



Exercises 9.7

Hence, by substituting these expressions into equation (13) on page 554 of the text, we

obtain the solution to this initial value problem given by

x(t) = X(t)X−1(t0)x0 + X(t)

t∫
t0

X−1(s)f(s) ds

=

[
2et−5 − e2t−10

et−5 − e2t−10

]
+

[
4tet − 17et − 3e2t−5

2tet − 7et − 3e2t−5

]

=

[
2et−5 − e2t−10 + 4tet − 17et − 3e2t−5

et−5 − e2t−10 + 2tet − 7et − 3e2t−5

]
.

25. (a) We will find a fundamental solutions set for the corresponding homogeneous system by

deriving solutions using the eigenvalues and associated eigenvectors for the coefficient

matrix. Therefore, we first solve the characteristic equation

|A− rI| =

∣∣∣∣∣ −r 1

−2 3 − r

∣∣∣∣∣ = 0

⇒ −r(3 − r) + 2 = 0 ⇒ r2 − 3r + 2 = 0 ⇒ (r − 2)(r − 1) = 0.

Therefore, we see that the eigenvalues for the coefficient matrix of this problem are

r = 1, 2. Since these eigenvalues are distinct, the associated eigenvectors will be linearly

independent, and so the solutions derived from these eigenvectors will also be linearly

independent. We find an eigenvector for this matrix associated with the eigenvalue r = 1

by solving the equation

(A − I)u =

[
−1 1

−2 2

][
u1

u2

]
= 0.

Since the vector u1 = col(u1, u2) = col(1, 1) satisfies this equation, we see that this vector

is one such eigenvector and so one solution to the homogeneous problem is given by

x1(t) = etu1 = et

[
1

1

]
.
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To find an eigenvector associated with the eigenvalue r = 2, we solve the equation

(A − 2I)u =

[
−2 1

−2 1

][
u1

u2

]
= 0.

The vector u2 = col(u1, u2) = col(1, 2) is one vector which satisfies this equation and

so it is one eigenvector of the coefficient matrix associated with the eigenvalue r = 2.

Thus, another linearly independent solution to the corresponding homogeneous problem

is given by

x2(t) = e2tu2 = e2t

[
1

2

]
,

and a fundamental solution set for this homogeneous system is the set{
etu1 , e

2tu2

}
, where u1 = col(1, 1) and u2 = col(1, 2).

(b) If we assume that xp(t) = teta for some constant vector a = col(a1, a2), then we have

x′
p(t) = teta + eta =

[
teta1

teta2

]
+

[
eta1

eta2

]
=

[
teta1 + eta1

teta2 + eta2

]
.

We also have[
0 1

−2 3

]
xp(t) + f(t) =

[
0 1

−2 3

][
teta1

teta2

]
+

[
et

0

]
=

[
teta2 + et

−2teta1 + 3teta2

]
.

Thus, if xp(t) = teta is to satisfy this system, we must have[
teta1 + eta1

teta2 + eta2

]
=

[
teta2 + et

−2teta1 + 3teta2

]
,

which means that
teta1 + eta1 = teta2 + et ,

teta2 + eta2 = −2teta1 + 3teta2 .

By dividing out the term et and equating coefficients, this system becomes the system

a1 = a2 , a1 = 1,

a2 = −2a1 + 3a2 , a2 = 0.
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Since this set of equations implies that 1 = a1 = a2 = 0, which is of course impossible,

we see that this system has no solutions. Therefore, we cannot find a vector a for which

xp(t) = teta is a particular solution to this problem.

(c) Assuming that

xp(t) = teta + etb =

[
teta1

teta2

]
+

[
etb1

etb2

]
=

[
teta1 + etb1

teta2 + etb2

]
,

where a = col(a1, a2) and b = col(b1, b2) are two constant vectors, implies that

x′
p(t) = teta + eta + etb =

[
teta1 + eta1 + etb1

teta2 + eta2 + eta2

]
.

We also see that[
0 1

−2 3

]
xp(t) + f(t) =

[
0 1

−2 3

][
teta1 + etb1

teta2 + etb2

]
+

[
et

0

]

=

[
teta2 + etb2 + et

−2teta1 − 2etb1 + 3teta2 + 3etb2

]
.

Thus, if xp(t) is to satisfy this system, we must have[
teta1 + eta1 + etb1

teta2 + eta2 + etb2

]
=

[
teta2 + etb2 + et

−2teta1 − 2etb1 + 3teta2 + 3etb2

]
, (9.7)

which implies the system of equations given by

teta1 + eta1 + etb1 = teta2 + etb2 + et ,

teta2 + eta2 + etb2 = −2teta1 − 2etb1 + 3teta2 + 3etb2 .

Dividing each equation by et and equating the coefficients in the resulting equations

yields the system

a1 = a2 , a1 + b1 = b2 + 1 ,

a2 = −2a1 + 3a2 , a2 + b2 = −2b1 + 3b2 .
(9.8)

Taking the pair of equations on the right and simplifying yields the system

b1 − b2 = 1 − a1 ,

2b1 − 2b2 = −a2 .
(9.9)
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By multiplying the first of these equations by 2, we obtain the system

2b1 − 2b2 = 2 − 2a1 ,

2b1 − 2b2 = −a2 ,

which when subtracted yields 2− 2a1 + a2 = 0. Applying the first equation in (9.8) (the

equation a1 = a2) to this equation yields a1 = a2 = 2. By substituting these values for

a1 and a2 into equation (9.9) above we see that both equations reduce to the equation

b2 = b1 + 1.

(Note also that the remaining equation in (9.8) reduces to the first equation in that set.)

Thus, b1 is free to be any value, say b1 = s, and the set of values a1 = a2 = 2, b1 = s,

b2 = s + 1, satisfies all of the equations given in (9.8) and, hence, the system given

in (9.7). Therefore, particular solutions to the nonhomogeneous equation given in this

problem are

xp(t) = tet

[
2

2

]
+ et

[
s

s+ 1

]
= tet

[
2

2

]
+ et

[
0

1

]
+ set

[
1

1

]
.

But, since the vector u = etcol(1, 1) is a solution to the corresponding homogeneous

system, the last term can be incorporated into the solution xh(t) and we obtain one

particular solution to this problem given by

xp(t) = tet

[
2

2

]
+ et

[
0

1

]
.

(d) To find the general solution to the nonhomogeneous system given in this problem, we

first form the solution to the corresponding homogeneous system using the fundamental

solution set found in part (a). Thus, we have

xh(t) = c1e
t

[
1

1

]
+ c2e

2t

[
1

2

]
.

By adding the solution found in part (c) to this solution, we obtain the general solution

given by

x(t) = c1e
t

[
1

1

]
+ c2e

2t

[
1

2

]
+ tet

[
2

2

]
+ et

[
0

1

]
.

616



Exercises 9.8

EXERCISES 9.8: The Matrix Exponential Function, page 566

3. (a) From the characteristic equation, |A − rI| = 0, we obtain

|A − rI| =

∣∣∣∣∣∣∣∣
2 − r 1 −1

−3 −1 − r 1

9 3 −4 − r

∣∣∣∣∣∣∣∣ = 0

⇒ (2 − r)

∣∣∣∣∣ −1 − r 1

3 −4 − r

∣∣∣∣∣−
∣∣∣∣∣ −3 1

9 −4 − r

∣∣∣∣∣ + (−1)

∣∣∣∣∣ −3 −1 − r

9 3

∣∣∣∣∣ = 0

⇒ (2 − r)[(−1 − r)(−4 − r) − 3] − [−3(−4 − r) − 9] − [−9 − 9(−1 − r)] = 0

⇒ r3 + 3r2 + 3r + 1 = (r + 1)3 = 0.

Therefore, for the matrix A, r = −1 is an eigenvalue of multiplicity three. Thus, by the

Cayley-Hamilton theorem as stated on page 561 of the text, we have

(A + I)3 = 0

(so that r = −1 and k = 3).

(b) In order to find eAt, we first notice (as was done in the text on page 560) that

eAt = e[−I+(A+I)]t , commutative and associative properties of matrix addition

= e−Ite(A+I)t , property (d) on page 559 of the text [since (A + I)I = I(A + I)]

= e−tIe(A+I)t , property (e) on page 559 of the text

= e−te(A+I)t .

Therefore, to find eAt we need only to find e(A+I)t then multiply the resulting expression

by e−t. By formula (2) on page 558 of the text and using the fact that (A + I)3 = 0

(which implies that (A + I)n = 0 for n ≥ 3), we have

e(A+I)t = I + (A + I)t+ (A + I)2

(
t2

2

)
+ · · ·+ (A + I)n

(
tn

n!

)
+ · · ·

= I + (A + I)t+ (A + I)2

(
t2

2

)
. (9.10)
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Since

(A + I)2 =


3 1 −1

−3 0 1

9 3 −3




3 1 −1

−3 0 1

9 3 −3

 =


−3 0 1

0 0 0

−9 0 3

 ,
equation (9.10) becomes

e(A+I)t =


1 0 0

0 1 0

0 0 1

+


3t t −t
−3t 0 t

9t 3t −3t

+


−3(t2/2) 0 t2/2

0 0 0

−9(t2/2) 0 3(t2/2)



=


1 + 3t− 3t2/2 t −t+ t2/2

−3t 1 t

9t− 9t2/2 3t 1 − 3t+ 3t2/2

 .
Hence, we have

eAt = e−t


1 + 3t− 3t2/2 t −t+ t2/2

−3t 1 t

9t− 9t2/2 3t 1 − 3t+ 3t2/2

 .

9. By equation (6) on page 562 of the text, we see that eAt = X(t)X−1(0), where X(t) is a

fundamental matrix for the system x′ = Ax. We will construct this fundamental matrix from

three linearly independent solutions derived from the eigenvalues and associated eigenvectors

for the matrix A. Thus, we solve the characteristic equation

|A− rI| =

∣∣∣∣∣∣∣∣
−r 1 0

0 −r 1

1 −1 1 − r

∣∣∣∣∣∣∣∣ = 0

⇒ (−r)
∣∣∣∣∣ −r 1

−1 1 − r

∣∣∣∣∣−
∣∣∣∣∣ 0 1

1 1 − r

∣∣∣∣∣ = 0

⇒ −r[−r(1 − r) + 1] + 1 = −r3 + r2 − r + 1 = −(r − 1)(r2 + 1) = 0.

Therefore, the eigenvalues of the matrix A are r = 1 and r = ±i. To find an eigenvector
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u = col(u1, u2, u3) associated with the eigenvalue r = 1, we solve the system

(A − I)u = 0 ⇒


−1 1 0

0 −1 1

1 −1 0



u1

u2

u3

=


0

0

0

 ⇒


−1 0 1

0 −1 1

0 0 0



u1

u2

u3

=


0

0

0

.
This system is equivalent to the system u1 = u3, u2 = u3. Hence, u3 is free to be any arbitrary

value, say u3 = 1. Then u1 = u2 = 1, and so the vector u = col(1, 1, 1) is an eigenvector

associated with r = 1. Hence, one solution to the system x′ = Ax is given by

x1(t) = etu = et


1

1

1

 =


et

et

et

 .
Since the eigenvalue r = i is complex, we want to find two more linearly independent solutions

for the system x′ = Ax derived from the eigenvectors associated with this eigenvalue. These

eigenvectors, z = col(z1, z2, z3), must satisfy the equation

(A − iI)z =


−i 1 0

0 −i 1

1 −1 1 − i



z1

z2

z3

 =


0

0

0

 ,
which is equivalent to the system z1 = −z3, z2 = −iz3. Thus, one solution to this system is

z3 = 1, z1 = −1, and z2 = −i and so one eigenvector for A associated with the eigenvalue

r = i is given by

z =


z1

z2

z3

 =


−1

−i
1

 =


−1

0

1

+ i


0

−1

0

 .
By the notation on page 546 of the text, this means that α = 0, β = 1, a = col(−1, 0, 1) and

b = col(0,−1, 0). Therefore, by equations (6) and (7) on page 546 of the text we see that two

more linearly independent solutions to the system x′ = Ax are given by

x2(t) = e(0)t(cos t)a − e(0)t(sin t)b =


− cos t

0

cos t

−


0

− sin t

0

 =


− cos t

sin t

cos t

 ,
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x3(t) = e(0)t(sin t)a + e(0)t(cos t)b =


− sin t

0

sin t

+


0

− cos t

0

 =


− sin t

− cos t

sin t

 .
Thus, a fundamental matrix for this system is

X(t) =


et − cos t − sin t

et sin t − cos t

et cos t sin t

 ⇒ X(0) =


1 −1 0

1 0 −1

1 1 0

 .
To find the inverse of the matrix X(0) we can, for example, perform row-reduction on the

matrix [X(0)|I] to obtain the matrix [I|X−1(0)]. Thus, we see that

X−1(0) =


1/2 0 1/2

−1/2 0 1/2

1/2 −1 1/2

 .
Hence, we obtain

eAt = X(t)X−1(0) =


et − cos t − sin t

et sin t − cos t

et cos t sin t




1/2 0 1/2

−1/2 0 1/2

1/2 −1 1/2



=
1

2


et + cos t− sin t 2 sin t et − cos t− sin t

et − cos t− sin t 2 cos t et − cos t+ sin t

et − cos t+ sin t −2 sin t et + cos t+ sin t

 .
11. The first step in finding eAt using a fundamental matrix for the system x′ = Ax is to find the

eigenvalues for the matrix A. Thus, we solve the characteristic equation

|A− rI| =

∣∣∣∣∣∣∣∣
5 − r −4 0

1 −r 2

0 2 5 − r

∣∣∣∣∣∣∣∣ = 0

⇒ (5 − r)

∣∣∣∣∣ −r 2

2 5 − r

∣∣∣∣∣ + 4

∣∣∣∣∣ 1 2

0 5 − r

∣∣∣∣∣ = 0
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⇒ (5 − r)[−r(5 − r) − 4] + 4(5 − r) = −r(r − 5)2 = 0.

Therefore, the eigenvalues of A are r = 0, 5, with r = 5 an eigenvalue of multiplicity two.

Next we must find the eigenvectors and generalized eigenvectors for the matrix A and from

these vectors derive three linearly independent solutions of the system x′ = Ax. To find the

eigenvector associated with the eigenvalue r = 0, we solve the equation

Au =


5 −4 0

1 0 2

0 2 5



u1

u2

u3

 =


0

0

0

 ⇒


1 0 2

0 2 5

0 0 0



u1

u2

u3

 =


0

0

0

 .
This equation is equivalent to the system u1 = −2u3, 2u2 = −5u3 and one solution to this

system is u3 = 2, u1 = −4, u2 = −5. Therefore, one eigenvector of the matrix A associated

with the eigenvalue r = 0 is given by the vector

u1 = col (u1 u2 u3) = col(−4,−5, 2),

and so one solution to the system x′ = Ax is

x1(t) = e0u1 =


−4

−5

2

 .
To find an eigenvector associated with the eigenvalue r = 5, we solve the equation

(A − 5I)u =


0 −4 0

1 −5 2

0 2 0



u1

u2

u3

 =


0

0

0

 ,
which is equivalent to the system u2 = 0, u1 = −2u3. One solution to this system is u3 = 1,

u1 = −2, u2 = 0. Thus, one eigenvector of the matrix A associated with the eigenvalue r = 5

is the vector

u2 = col (u1 u2 u3) = col(−2, 0, 1),

and so another linearly independent solution to the system x′ = Ax is given by

x2(t) = e5tu2 = e5t


−2

0

1

 =


−2e5t

0

e5t

 .
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Since r = 5 is an eigenvalue of multiplicity two, we can find a generalized eigenvector (with

k = 2) associated with the eigenvalue r = 5 which will be linearly independent from the vector

u2 found above. Thus, we solve the equation

(A− 5I)2u = 0. (9.11)

Because

(A− 5I)2 =


0 −4 0

1 −5 2

0 2 0




0 −4 0

1 −5 2

0 2 0

 =


−4 20 −8

−5 25 −10

2 −10 4

 ,
we see that equation (9.11) becomes

−4 20 −8

−5 25 −10

2 −10 4



u1

u2

u3

 =


0

0

0

 ⇒


−1 5 −2

0 0 0

0 0 0



u1

u2

u3

 =


0

0

0

 .
This equation is equivalent to the equation

−u1 + 5u2 − 2u3 = 0

and is, therefore, satisfied if we let u2 = s, u3 = v, and u1 = 5s− 2v for any values of s and

v. Hence, solutions to equation (9.11) are given by

u =


u1

u2

u3

 =


5s− 2v

s

v

 = s


5

1

0

+ v


−2

0

1

 .
Notice that the vectors vcol(−2, 0, 1) are the eigenvectors that we found above associated

with the eigenvalue r = 5. Since we are looking for a vector which satisfies equation (9.11)

and is linearly independent from this eigenvector we will choose s = 1 and v = 0. Thus, a

generalized eigenvector for the matrix A associated with the eigenvalue r = 5 and linearly

independent of the eigenvector u2 is given by

u3 = col(5, 1, 0).

622



Exercises 9.8

Hence, by formula (8) on page 563 of the text, we see that another linearly independent

solution to the system x′ = Ax is given by

x3(t) = eAtu3 = e5t [u3 + t(A − 5I)u3]

= e5t


5

1

0

+ te5t


0 −4 0

1 −5 2

0 2 0




5

1

0



= e5t


5

1

0

+ te5t


−4

0

2

 =


5e5t − 4te5t

e5t

2te5t

 ,
where we have used the fact that, by our choice of u3, (A−5I)2u3 = 0 and so (A−5I)nu3 = 0

for n ≥ 2. (This is the reason why we used the generalized eigenvector to calculate x3(t).

The Cayley-Hamilton theorem, as given on page 561 of the text, states that A satisfies its

characteristic equation, which in this case means that A(A − 5I)2 = 0. However, we cannot

assume from this fact that (A − 5I)2 = 0 because in matrix multiplication it is possible for

two nonzero matrices to have a zero product.)

Our last step is to find a fundamental matrix for the system x′ = Ax using the linearly

independent solutions found above and then to use this fundamental matrix to calculate eAt.

Thus, from these three solutions we obtain the fundamental matrix given by

X(t) =


−4 −2e5t 5e5t − 4te5t

−5 0 e5t

2 e5t 2te5t

 ⇒ X(0) =


−4 −2 5

−5 0 1

2 1 0

 .
We can find the inverse matrix X−1(0) by (for example) performing row-reduction on the

matrix [X(0)|I] to obtain the matrix [I|X−1(0)]. Thus, we find

X−1(0) =
1

25


1 −5 2

−2 10 21

5 0 10

 .
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Therefore, by formula (6) on page 562 of the text, we see that

eAt = X(t)X−1(0) =
1

25


−4 −2e5t 5e5t − 4te5t

−5 0 e5t

2 e5t 2te5t




1 −5 2

−2 10 21

5 0 10



=
1

25


−4 + 29e5t − 20te5t 20 − 20e5t −8 + 8e5t − 40te5t

−5 + 5e5t 25 −10 + 10e5t

2 − 2e5t + 10te5t −10 + 10e5t 4 + 21e5t + 20te5t

 .
17. We first calculate the eigenvalues for the matrix A by solving the characteristic equation

|A − rI| =

∣∣∣∣∣∣∣∣
−r 1 0

0 −r 1

−2 −5 −4 − r

∣∣∣∣∣∣∣∣ = 0

⇒ (−r)
∣∣∣∣∣ −r 1

−5 −4 − r

∣∣∣∣∣−
∣∣∣∣∣ 0 1

−2 −4 − r

∣∣∣∣∣ = 0

⇒ −r[−r(−4 − r) + 5] − 2 = − (r3 + 4r2 + 5r + 2
)

= −(r + 1)2(r + 2) = 0.

Thus, the eigenvalues for A are r = −1,−2, with r = −1 an eigenvalue of multiplicity two.

To find an eigenvector u = col(u1, u2, u3) associated with the eigenvalue r = −1, we solve the

equation

(A + I)u =


1 1 0

0 1 1

−2 −5 −3



u1

u2

u3

 =


0

0

0

 ,
which is equivalent to the system u1 = u3, u2 = −u3. Therefore, by letting u3 = 1 (so that

u1 = 1 and u2 = −1), we see that one eigenvector for the matrix A associated with the

eigenvalue r = −1 is the vector

u1 = col(u1 , u2 , u3) = col(1,−1, 1).

Hence, one solution to the system x′ = Ax is given by

x1(t) = e−tu1 = e−t


1

−1

1

 .
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Since r = −1 is an eigenvalue of multiplicity two, we can find a generalized eigenvector

associated with this eigenvalue (with k = 2) which will be linearly independent from the

vector u1. To do this, we solve the equation

(A + I)2u = 0

⇒


1 1 0

0 1 1

−2 −5 −3




1 1 0

0 1 1

−2 −5 −3



u1

u2

u3

 =


0

0

0



⇒


1 2 1

−2 −4 −2

4 8 4



u1

u2

u3

 =


0

0

0

 ⇒


1 2 1

0 0 0

0 0 0



u1

u2

u3

 =


0

0

0

 ,
which is equivalent to the equation u1 + 2u2 + u3 = 0. This equation will be satisfied if we let

u3 = s, u2 = v, and u1 = −2v − s for any values of s and v. Thus, generalized eigenvectors

associated with the eigenvalue r = −1 are given by

u =


u1

u2

u3

 =


−2v − s

v

s

 = s


−1

0

1

+ v


−2

1

0

 .
Hence, by letting s = 2 and v = −1, we find one such generalized eigenvector to be the vector

u2 = col(0,−1, 2),

which we see by inspection is linearly independent from u1. Therefore, by equation (8) on

page 563 of the text, we obtain a second linearly independent solution of the system x′ = Ax

given by

x2(t) = eAtu2 = e−t [u2 + t(A + I)u2]

= e−t


0

−1

2

+ te−t


1 1 0

0 1 1

−2 −5 −3




0

−1

2


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= e−t


0

−1

2

+ te−t


−1

1

−1

 = e−t


−t

−1 + t

2 − t

 .
In order to obtain a third linearly independent solution to this system, we will find an eigen-

vector associated with the eigenvalue r = −2 by solving the equation

(A + 2I)u =


2 1 0

0 2 1

−2 −5 −2



u1

u2

u3

 =


0

0

0

 .
This equation is equivalent to the system 2u1 + u2 = 0, 2u2 + u3 = 0. One solution to this

system is given by u1 = 1, u2 = −2, and u3 = 4. Thus, one eigenvector associated with the

eigenvalue r = −2 is the vector

u3 = col(u1 , u2 , u3) = col(1,−2, 4),

and another linearly independent solution to this system is given by

x3(t) = e−2tu3 = e−2t


1

−2

4

 .
Hence, by combining the three linearly independent solutions that we have just found, we see

that a general solution to this system is

x(t) = c1e
−t


1

−1

1

+ c2e
−t


−t

−1 + t

2 − t

+ c3e
−2t


1

−2

4

 .
23. In Problem 3, we found that

eAt = e−t


1 + 3t− 3t2/2 t −t+ t2/2

−3t 1 t

9t− 9t2/2 3t 1 − 3t+ 3t2/2

 .
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In order to use the variation of parameters formula (equation (13) on page 565 of the text),

we need to find expressions for eAtx0 and
∫ t

0
eA(t−s)f(s) ds, where we have used the fact that

t0 = 0. Thus, we first notice that

t∫
0

eA(t−s)f(s) ds =

t∫
0

eAt−Asf(s) ds = eAt

t∫
0

e−Asf(s) ds .

Since f(s) = col(0, s, 0), we observe that

e−Asf(s) = es


1 − 3s− 3s2/2 −s s + s2/2

3s 1 −
−9s− 9s2/2 −3s 1 + 3s+ 3s2/2




0

s

0



= es


−s2

s

−3s2

 =


−s2es

ses

−3s2es

 .
Therefore, we have

t∫
0

eA(t−s)f(s) ds = eAt

t∫
0

e−Asf(s) ds

= eAt


∫ t

0
(−s2es)ds∫ t

0
(ses)ds∫ t

0
(−3s2es)ds



= eAt


2 − et(t2 − 2t+ 2)

1 + et(t− 1)

6 − 3et(t2 − 2t+ 2)

 ,
where we have used integration by parts to evaluate the three integrals above. Next, since

x0 = col(0, 3, 0), we see that

eAtx0 = e−t


1 + 3t− 3t2/2 t −t+ t2/2

−3t 1 t

9t− 9t2/2 3t 1 − 3t+ 3t2/2




0

3

0

 = e−t


3t

3

9t

 .
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Finally, substituting these expressions into the variation of parameters formula (13), page 565

of the text, yields

x(t) = eAtx0 +

t∫
0

eA(t−s)f(s) ds

= e−t


3t

3

9t

+ eAt


2 − et(t2 − 2t+ 2)

1 + et(t− 1)

6 − 3et(t2 − 2t+ 2)

 ,
where eAt is given above.
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CHAPTER 10: Partial Differential Equations

EXERCISES 10.2: Method of Separation of Variables, page 587

5. To find a general solution to this equation, we first observe that the auxiliary equation asso-

ciated with the corresponding homogeneous equation is given by r2 − 1 = 0. This equation

has roots r = ±1. Thus, the solution to the corresponding homogeneous equation is given by

yh(x) = C1e
x + C2e

−x .

By the method of undetermined coefficients, we see that the form of a particular solution to

the nonhomogeneous equation is

yp(x) = A +Bx,

where we have used the fact that neither y = 1 nor y = x is a solution to the corresponding

homogeneous equation. To find A and B, we note that

y′p(x) = B and y′′p(x) = 0.

By substituting these expressions into the original differential equation, we obtain

y′′p(x) − yp(x) = −A− Bx = 1 − 2x.

By equating coefficients, we see that A = −1 and B = 2. Substituting these values into the

equation for yp(x) yields

yp(x) = −1 + 2x.

Thus, we see that

y(x) = yh(x) + yp(x) = C1e
x + C2e

−x − 1 + 2x.
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Next we try to find C1 and C2 so that the solution y(x) will satisfy the boundary conditions.

That is, we want to find C1 and C2 satisfying

y(0) = C1 + C2 − 1 = 0 and y(1) = C1e+ C2e
−1 + 1 = 1 + e.

From the first equation we see that C2 = 1−C1. Substituting this expression for C2 into the

second equation and simplifying yields

e− e−1 = C1

(
e− e−1

)
.

Thus, C1 = 1 and C2 = 0. Therefore,

y(x) = ex − 1 + 2x

is the only solution to the boundary value problem.

13. First note that the auxiliary equation for this problem is r2+λ = 0. To find eigenvalues which

yield nontrivial solutions we will consider the three cases: λ < 0, λ = 0, and λ > 0.

Case 1, λ < 0: In this case the roots to the auxiliary equation are r = ±√−λ (where we

note that −λ is a positive number). Therefore, a general solution to the differential equation

y′′ + λy = 0 is given by

y(x) = C1e
√−λx + C2e

−√−λx .

In order to apply the boundary conditions we need to find y′(x). Thus, we have

y′(x) =
√−λC1e

√−λx −√−λC2e
−√−λx .

By applying the boundary conditions we obtain

y(0) − y′(0) = C1 + C2 −
√−λC1 +

√−λC2 = 0

⇒
(
1 −√−λ

)
C1 +

(
1 +

√−λ
)
C2 = 0,

and

y(π) = C1e
√−λπ + C2e

−√−λπ = 0 ⇒ C2 = −C1e
2
√−λπ.
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By combining these expressions, we observe that(
1 −√−λ

)
C1 −

(
1 +

√−λ
)
C1e

2
√−λπ = 0

⇒ C1

[(
1 −√−λ

)
−
(
1 +

√−λ
)
e2

√−λπ
]

= 0. (10.1)

This last expression will be true if C1 = 0 or if

e2
√−λπ =

1 −√−λ
1 +

√−λ .

But since
√−λ > 0, we see that e2

√−λπ > 1 while (1−√−λ)/(1 +
√−λ) < 1. Therefore, the

only way that equation (10.1) can be true is for C1 = 0. This means that C2 must also equal

zero and so in this case we have only the trivial solution.

Case 2, λ = 0: In this case we are solving the differential equation y′′ = 0. This equation has

a general solution given by

y(x) = C1 + C2x ⇒ y′(x) = C2 .

By applying the boundary conditions we obtain

y(0) − y′(0) = C1 − C2 = 0 and y(π) = C1 + C2π = 0.

Solving these equations simultaneously yields C1 = C2 = 0. Thus, we again find only the

trivial solution.

Case 3, λ > 0: In this case the roots to the associated auxiliary equation are r = ±√
λi.

Therefore, the general solution is given by

y(x) = C1 cos
(√

λx
)

+ C2 sin
(√

λx
)

⇒ y′(x) = −
√
λC1 sin

(√
λx
)

+
√
λC2 cos

(√
λx
)
.

By applying the boundary conditions, we obtain

y(0) − y′(0) = C1 −
√
λC2 = 0 ⇒ C1 =

√
λC2 ,
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Figure 10–A: The intersection of the graphs y = −x and y = tan(πx), x > 0.

and

y(π) = C1 cos
(√

λπ
)

+ C2 sin
(√

λπ
)

= 0.

By combining these results, we obtain

C2

[√
λ cos

(√
λπ
)

+ sin
(√

λπ
)]

= 0

Therefore, in order to obtain a solution other than the trivial solution, we must solve the

equation √
λ cos

(√
λπ
)

+ sin
(√

λπ
)

= 0.

By simplifying this equation becomes

tan
(√

λπ
)

= −
√
λ.

To see that there exist values for λ > 0 which satisfy this equation, we examine the graphs

of the equations y = −x and y = tan(πx). For any values of x > 0 where these two graphs

intersect, we set λ = x2. These values for λ will be the eigenvalues that we seek. From

the graph in Figure 10-A, we see that there are (countably) infinitely many such eigenvalues.

These values satisfy the equations

tan
(√

λnπ
)

+
√
λn = 0.
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As n becomes large, we can also see from the graph that these eigenvalues approach the square

of odd multiples of 1/2. That is,

λn ≈ (2n− 1)2

4
,

when n is large. Corresponding to the eigenvalue λn we obtain the solutions

yn(x) = C1n cos
(√

λnx
)

+ C2n sin
(√

λnx
)

=
√
λnC2n cos

(√
λnx
)

+ C2n sin
(√

λnx
)

(since C1n =
√
λnC2n). Thus

yn(x) = Cn

[√
λn cos

(√
λnx
)

+ sin
(√

λnx
)]
,

where Cn is arbitrary.

17. We are solving the problem

∂u(x, t)

∂t
= 3

∂2u(x, t)

∂t2
, 0 < x < π, t > 0,

u(0, t) = u(π, t) = 0, t > 0,

u(x, 0) = sin x− 7 sin 3x+ sin 5x.

A solution to this partial differential equation satisfying the first boundary condition is given

in equation (11) on page 582 of the text. By letting β = 3 and L = π in this equation we

obtain the series

u(x, t) =

∞∑
n=1

cne
−3n2t sinnx . (10.2)

To satisfy the initial condition, we let t = 0 in this equation and set the result equal to

sin x− 7 sin 3x+ sin 5x. This yields

u(x, t) =
∞∑

n=1

cn sin nx = sin x− 7 sin 3x+ sin 5x.

By equating the coefficients of the like terms, we see that c1 = 1, c3 = −7, c5 = 1, and all

other cn’s are zero. Plugging these values into equation (10.2) gives the solution

u(x, t) = e−3(1)2t sin x− 7e−3(3)2t sin 3x+ e−3(5)2t sin 5x

= e−3t sin x− 7e−27t sin 3x+ e−75t sin 5x .
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21. By letting α = 3 and L = π in formula (24) on page 585 of the text, we see that the solution

we want will have the form

u(x, t) =

∞∑
n=1

[an cos 3nt+ bn sin 3nt] sin nx . (10.3)

Therefore, we see that

∂u

∂t
=

∞∑
n=1

[−3nan sin 3nt+ 3nbn cos 3nt] sin nx .

In order for the solution to satisfy the initial conditions, we must find an and bn such that

u(x, 0) =

∞∑
n=1

an sinnx = 6 sin 2x+ 2 sin 6x,

and
∂u(x, 0)

∂t
=

∞∑
n=1

3nbn sinnx = 11 sin 9x− 14 sin 15x.

From the first condition, we observe that we must have a term for n = 2, 6 and for these terms

we want a2 = 6 and a6 = 2. All of the other an’s must be zero. By comparing coefficients in

the second condition, we see that we require

3(9)b9 = 11 or b9 =
11

27
and 3(15)b15 = −14 or b15 = −14

45
.

We also see that all other values for bn must be zero. Therefore, by substituting these values

into equation (10.3) above, we obtain the solution of the vibrating string problem with α = 3,

L = π and f(x) and g(x) as given. This solution is given by

u(x, t) = 6 cos(3 ·2 ·t) sin 2x+2 cos(3 ·6 ·t) sin 6x+
11

27
sin(3 ·9 ·t) sin 9x− 14

45
sin(3 ·15 ·t) sin 15x.

Or by simplifying, we obtain

u(x, t) = 6 cos 6t sin 2x+ 2 cos 18t sin 6x+
11

27
sin 27t sin 9x− 14

45
sin 45t sin 15x.

23. We know from equation (11) on page 582 of the text that a formal solution to the heat flow

problem is given by

u(x, t) =

∞∑
n=1

cne
−2(nπ)2t sin nπx , (10.4)

634



Exercises 10.3

where we have made the substitutions β = 2 and L = 1. For this function to be a solution to

the problem it must satisfy the initial condition u(x, 0) = f(x), 0 < x < 1. Therefore, we let

t = 0 in equation (10.4) above and set the result equal to f(x) to obtain

u(x, 0) =

∞∑
n=1

cn sin nπx =

∞∑
n=1

1

n2
sinnπx .

By equating coefficients, we see that cn = n−2. Substituting these values of cn into equation

(10.4) yields the solution

u(x, t) =

∞∑
n=1

n−2e−2(nπ)2t sinnπx .

EXERCISES 10.3: Fourier Series, page 603

5. Note that f(−x) = ex cos(−3x) = ex cos 3x. Since

f(−x) = ex cos 3x �= e−x cos 3x = f(x)

unless x = 0 we see that this function is not even. Similarly since

f(−x) = ex cos 3x �= −e−x cos 3x = −f(x),

this function is also not odd.

13. For this problem T = 1. Thus, by Definition 1 on page 594 of the text, the Fourier series for

this function will be given by

a0

2
+

∞∑
n=1

(an cosnπx+ bn sinnπx) . (10.5)

To compute a0, we use equation (9) given in Definition 1 in the text noting that cos(0·πx) = 1.

Thus, we have

a0 =

1∫
−1

x2 dx =
x3

3

∣∣∣∣1
−1

=
1

3
− −1

3
=

2

3
.
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To find an for n = 1, 2, 3, . . ., we again use equation (9) on page 594 of the text. This yields

an =

1∫
−1

x2 cosnπx dx = 2

1∫
0

x2 cosnπx dx,

where we have used the fact that x2 cosnπx is an even function. Thus, using integration by

parts twice, we obtain

an = 2

1∫
0

x2 cosnπx dx = 2

x2 sin nπx

nπ

∣∣∣∣1
0

− 2

nπ

1∫
0

x sin nπx dx


= 2

(sin nπ

nπ
− 0

)
− 2

nπ

−x cosnπx

nπ

∣∣∣1
0
+

1

nπ

1∫
0

cosnπx dx


= 2

[
0 +

2

n2π2
(cosnπ − 0) − 2

n2π2

(
1

nπ
sin nπx

∣∣∣∣1
0

)]

=
4

n2π2
(−1)n − 4

n3π3
(sin nπ − 0) =

4

n2π2
(−1)n .

To calculate the bn’s, note that since x2 is even and sin nπx is odd, their product is odd (see

Problem 7 in this section of the text). Since x2 sin nπx is also continuous, by Theorem 1 on

page 590 of the text, we have

bn =

1∫
−1

x2 sinnπx dx = 0 .

By plugging these coefficients into equation (10.5) above, we see that the Fourier series asso-

ciated with x2 is given by
1

3
+

∞∑
n=1

4

n2π2
(−1)n cosnπx .

21. We use Theorem 2 on page 600 of the text. Notice that f(x) = x2 and f ′(x) = 2x are

continuous on [−1, 1]. Thus, the Fourier series for f converges to f(x) for −1 < x < 1.

Furthermore,

f
(−1+

)
= lim

x→−1+
x2 = 1 and f

(
1−
)

= lim
x→1−

x2 = 1.
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Hence,
1

2

[
f
(−1+

)
+ f
(
1−
)]

=
1

2
(1 + 1) = 1,

and so, by Theorem 2, the sum of the Fourier series equals 1 when x = ±1. Therefore, the

Fourier series converges to

f(x) = x2 for − 1 ≤ x ≤ 1.

Since the sum function must be periodic with period 2, the sum function is the 2-periodic

extension of f(x) which we can write as

g(x) = (x− 2n)2, 2n− 1 ≤ x < 2n+ 1, n = 0,±1,±2, . . . .

29. To calculate the coefficients of this expansion we use formula (20) on page 599 of the text.

Thus we have

c0 =

∫ 1

−1
f(x) dx

‖P0‖2 =
0

‖P0‖2 = 0,

where we have used the fact that f(x) is an odd function. To find c1 we first calculate the

denominator to be

‖P1‖2 =

1∫
−1

P 2
1 (x) dx =

1∫
−1

x2 dx =
x3

3

∣∣∣∣1
−1

=
2

3
.

Therefore, we obtain

c1 =
3

2

1∫
−1

f(x)P1(x) dx =
3

2
2

1∫
0

x dx = 3
x2

2

∣∣∣∣1
0

=
3

2
.

Notice that in order to calculate the above integral, we used the fact that the product of the

two odd functions f(x) and P1(x) is even. To find c2, we first observe that, since f(x) is odd

and P2(x) is even, their product is odd and so we have

1∫
−1

f(x)P2(x) dx = 0.

Hence

c2 =

∫ 1

−1
f(x)P2(x) dx

‖P2‖2 =
0

‖P2‖2 = 0.
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31. We need to show that ∞∫
−∞

Hm(x)Hn(x)e−x2

dx = 0,

for m �= n, where m,n = 0, 1, 2. Therefore, we need to calculate several integrals. Let’s begin

with m = 0, n = 2. Here we see that

∞∫
−∞

H0(x)H2(x)e
−x2

dx =

∞∫
−∞

(
4x2 − 2

)
e−x2

dx

= lim
N→∞

N∫
0

(
4x2 − 2

)
e−x2

dx+ lim
M→∞

0∫
−M

(
4x2 − 2

)
e−x2

dx .

We will first calculate the indefinite integral using integration by parts with the substitution

u = x, dv = 2xe−x2
dx

du = dx, v = −e−x2
.

That is we find∫ (
4x2 − 2

)
e−x2

dx = 2

∫
2x2e−x2

dx− 2

∫
e−x2

dx

= 2

[
−xe−x2

+

∫
e−x2

dx

]
− 2

∫
e−x2

dx = −2xe−x2

+ C.

Substituting this result in for the integrals we are calculating and using L’Hospital’s rule to

find the limits, yields

∞∫
−∞

H0(x)H2(x)e
−x2

dx = lim
N→∞

(
−2xe−x2

∣∣∣N
0

)
+ lim

M→∞

(
−2xe−x2

∣∣∣0
−M

)

= lim
N→∞

(−2N

eN2 + 0

)
+ lim

M→∞

(
0 − 2M

eM2

)
= − lim

N→∞
2N

eN2 − lim
M→∞

2M

eM2 = −0 − 0 = 0.

When m = 0, n = 1 and m = 1, n = 2, the integrals are, respectively,

∞∫
−∞

H0(x)H1(x)e
−x2

dx =

∞∫
−∞

2xe−x2

dx
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y

1

−3π −5π/2 −2π −3π/2 −π −π/2 π/2 π 3π/2 2π 5π/2 3π x

Figure 10–B: The graph of the π-periodic extension of f .

and
∞∫

−∞

H1(x)H2(x)e
−x2

dx =

∞∫
−∞

2x(4x2 − 2)e−x2

dx .

In each case the integrands are odd functions and hence their integrals over symmetric intervals

of the form (−N,N) are zero. Since it is easy to show that the above improper integrals are

convergent, we get
∞∫

−∞

· · · = lim
N→∞

N∫
−N

· · · = lim
N→∞

0 = 0.

Since we have shown that the 3 integrals above are all equal to zero, the first three Hermite

polynomials are orthogonal.

EXERCISES 10.4: Fourier Cosine and Sine Series, page 611

3. (a) The π-periodic extension f̃(x) on the interval (−π, π) is

f̃(x) =


0, −π < x < −π/2,
1, −π/2 < x < 0,

0, 0 < x < π/2,

1, π/2 < x < π,

with f̃(x+ 2π) = f̃(x). The graph of this function is given in Figure 10-B.

(b) Using the formula on page 607 of the text, the odd 2π-periodic extension fo on the
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y

1

−3π −5π/2 −2π −3π/2 −π −π/2 π/2 π 3π/2 2π 5π/2 3π x

Figure 10–C: The graph of the odd 2π-periodic extension of f .

interval (−π, π) is

fo(x) =

{
−f(−x), −π < x < 0,

f(x), 0 < x < π
=


−1, −π < x < −π/2,
0, −π/2 < x < 0,

0, 0 < x < π/2,

1, π/2 < x < π,

with fo(x+ 2π) = fo(x). The graph of fo(x) is given in Figure 10-C.

(c) Using the formula on page 608 of the text, the even 2π-periodic extension fe on the

interval (−π, π) is

fe(x) =

{
f(−x), −π < x < 0,

f(x), 0 < x < π
=


1, −π < x < −π/2,
0, −π/2 < x < 0,

0, 0 < x < π/2,

1, π/2 < x < π,

with fe(x+ 2π) = fe(x). The graph of fe(x) is given in Figure 10-D.

7. Since f is piecewise continuous on the interval [0, π], we can use equation (6) in Definition 2 on

page 609 of the text to calculate its Fourier sine series. In this problem T = π and f(x) = x2.

Thus we have

f(x) =

∞∑
n=1

bn sinnx , with bn =
2

π

π∫
0

x2 sinnx dx .
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y

1

−3π −5π/2 −2π −3π/2 −π −π/2 π/2 π 3π/2 2π 5π/2 3π 7π/2 x

Figure 10–D: The graph of the even 2π-periodic extension of f .

To calculate the coefficients, we use integration by parts twice to obtain

π

2
bn =

π∫
0

x2 sinnx dx = −x2 cosnx

n

∣∣∣π
0

+
2

n

π∫
0

x cosnx dx

= −π
2 cos nπ

n
+ 0 +

2

n

x sinnx

n

∣∣∣∣π
0

− 1

n

π∫
0

sinnx dx


= −π

2 cos nπ

n
+

2

n

[
0 − 1

n

(
−cos nx

n

∣∣∣π
0

)]
= −π

2 cos nπ

n
+

2

n3
(cosnπ − cos 0) ,

where n = 1, 2, 3, . . . . Since cosnπ = 1 if n is even and cosnπ = −1 if n is odd for all

n = 1, 2, 3, . . ., we see that

π

2
bn = −π

2(−1)n

n
+

2[(−1)n − 1]

n3
.

Therefore, for n = 1, 2, 3, . . ., we have

bn =
2π(−1)n+1

n
+

4[(−1)n − 1]

πn3
.

Substituting these coefficients into the Fourier sine series for f(x) = x2, yields

∞∑
n=1

{
2π(−1)n+1

n
+

4[(−1)n − 1]

πn3

}
sin nx .

Since f(x) = x2 and f ′(x) = 2x are piecewise continuous on the interval [0, π], Theorem 2

on page 600 of the text implies that this Fourier series converges pointwise to f(x) on the
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interval (0, π). Hence, we can write

f(x) = x2 =

∞∑
n=1

{
2π(−1)n+1

n
+

4[(−1)n − 1]

πn3

}
sinnx ,

for x in the interval (0, π). But since the odd 2π-periodic extension of f(x) is discontinuous at

odd multiples of π, the Gibbs’ phenomenon (see Problem 39 on page 606 of the text) occurs

around these points, and so the convergence of this Fourier sine series is not uniform on (0, π).

13. Since f(x) = ex is piecewise continuous on the interval [0, 1], we can use Definition 2 on

page 609 of the text to find its Fourier cosine series. Therefore, we have

a0

2
+

∞∑
n=1

an cosnπx, where an = 2

1∫
0

ex cosnπx dx .

Using the fact that cos 0 = 1, we find the coefficient a0 to be

a0 = 2

1∫
0

ex dx = 2(e− 1).

We will use integration by parts twice (or the table of integrals on the inside cover of the text)

to calculate the integrals in the remaining coefficients. This yields∫
ex cos nπx dx =

ex(cosnπx+ nπ sinnπx)

1 + n2π2
,

where n = 1, 2, 3, . . .. Thus, the remaining coefficients are given by

an = 2

1∫
0

ex cos nπx dx =
2ex(cosnπx+ nπ sin nπx)

1 + n2π2

∣∣∣∣2
0

=
2e(cosnπ)

1 + n2π2
− 2e(1)

1 + n2π2
=

2 [(−1)ne− 1]

1 + n2π2
, n = 1, 2, 3, . . . ,

where we have used the fact that cosnπ = 1 if n is even and cosnπ = −1 if n is odd. By

substituting the above coefficients into the Fourier cosine series for f given above, we obtain

ex = e− 1 + 2

∞∑
n=1

(−1)ne− 1

1 + n2π2
cosnπx ,
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for 0 < x < 1. Note that we can say that ex for 0 < x < 1 equals its Fourier cosine series

because this series converges uniformly. To see this, first notice that the even 2π-periodic

extension of f(x) = ex, 0 < x < 1, is given by

fe(x) =

{
e−x, −1 < x < 0,

ex, 0 < x < 1,

with fe(x+2π) = fe(x). Since this extension is continuous on (−∞,∞) and f ′
e(x) is piecewise

continuous on [−1, 1], Theorem 3 on page 601 of the text states that its Fourier series (which is

the one we found above) converges uniformly to fe(x) on [−1, 1] and so it converges uniformly

to f(x) = ex on (0, 1).

17. This problem is the same as the heat flow problem on page 580 of the text with β = 5, L = π

and f(x) = 1 − cos 2x. Therefore, the formal solution to this problem is given in equations

(11) and (12) on pages 582 and 583 of the text. Thus, the formal solution is

u(x, t) =
∞∑

n=1

cne
−5n2t sinnx 0 < x < π, t > 0 , (10.6)

where

f(x) = 1 − cos 2x =
∞∑

n=1

cn sin nx .

Therefore, we must find the Fourier sine series for 1−cos 2x. To do this, we can use equations

(6) and (7) of Definition 2 on page 609 of the text. Hence, the coefficients are given by

cn =
2

π

π∫
0

(1 − cos 2x) sinnx dx

=
2

π

π∫
0

sin nx dx− 2

π

π∫
0

cos 2x sinnx dx , n = 1, 2, 3, . . . .

Calculating the first integral above yields

2

π

π∫
0

sinnx dx = − 2

nπ
(cosnπ − 1) =

2

nπ
[1 − (−1)n] ,

643



Chapter 10

where we have used the fact that cosnπ = 1 if n is even and cosnπ = −1 if n is odd. To

calculate the second integral, we use the fact that 2 cosα sin β = sin(β − α) + sin(β + α), to

obtain

−2

π

π∫
0

cos 2x sinnx dx = −1

π


π∫

0

sin[(n− 2)x] dx+

π∫
0

sin[(n + 2)x] dx


=

1

π(n− 2)
{cos[(n− 2)π] − 1} +

1

π(n+ 2)
{cos[(n + 2)π] − 1}

=
1

π(n− 2)
[(−1)n − 1] +

1

π(n+ 2)
[(−1)n − 1] .

Combining these two integrals yields

cn =
2

nπ
[1 − (−1)n] +

1

π(n− 2)
[(−1)n − 1] +

1

π(n+ 2)
[(−1)n − 1]

=

{
0, if n is even,

4/(nπ) − 2/[π(n− 2)] − 2/[π(n+ 2)], if n is odd,

for n = 1, 2, 3, . . .. Hence, we obtain the formal solution to this problem by substituting these

coefficients into equation (10.6) above and setting n = 2k − 1. Therefore, we have

u(x, t) =
2

π

∞∑
k=1

[
2

2k − 1
− 1

2k − 3
− 1

2k + 1

]
e−5(2k−1)2t sin(2k − 1)x .

EXERCISES 10.5: The Heat Equation, page 624

3. If we let β = 3, L = π, and f(x) = x, we see that this problem has the same form as the

problem in Example 1 on page 613 of the text. Therefore, we can find the formal solution to

this problem by substituting these values into equation (14) on page 615 of the text. Hence,

we have

u(x, t) =

∞∑
n=0

cn cos e−3n2t cos nx , where f(x) =

∞∑
n=0

cn cosnx . (10.7)

Thus, we must find the Fourier cosine series coefficients for f(x) = x, 0 < x < π. (Note that

the even 2π-extension for f(x) = x, 0 < x < π, which is given by

fe(x) =

{
−x, for − π < x < 0,

x, for 0 < x < π,
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with fe(x + 2π) = fe(x), is continuous. Also note that its derivative is piecewise continuous

on [−π.π]. Therefore, the Fourier series for this extension converges uniformly to fe. This

means that the equality sign in the second equation given in formula (10.7) above is justified

for 0 < x < π.) To find the required Fourier series coefficients, we use equations (4) and (5)

given in Definition 2 on page 609 of the text. Hence, we have

x =
a0

2
+

∞∑
n=1

an cosnx ,

(so that c0 = a0/2 and cn = an for n = 1, 2, 3, . . .) where

a0 =
2

π

π∫
0

x dx =
2

π

x2

2

∣∣∣∣π
0

= π and an =
2

π

π∫
0

x cosnx dx,

for n = 1, 2, 3, . . .. To calculate the second integral above we use integration by parts to obtain

an =
2

π

π∫
0

x cosnx dx =
2

π

 x
n

sinnx
∣∣∣π
0
− 1

n

π∫
0

sinnx dx


=

2

π

[
0 − 1

n

(
−cos nx

n

∣∣∣π
0

)]
=

2

πn2
(cosnπ − 1) =

2

πn2
[(−1)n − 1] .

Combining these results yields

an =


π, if n = 0,

−4/(πn2), if n is odd,

0, if n is even and n �= 0,

where n = 0, 1, 2, . . .. The formal solution for this problem is, therefore, found by substituting

these coefficients into the first equation given in formula (10.7) above. (Recall that c0 = a0/2

and cn = an for n = 1, 2, 3, . . ..) Thus, we have

u(x, t) =
π

2
e−0 cos 0 −

∞∑
k=0

4

π(2k + 1)2
e−3(2k+1)2t cos(2k + 1)x

=
π

2
−

∞∑
k=0

4

π(2k + 1)2
e−3(2k+1)2t cos(2k + 1)x
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7. This problem has nonhomogeneous boundary conditions and so has the same form as the

problem in Example 2 on page 616 of the text. By comparing these two problems, we see that

for this problem β = 2, L = π, U1 = 5, U2 = 10, and f(x) = sin 3x − sin 5x. To solve this

problem, we assume that the solution consists of a steady state solution v(x) and a transient

solution w(x, t). The steady state solution is given in equation (24) on page 617 of the text

and is

v(x) = 5 +
(10 − 5)x

π
= 5 +

5

π
x .

The formal transient solution is given by equations (39) and (40) on page 619 of the text. By

using these equations and making appropriate substitutions, we obtain

w(x, t) =

∞∑
n=1

cne
−2n2t sin nx , (10.8)

where the coefficients (the cn’s) are given by

f(x) − v(x) = sin 3x− sin 5x− 5 − 5

π
x =

∞∑
n=1

cn sinnx , 0 < x < π.

Therefore, we must find the Fourier sine series coefficients for the function f(x) − v(x) for

0 < x < π. Since the function f(x) = sin 3x− sin 5x is already in the form of a sine series, we

only need to find the Fourier sine series for −v(x) = −5 − 5x/π and then add sin 3x− sin 5x

to this series. The resulting coefficients are the ones that we need. (Note that the Fourier sine

series for −5 − 5x/π will converge pointwise but not uniformly to −5 − 5x/π for 0 < x < π.)

To find the desired Fourier series we use equations (6) and (7) in Definition 2 on page 609 of

the text. Thus, with the appropriate substitutions, we have

−5 − 5x

π
=

∞∑
n=1

bn sinnx , where bn =
2

π

π∫
0

(
−5 − 5x

π

)
sin nx dx .

To find the bn’s, we will use integration by parts to obtain

bn = −10

π

π∫
0

sinnx dx− 10

π2

π∫
0

x sinnx dx
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=
10

nπ
(cosnπ − 1) − 10

π2

−x
n

cosnx
∣∣∣π
0

+
1

n

π∫
0

cosnx dx


=

10

nπ
(cosnπ − 1) − 10

π2

[
−π
n

cosnπ + 0
]

=
10

nπ
(2 cosnπ − 1) =

10

nπ
[2(−1)n − 1] , n = 1, 2, 3, . . . .

Thus, the Fourier sine series for sin 3x− sin 5x− 5 − 5x/π is given by

sin 3x− sin 5x− 5 − 5x

π
= sin 3x− sin 5x+

∞∑
n=1

10

nπ
[2(−1)n − 1] sin nx

= sin 3x− sin 5x− 30

π
sin x+

10

2π
sin 2x− 30

3π
sin 3x+

10

4π
sin 4x

−30

5π
sin 5x+

∞∑
n=6

10

nπ
[2(−1)n − 1] sinnx

= −30

π
sin x+

5

π
sin 2x+

(
1 − 10

π

)
sin 3x+

5

2π
sin 4x

−
(

1 +
6

π

)
sin 5x+

∞∑
n=6

10

nπ
[2(−1)n − 1] sin nx .

We therefore obtain the formal transient solution by taking the coefficients from this Fourier

series and substituting them in for the cn coefficients in equation (10.8) above. Thus, we find

w(x, t) = −30

π
e−2(1)2t sin x+

5

π
e−2(2)2t sin 2x+

(
1 − 10

π

)
e−2(3)2t sin 3x+

5

2π
e−2(4)2t sin 4x

−
(

1 +
6

π

)
e−2(5)2t sin 5x+

∞∑
n=6

10

nπ
[2(−1)n − 1] e−2n2t sin nx ,

and so the formal solution to the original problem is given by

u(x, t) = v(x) + w(x, t)

= 5 +
5x

π
− 30

π
e−2t sin x+

5

π
e−8t sin 2x+

(
1 − 10

π

)
e−18t sin 3x+

5

2π
e−32t sin 4x

−
(

1 +
6

π

)
e−50t sin 5x+

∞∑
n=6

10

nπ
[2(−1)n − 1] e−2n2t sinnx .
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9. Notice that this problem is a nonhomogeneous partial differential equation and has the same

form as the problem given in Example 3 on page 618 of the text. By comparing these problems,

we see that here β = 1,P (x) = e−x, L = π, U1 = U2 = 0, and f(x) = sin 2x. As in Example 3,

we will assume that the solution is the sum of a steady state solution v(x) and a transient

solution w(x, t). The steady state solution is the solution to the boundary value problem

v′′(x) = −e−x , 0 < x < π, v(0) = v(π) = 0.

Thus the steady state solution can be found either by solving this ODE or by substituting

the appropriate values into equation (35) given on page 618 of the text. By either method we

find

v(x) =
e−π − 1

π
x− e−x + 1.

The formal transient solution is then given by equations (39) and (40) on page 619 of the

text. By making the appropriate substitutions into this equation, we obtain

w(x, t) =
∞∑

n=1

cne
−n2t sinnx , (10.9)

where the cn’s are given by

f(x) − v(x) = sin 2x− e−π − 1

π
x+ e−x − 1 =

∞∑
n=1

cn sinnx .

Hence, the problem is to find the Fourier sine coefficients for f(x) − v(x). The first term,

f(x) = sin 2x, is already in the desired form. Therefore, the Fourier sine series for f(x)−v(x)
is

sin 2x+

∞∑
n=1

bn sinnx = b1 sin x+ (b2 + 1) sin 2x+

∞∑
n=3

bn sinnx ,

where the bn’s are the Fourier sine coefficients for −v(x). This implies that if n �= 2, then

cn = bn and if n = 2, then cn = bn + 1. The bn coefficients are given by equation (7) on

page 609 of the text. Thus, we have

bn =
2

π

π∫
0

[
−e

−π − 1

π
x+ e−x − 1

]
sin nx dx
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=
2

π

(
−e

−π − 1

π

) π∫
0

x sin nx dx+
2

π

π∫
0

e−x sin nx dx− 2

π

π∫
0

sinnx dx .

We will calculate each integral separately. The first integral is found by using integration by

parts. This yields

2

π

(
−e

−π − 1

π

) π∫
0

x sin nx dx =
−2(e−π − 1)

π2

−x
n

cosnx
∣∣∣π
0

+
1

n

π∫
0

cos nx dx


=

−2(e−π − 1)

π2

[
−π
n

cos nπ + 0 + 0
]

=
2(e−π − 1)

nπ
(−1)n .

To find the second integral we use the table of integrals on the inside front cover of the text

(or use integration by parts twice) to obtain

2

π

π∫
0

e−x sinnx dx =
2

π

[−e−πn cosnπ + n

1 + n2

]
=

2n

(1 + n2)π

[
e−π(−1)n+1 + 1

]
.

The last integral is found to be

−2

π

π∫
0

sinnx dx =
2

nπ
[cosnπ − 1] =

2

nπ
[(−1)n − 1] .

By combining all of these results, we find that the Fourier coefficients for −v(x) are given by

bn =
2(e−π − 1)

nπ
(−1)n +

2n

(1 + n2)π

[
e−π(−1)n+1 + 1

]
+

2

nπ
[(−1)n − 1] .

Therefore, the coefficients for the formal transient solution are

cn =


2(e−π − 1)

nπ
(−1)n +

2n

(1 + n2)π

[
e−π(−1)n+1 + 1

]
+

2

nπ
[(−1)n − 1] , if n �= 2,

e−π − 1

π
+

4

5π

(
1 − e−π

)
+ 1, if n = 2.

Since the formal solution to the PDE given in this problem is the sum of its steady state

solution and its transient solution, we find this final solution to be

u(x, t) = v(x) + w(x, t) =
e−π − 1

π
x− e−x + 1 +

∞∑
n=1

cne
−n2t sin nx ,

where the cn’s are given above.
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11. Let u(x, t) = X(x)T (t). Substituting u(x, t) = X(x)T (t) into the PDE yields

T ′(t)X(x) = 4X ′′(x)T (t) ⇒ T ′(t)
4T (t)

=
X ′′(x)
X(x)

= K,

where K is a constant. Substituting the solution u(x, t) = X(x)T (t) into the boundary

conditions, we obtain

X ′(0)T (t) = 0, X(π)T (t) = 0, t > 0.

Thus, we assume that X ′(0) = 0 and X(π) = 0 since this allows the expressions above to be

true for all t > 0 without implying that u(x, t) ≡ 0. Therefore, we have the two ODE’s

X ′′(x) = KX(x), 0 < x < π,

X ′(0) = X(π) = 0,
(10.10)

and

T ′(t) = 4KT (t), t > 0. (10.11)

To solve boundary value problem (10.10), we will examine three cases.

Case 1: Assume K = 0. Now equation (10.10) becomesX ′′ = 0. The solution isX(x) = ax+b,

where a and b are arbitrary constants. To find these constants we use the boundary conditions

in (10.10). Thus, we have

X ′(0) = a = 0 ⇒ a = 0 ⇒ X(x) = b,

and so

X(π) = b = 0 ⇒ b = 0.

Therefore, in this case we have only the trivial solution.

Case 2: Assume K > 0. In this case the auxiliary equation for equation (10.10) is r2−K = 0.

The roots to this equation are r = ±√
K. Thus, the solution is

X(x) = C1e
√

Kx + C2e
−√

Kx ,
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where C1 and C2 are arbitrary constants. To find these constants we again use the boundary

conditions in (10.10). We first note that

X ′(x) = C1

√
Ke

√
Kx − C2

√
Ke−

√
Kx.

Therefore,

X ′(0) = C1

√
K − C2

√
K = 0 ⇒ C1 = C2 ⇒ X(x) = C1

(
e
√

Kx + e−
√

Kx
)
.

The other boundary condition implies that

X(π) = C1

(
e
√

Kπ + e−
√

Kπ
)

= 0 ⇒ C1

(
e2

√
Kπ + 1

)
= 0.

The only way that the final equation above can be zero is for C1 to be zero. Therefore, we

again obtain only the trivial solution.

Case 3: Assume K < 0, so −K > 0. Then the auxiliary equation for equation (10.10) has the

roots r = ±√
K = ±i√−K. Therefore, the solution is

X(x) = C1 sin
(√−Kx

)
+ C2 cos

(√−Kx
)

⇒ X ′(x) = C1

√−K cos
(√−Kx

)
− C2

√−K sin
(√−Kx

)
.

Using the boundary condition X ′(0) = 0, we obtain

0 = X ′(0) = C1

√−K cos 0 − C2

√−K sin 0 = C1

√−K ⇒ C1 = 0.

Hence, X(x) = C2 cos
(√−Kx). Applying the other boundary condition yields

0 = X(π) = C2 cos
(√−Kπ

)
⇒ √−Kπ = (2n+ 1)

π

2
⇒ K = −(2n + 1)2

4
, n = 0, 1, 2, . . . .

Therefore, nontrivial solutions to problem (10.10) above are given by

Xn(x) = cn cos

(
2n+ 1

2
x

)
, n = 0, 1, 2, . . . .
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By substituting the values of K into equation (10.11), we obtain

T ′(t) = −(2n + 1)2T (t), t > 0.

This is a separable differential equation, and we find

dT

T
= −(2n+ 1)2 dt ⇒

∫
dT

T
= −(2n + 1)2

∫
dt

⇒ ln |T | = −(2n+ 1)2t+ A ⇒ Tn(t) = bne
−(2n+1)2t , n = 0, 1, 2, . . . ,

(where bn = ±eA). Hence, by the superposition principle (and since un(x, t) = Xn(x)Tn(t)),

we see that the formal solution to the original PDE is

u(x, t) =
∞∑

n=0

bne
−(2n+1)2tcn cos

(
2n+ 1

2
x

)
=

∞∑
n=0

ane
−(2n+1)2t cos

[(
n +

1

2

)
x

]
, (10.12)

where an = bncn. To find the an’s, we use the initial condition to obtain

u(x, 0) = f(x) =

∞∑
n=0

an cos

[(
n+

1

2

)
x

]
. (10.13)

Therefore, the formal solution to this PDE is given by equation (10.12), where the an’s are

given by equation (10.13).

17. This problem is similar to the problem given in Example 4 on page 619 of the text with β = 1,

L = W = π, and f(x, y) = y. The formal solution to this problem is given in equation (52)

on page 621 of the text with its coefficients given on pages 621 and 622 in equations (54)

and (55). By making appropriate substitutions in the first of these equations, we see that the

formal solution to this problem is

u(x, y, t) =
∞∑

m=0

∞∑
n=1

amne
−(m2+n2)t cosmx sin ny . (10.14)

We can find the coefficients, a0n, n = 1, 2, 3, . . ., by using equation (54) on page 621 of the

text with the appropriate substitutions. This yields

a0n =
2

π2

π∫
0

π∫
0

y sinny dx dy =
2

π2

π∫
0

y sinny

 π∫
0

dx

 dy
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=
2

π

π∫
0

y sin ny dy (use integration by parts)

=
2

π

−y
n

cosny
∣∣∣π
0

+
1

n

π∫
0

cosny dy


=

2

π

[
−π
n

cosnπ +

(
1

n2
sin ny

∣∣∣∣π
0

)]
=

2

π

(
−π
n

cosnπ
)

=
2

n
(−1)n+1 .

We will use equation (55) on page 622 of the text to find the other coefficients. Thus for

m ≥ 1 and n ≥ 1, we have

amn =
4

π2

π∫
0

π∫
0

y cosmx sin ny dx dy

=
4

π2

π∫
0

y sinny

 π∫
0

cosmxdx

 dy =
4

π2

π∫
0

y sinny(0) dy = 0.

The formal solution to this problem is found by substituting these coefficients into equation

(10.14). To do this we first note that the coefficients for any terms containing m �= 0 are zero.

Hence, only terms containing m = 0 will appears in the summation. Therefore, the formal

solution is given by

u(x, y, t) =
∞∑

n=1

2

n
(−1)n+1e−n2t sinny = 2

∞∑
n=1

(−1)n+1

n
e−n2t sinny .

EXERCISES 10.6: The Wave Equation, page 636

1. This problem has the form of the problem given in equations (1)–(4) on page 625 of the text.

Here, however, α = 1, L = 1, f(x) = x(1−x), and g(x) = sin 7πx. This problem is consistent

because

f(0) = 0 = f(1), and g(0) = sin 0 = 0 = sin 7π = g(1).

The solution to this problem was derived in Section 10.2 of the text and given again in equation

(5) on page 625 of the text. Making appropriate substitutions in equation (5) yields a formal
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solution given by

u(x, t) =

∞∑
n=1

[an cosnπt+ bn sin nπt] sinnπx . (10.15)

To find the an’s we note that they are the Fourier sine coefficients for x(1 − x) and so are

given by equation (7) on page 609 of the text. Thus, for n = 1, 2, 3, . . ., we have

an = 2

1∫
0

x(1 − x) sin nπx dx = 2

 1∫
0

x sin nπx dx−
1∫

0

x2 sinnπx dx

 .
We will use integration by parts to calculate these two integrals. This yields

1∫
0

x sin nπx dx = − 1

nπ
cosnπ = − 1

nπ
(−1)n

and

1∫
0

x2 sinnπx dx = − 1

nπ
cosnπ− 2

n2π2

(
− 1

nπ
cos nπ +

1

nπ

)
= − 1

nπ
(−1)n +

2

n3π3
[(−1)n − 1].

Therefore, for n = 1, 2, 3, . . ., we see that

an = 2

{
− 1

nπ
(−1)n +

1

nπ
(−1)n − 2

n3π3
[(−1)n − 1]

}
= − 4

n3π3
[(−1)n − 1] .

This can also be expressed as

an =

{
0, if n is even,

8/(n3π3), if n is odd.

The bn’s were found in equation (7) on page 626. By making appropriate substitutions in this

equations we have

sin 7πx =

∞∑
n=1

nπbn sinnπx.

From this we see that for n = 7

7πb7 = 1 ⇒ b7 =
1

7π
,
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and for all other n’s, bn = 0. By substituting these coefficients into the formal solution given

in equation (10.15) above, we obtain

u(x, t) =
1

7π
sin 7πt sin 7πx+

∞∑
k=0

8

[(2k + 1)π]3
cos[(2k + 1)πt] sin[(2k + 1)πx].

5. First we note that this problem is consistent because

g(0) = 0 = g(L) and f(0) = 0 = f(L).

The formal solution to this problem is given in equation (5) on page 625 of the text with the

coefficients given in equations (6) and (7) on page 626. By equation (7), we see that

g(x) = 0 =

∞∑
n=1

bn
nπα

L
sin
(nπx
L

)
.

Thus, each term in this infinite series must be zero and so bn = 0 for all n’s. Therefore, the

formal solution given in equation (5) on page 625 of the text becomes

u(x, t) =
∞∑

n=1

an cos

(
nπαt

L

)
sin
(nπx
L

)
. (10.16)

To find the an’s we note that by equation (6) on page 626 of the text these coefficients are the

Fourier sine coefficients for f(x). Therefore, by using equation (7) on page 609 of the text,

for n = 1, 2, 3, . . . we have

an =
2

L

L∫
0

f(x) sin
(nπx
L

)
dx =

2

L

h0

a

a∫
0

x sin
(nπx
L

)
dx+ h0

L∫
a

L− x

L− a
sin
(nπx
L

)
dx


=

2h0

L

1

a

a∫
0

x sin
(nπx
L

)
dx+

L

L− a

L∫
a

sin
(nπx
L

)
dx− 1

L− a

L∫
a

x sin
(nπx
L

)
dx

 .
By using integration by parts, we find∫

x sin
(nπx
L

)
dx = −xL

nπ
cos
(nπx
L

)
+

L2

n2π2
sin
(nπx
L

)
.
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Therefore, for n = 1, 2, 3, . . ., the coefficients become

an =
2h0

L

{
1

a

[
−aL
nπ

cos
(nπa
L

)
+

L2

n2π2
sin
(nπa
L

)]
− L2

nπ(L− a)

[
cos nπ − cos

(nπa
L

)]
− 1

L− a

[
−L2

nπ
cosnπ +

aL

nπ
cos
(nπa
L

)]
+

L2

n2π2

[
sinnπ − sin

(nπa
L

)]}
.

After simplifying, this becomes

an =
2h0L

2

n2π2a(L− a)
sin
(nπa
L

)
, n = 1, 2, 3, . . . .

By substituting this result into equation (10.16) above, we obtain the formal solution to this

problem given by

u(x, t) =
2h0L

2

π2a(L− a)

∞∑
n=1

1

n2
sin
(nπa
L

)
cos

(
nπαt

L

)
sin
(nπx
L

)
.

7. If we let α = 1, h(x, t) = tx, L = π, f(x) = sin x, and g(x) = 5 sin 2x − 3 sin 5x, then we see

that this problem has the same form as the problem given in Example 1 on page 627 of the

text. The formal solution to the problem in Example 1 is given in equation (16) on page 628

of the text. Therefore, with the appropriate substitutions, the formal solution to this problem

is

u(x, t) =

∞∑
n=1

an cosnt+ bn sin nt+
1

n

t∫
0

hn(s) sin[n(t− s)] ds

 sin nx . (10.17)

The an’s are shown in equation (14) on page 628 of the text to satisfy

sin x =

∞∑
n=1

an sin nx .

Thus, the only nonzero term in this infinite series is the term for n = 1. Therefore, we see

that a1 = 1 and an = 0 for n �= 1. The bn’s are given in equation (15) on page 628 of the text

and so must satisfy

5 sin 2x− 3 sin 5x =

∞∑
n=1

nbn sin nx ,

which implies that

2b2 = 5 ⇒ b2 =
5

2
and 5b5 = −3 ⇒ b5 = −3

5
,
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and bn = 0 for all other values of n. To calculate the integral given in the formal solution we

must first find the functions hn(t). To do this, we note that in Example 1, the functions hn(t),

n = 1, 2, . . ., are the Fourier sine coefficients for h(x, t) = tx with t fixed. These functions are

given below equation (13) on page 628 of the text. (We will assume proper convergence of

this series.) Thus, we have

hn(t) =
2

π

π∫
0

tx sin nx dx =
2t

π

π∫
0

x sinnx dx

=
2t

π

[
−π
n

cosnπ + 0 +
1

n2
sinnπ − sin 0

]
= −2t

π
cosnπ =

2t

π
(−1)n+1,

n = 1, 2, 3, . . ., where we have used integration by parts to calculate this integral. Substituting

this result into the integral in equation (10.17) above yields

t∫
0

hn(s) sin[n(t− s)] ds =

t∫
0

2s

π
(−1)n+1 sin[n(t− s)] ds

=
2(−1)n+1

n

[
t

n
− sinnt

n2

]
=

2(−1)n+1

n3
(nt− sin nt) ,

where n = 1, 2, 3, . . .. By plugging the an’s, the bn’s, and the result we just found into equation

(10.17), we obtain the formal solution to this problem given by

u(x, t) = cos t sin x+
5

2
sin 2t sin 2x− 3

5
sin 5t sin 5x+

∞∑
n=1

1

n

[
2(−1)n+1

n3
(nt− sin nt)

]
sin nx

= cos t sin x+
5

2
sin 2t sin 2x− 3

5
sin 5t sin 5x+ 2

∞∑
n=1

(−1)n+1

n3

(
t− sinnt

n

)
sinnx .

11. We will assume that a solution to this problem has the form u(x, t) = X(x)T (t). Substituting

this expression into the partial differential equations yields

X(x)T ′′(t) +X(x)T ′(t) +X(x)T (t) = α2X ′′(x)T (t).

Dividing this equation by α2X(x)T (t) yields

T ′′(t) + T ′(t) + T (t)

α2T (t)
=
X ′′(x)
X(x)

.
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Since these two expressions must be equal for all x in (0, L) and all t > 0, they can not vary.

Therefore, they must both equal a constant, say K. This gives us the two ordinary differential

equations

T ′′(t) + T ′(t) + T (t)

α2T (t)
= K ⇒ T ′′(t) + T ′(t) +

(
1 − α2K

)
T (t) = 0 (10.18)

and
X ′′(x)
X(x)

= K ⇒ X ′′(x) −KX(x) = 0. (10.19)

Substituting u(x, t) = X(x)T (t) into the boundary conditions, u(0, t) = u(L, t) = 0, t > 0, we

obtain

X(0)T (t) = 0 = X(L)T (t), t > 0.

Since we are seeking a nontrivial solution to the partial differential equation, we do not want

T (t) ≡ 0. Therefore, for the above equation to be zero, we must have X(0) = X(L) = 0.

Combining this fact with equation (10.19) above yields the boundary value problem given by

X ′′(x) −KX(x) = 0, with X(0) = X(L) = 0.

This problem was solved in Section 10.2 of the text. There we found that for K = −(nπ/L)2,

n = 1, 2, 3, . . ., we obtain nonzero solutions of the form

Xn(x) = An sin
(nπx
L

)
, n = 1, 2, 3, . . . . (10.20)

Plugging these values of K into equation (10.18) above yields the family of linear ordinary

differential equations with constant coefficients given by

T ′′(t) + T ′(t) +

(
1 +

α2n2π2

L2

)
T (t) = 0, n = 1, 2, 3, . . . . (10.21)

The auxiliary equations associated with these ODE’s are

r2 + r +

(
1 +

α2n2π2

L2

)
= 0 .

By using the quadratic formula, we obtain the roots to these auxiliary equations. Thus, we

have

r =

−1 ±
√

1 − 4

(
1 +

α2n2π2

L2

)
2

= −1

2
±

√
L2 − 4L2 − 4α2n2π2

2L
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= −1

2
±

√
3L2 + 4α2n2π2

2L
i , n = 1, 2, 3, . . . .

Hence, the solutions to the linear equations given in equation (10.21) above are

Tn(t) = e−t/2

[
Bn cos

(√
3L2 + 4α2n2π2

2L
t

)
+ Cn sin

(√
3L2 + 4α2n2π2

2L
t

)]
,

for n = 1, 2, 3, . . .. By letting

βn =

√
3L2 + 4α2n2π2

2L
, (10.22)

for n = 1, 2, 3, . . ., this family of solutions can be more easily written as

Tn(t) = e−t/2 [Bn cosβnt+ Cn sin βnt] .

Substituting the solutions we have just found and the solutions given in equation (10.20) above

into u(x, t) = X(x)T (t), yields solutions to the original partial differential equation given by

un(x, t) = Xn(x)Tn(t) = Ane
−t/2 [Bn cosβnt+ Cn sin βnt] sin

(nπx
L

)
, n = 1, 2, 3, . . . .

By the superposition principle, we see that solutions to the PDE will have the form

u(x, t) =
∞∑

n=1

e−t/2 [an cosβnt+ bn sin βnt] sin
(nπx
L

)
,

where βn is given in equation (10.22) above, an = AnBn, and bn = AnCn. To find the

coefficients an and bn, we use the initial conditions u(x, 0) = f(x) and ∂u(x, 0)/∂t = 0.

Therefore, since

∂u(x, t)

∂t
=

∞∑
n=1

{
(−1/2) e−t/2 [an cosβnt+ bn sin βnt]

+e−t/2 [−anβn sin βnt+ bnβn cosβnt]
}

sin
(nπx
L

)
,

we have
∂u(x, 0)

∂t
= 0 =

∞∑
n=1

{
−an

2
+ bnβn

}
sin
(nπx
L

)
.
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Hence, each term in this infinite series must be zero which implies that

−an

2
+ bnβn = 0 ⇒ bn =

an

2βn
, n = 1, 2, 3, . . . .

Thus, we can write

u(x, t) =
∞∑

n=1

ane
−t/2

[
cosβnt+

1

2βn
sin βnt

]
sin
(nπx
L

)
, (10.23)

where βn is given above in equation (10.22). To find the an’s, we use the remaining initial

condition to obtain

u(x, 0) = f(x) =
∞∑

n=1

an sin
(nπx
L

)
.

Therefore, the an’s are the Fourier sine coefficients of f(x) and so satisfy

an =
2

L

L∫
0

f(x) sin
(nπx
L

)
dx . (10.24)

Combining all of these results, we see that a formal solution to the telegraph problem is given

by equation (10.23) where βn and an are given in equation (10.22) and (10.24), respectively.

15. This problem has the form of the problem solved in Example 2 on page 631 of the text with

f(x) = g(x) = x. There it was found that d’Alembert’s formula given in equation (32) on

page 631 of the text is a solution to this problem. By making the appropriate substitutions

in this equation (and noting that f(x+ αt) = x+ αt and f(x− αt) = x− αt), we obtain the

solution

u(x, t) =
1

2
[(x+ αt) + (x− αt)] +

1

2α

x+αt∫
x−αt

s ds = x+
1

2α

[
s2

2

∣∣∣∣x+αt

x−αt

]

= x+
1

4α

[
(x+ αt)2 − (x− αt)2

]
= x+

1

4α
[4αtx] = x+ tx .

EXERCISES 10.7: Laplace’s Equation, page 649

3. To solve this problem using separation of variables, we will assume that a solution has the

form u(x, y) = X(x)Y (y). Making this substitution into the partial differential equation yields

X ′′(x)Y (y) +X(x)Y ′′(y) = 0.
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By dividing the above equation by X(x)Y (y), we obtain

X ′′(x)
X(x)

+
Y ′′(y)
Y (y)

= 0.

Since this equation must be true for 0 < x < π and 0 < y < π, there must be a constant K

such that
X ′′(x)
X(x)

= −Y
′′(y)
Y (y)

= K, 0 < x < π, and 0 < y < π.

This leads to the two ordinary differential equations given by

X ′′(x) −KX(x) = 0 (10.25)

and

Y ′′(y) +KY (y) = 0 (10.26)

By making the substitution u(x, y) = X(x)Y (y) into the first boundary conditions, that is,

u(0, y) = u(π, y) = 0, we obtain

X(0)Y (y) = X(π)Y (y) = 0.

Since we do not want the trivial solution which would be obtained if we let Y (y) ≡ 0, these

boundary conditions imply that

X(0) = X(π) = 0.

Combining these boundary conditions with equation (10.25) above yields the boundary value

problem

X ′′(x) −KX(x) = 0, with X(0) = X(π) = 0.

To solve this problem, we will consider three cases.

Case 1: K = 0. For this case, the differential equation becomesX ′′(x) = 0, which has solutions

X(x) = A+Bx. By applying the first of the boundary conditions, we obtain

X(0) = A = 0 ⇒ X(x) = Bx.

The second boundary condition yields

X(π) = Bπ = 0 ⇒ B = 0.
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Thus, in this case we obtain only the trivial solution.

Case 2: K > 0. In this case, the auxiliary equation associated with this differential equation

is r2 −K = 0, which has the real roots r = ±√
K. Thus, solutions to this problem are given

by

X(x) = Ae
√

Kx +Be−
√

Kx.

Applying the boundary conditions yields

X(0) = A +B = 0 ⇒ A = −B ⇒ X(x) = −Be
√

Kx +Be−
√

Kx

and

X(π) = −Be
√

Kπ +Be−
√

Kπ = 0 ⇒ −B
(
e2

√
Kπ − 1

)
= 0.

This last expression is true only if K = 0 or if B = 0. Since we are assuming that K > 0, we

must have B = 0 which means that A = −B = 0. Therefore, in this case we again find only

the trivial solution.

Case 3: K < 0. The auxiliary equation associated with the differential equation in this case

has the complex valued roots r = ±√−Ki, (where −K > 0). Therefore, solutions to the

ODE for this case are given by

X(x) = A cos
(√−Kx

)
+B sin

(√−Kx
)
.

By applying the boundary conditions, we obtain

X(0) = A = 0 ⇒ X(x) = B sin
(√−Kx

)
and

X(π) = B sin
(√−Kπ

)
= 0 ⇒ √−K = n ⇒ K = −n2, n = 1, 2, 3, . . . ,

where we have assumed that B �= 0 since this would lead to the trivial solution. Therefore,

nontrivial solutions Xn(x) = Bn sinnx are obtained when K = −n2, n = 1, 2, 3 . . . .
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To solve the differential equation given in equation (10.26) above, we use these values for K.

This yields the family of linear ordinary differential equations given by

Y ′′(y) − n2Y (y) = 0, n = 1, 2, 3, . . . .

The auxiliary equations associated with these ODE’s are r2 − n2 = 0, which have the real

roots r = ±n, n = 1, 2, 3, . . .. Hence, the solutions to this family of differential equations are

given by

Yn(y) = Cne
ny +Dne

−ny , n = 1, 2, 3, . . . .

With the substitutions K1n = Cn +Dn and K2n = Cn −Dn, so that

Cn =
K1n +K2n

2
, and Dn =

K1n −K2n

2
,

we see that these solutions can be written as

Yn(y) =
K1n +K2n

2
eny +

K1n −K2n

2
e−ny

= K1n
eny + e−ny

2
+K2n

eny − e−ny

2
= K1n cosh ny +K2n sinh ny .

This last expression can in turn be written as

Yn(y) = An sinh (ny + En) ,

where An = K2
2n −K2

1n and En = tanh−1 (K1n/K2n). (See Problem 18.)

The last boundary condition u(x, π) = X(x)Y (π) = 0 implies that Y (π) = 0(since we do

not want the trivial solution). Therefore, by substituting π into the solutions just found, we

obtain

Yn(π) = An sinh (nπ + En) .

Since we do not want An = 0, this implies that sinh (nπ + En) = 0. This will be true only if

nπ + En = 0 or in other words if En = −nπ. Substituting these expressions for En into the

family of solutions we found for Y (y), yields

Yn(y) = An sinh (ny − nπ) .
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Therefore, substituting the solutions just found for X(x) and Y (y) into un(x, y) = Xn(x)Yn(y)

we see that

un(x, y) = an sin nx sinh(ny − nπ),

where an = AnBn. By the superposition principle, a formal solution to the original partial

differential equation is given by

u(x, y) =
∞∑

n=1

un(x, y) =
∞∑

n=1

an sin nx sinh(ny − nπ). (10.27)

In order to find an expression for the coefficients an, we will apply the remaining boundary

condition, u(x, 0) = f(x). From this condition, we obtain

u(x, 0) = f(x) =
∞∑

n=1

an sin nx sinh(−nπ),

which implies that an sinh(−nπ) are the coefficients of the Fourier sine series of f(x). There-

fore, by equation (7) on page 609 of the text, we see that (with T = π)

an sinh(−nπ) =
2

π

π∫
0

f(x) sinnx dx ⇒ an =
2

π sinh(−nπ)

π∫
0

f(x) sinnx dx .

Thus, a formal solution to this ODE is given in equation (10.27) with the an’s given by the

equation above.

5. This problem has two nonhomogeneous boundary conditions, and, therefore, we will solve two

PDE problems, one for each of these boundary conditions. These problems are

∂2u

∂x2
+
∂2u

∂y2
= 0, 0 < x < π, 0 < y < 1;

∂u(0, y)

∂x
=
∂u(π, y)

∂x
= 0, 0 ≤ y ≤ 1,

u(x, 0) = cosx− cos 3x, u(x, 1) = 0, 0 ≤ x ≤ π ,

and

∂2u

∂x2
+
∂2u

∂y2
= 0, 0 < x < π, 0 < y < 1;
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∂u(0, y)

∂x
=
∂u(π, y)

∂x
= 0, 0 ≤ y ≤ 1,

u(x, 0) = 0, u(x, 1) = cos 2x, 0 ≤ x ≤ π .

If u1 and u2 are solutions to the first and second problems, respectively, then u = u1 +u2 will

be a solution to the original problem. To see this notice that

∂2u

∂x2
+
∂2u

∂y2
=

(
∂2u1

∂x2
+
∂2u2

∂x2

)
+

(
∂2u1

∂y2
+
∂2u2

∂y2

)
=

(
∂2u1

∂x2
+
∂2u1

∂y2

)
+

(
∂2u2

∂x2
+
∂2u2

∂y2

)
= 0 + 0 = 0,

∂u(0, y)

∂x
=
∂u1(0, y)

∂x
+
∂u2(0, y)

∂x
= 0 + 0 = 0,

∂u(π, y)

∂x
=
∂u1(π, y)

∂x
+
∂u2(π, y)

∂x
= 0 + 0 = 0,

u(x, 0) = u1(x, 0) + u2(x, 0) = cosx− cos 3x+ 0 = cosx− cos 3x ,

u(x, 1) = u1(x, 1) + u2(x, 1) = 0 + cos 2x = cos 2x .

This is an application of the superposition principle.

The first of these two problems has the form of the problem given in Example 1 on page 639

of the text with a = π, b = 1, and f(x) = cos x− cos 3x. A formal solution to this problem is

given in equation (10) on page 641 of the text. Thus, by making the appropriate substitutions,

we find that a formal solution to the first problem is

u1(x, y) = E0(y − 1) +
∞∑

n=1

En cosnx sinh(ny − n).

To find the coefficients En, we use the nonhomogeneous boundary condition

u(x, 0) = cos x− cos 3x .

Thus, we have

u1(x, 0) = cosx− cos 3x = −E0 +

∞∑
n=1

En cosnx sinh(−n).
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From this we see that for n = 1,

E1 sinh(−1) = 1 ⇒ E1 =
1

sinh(−1)

and for n = 3,

E3 sinh(−3) = −1 ⇒ E1 =
−1

sinh(−3)
.

For all other values of n, En = 0. By substituting these values into the expression found above

for u1, we obtain the formal solution to the first of our two problems given by

u1(x, y) =
cosx sinh(y − 1)

sinh(−1)
− cos 3x sinh(3y − 3)

sinh(−3)
. (10.28)

To solve the second of our problems, we note that, except for the last two boundary conditions,

it is similar to the problem solved in Example 1 on page 639 of the text. As in that example,

using the separation of variables technique, we find that the ODE

X ′′(x) −KX(x) = 0, X ′(0) = X ′(π) = 0,

has solutions Xn(x) = an cosnx, when K = −n2, n = 1, 2, 3, . . . . By substituting these values

for K into the ODE

Y ′′(y) +KY (y) = 0,

we again find that a family solutions to this differential equation is given by

Y0(y) = A0 +B0y,

Yn(y) = Cn sinh [n (y +Dn)] , n = 1, 2, 3 . . . .

At this point, the problem we are solving differs from the example. The boundary condition

u(x, 0) = X(x)Y (0) = 0, 0 ≤ x ≤ π, implies that Y (0) = 0 (since we don’t want the trivial

solution). Therefore, applying this boundary condition to each of the solutions found above

yields

Y0(0) = A0 + 0 = 0 ⇒ A0 = 0,

Yn(0) = Cn sinh (nDn) = 0 ⇒ Dn = 0,
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where we have used the fact that sinh x = 0 only when x = 0. By substituting these results

into the solutions found above, we obtain

Y0(y) = B0y,

Yn(y) = Cn sinhny, n = 1, 2, 3 . . . .

Combining these solutions with the solutions Xn(x) = an cosnx yields

u2,0(x, y) = X0(x)Y0(y) = a0B0y cos 0 = E0y ,

u2,n(x, y) = Xn(x)Yn(y) = anCn cosnx sinh ny = En cosnx sinh ny ,

where E0 = a0B0 and En = anCn. Thus, by the superposition principle, we find that a formal

solution to the second problem is given by

u2(x, y) = E0y +
∞∑

n=1

En cosnx sinh ny .

By applying the last boundary condition of this second problem, namely u(x, 1) = cos 2x, to

these solutions, we see that

u2(x, 1) = E0 +

∞∑
n=1

En cosnx sinh n = cos 2x ..

Therefore, when n = 2,

E2 sinh 2 = 1 ⇒ E2 =
1

sinh 2
,

and for all other values of n, En = 0. By substituting these coefficients into the solution

u2(x, y) that we found above, we obtain the formal solution to this second problem

u2(x, y) =
cos 2x sinh 2y

sinh 2
.

By the superposition principle (as noted at the beginning of this problem), a formal solution

to the original partial differential equation is the sum of this solution and the solution given

in equation (10.28). Thus, the solution that we seek is

u(x, y) =
cosx sinh(y − 1)

sinh(−1)
− cos 3x sinh(3y − 3)

sinh(−3)
+

cos 2x sinh 2y

sinh 2
.
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11. In this problem, the technique of separation of variables, as in Example 2 on page 642 of the

text, leads to the two ODE’s

r2R′′(r) + rR′(r) − λR(r) = 0 and T ′′(θ) + λT (θ) = 0.

Again, as in Example 2, we require the solution u(r, θ) to be continuous on its domain.

Therefore, T (θ) must again be periodic with period 2π. This implies that T (−π) = T (π) and

T ′(−π) = T ′(π). Thus, as in Example 2, a family of solutions for the second ODE above

which satisfies these periodic boundary conditions is

T0(θ) = B and Tn(θ) = An cosnθ +Bn sinnθ , n = 1, 2, 3, . . . .

In solving this problem, it was found that λ = n2, n = 0, 1, 2 . . .. Again, as in Example 2,

substituting these values for λ into the first ODE above leads to the solutions

R0(r) = C +D ln r and Rn(r) = Cnr
n +Dnr

−n , n = 1, 2, 3, . . . .

Here, however, we are not concerned with what happens when r = 0. By our assumption that

u(r, θ) = R(r)T (θ), we see that solutions of the PDE given in this problem will have the form

u0(r, θ) = B(C +D ln r) and un(r, θ) =
(
Cnr

n +Dnr
−n
)
(An cosnθ +Bn sin nθ) ,

where n = 1, 2, 3, . . .. Thus, by the superposition principle, we see that a formal solution to

this Dirichlet problem is given by

u(r, θ) = BC +BD ln r +
∞∑

n=1

(
Cnr

n +Dnr
−n
)
(An cosnθ +Bn sinnθ) ,

or

u(r, θ) = a+ b ln r +
∞∑

n=1

[(
cnr

n + enr
−n
)
cosnθ +

(
dnr

n + fnr
−n
)
sinnθ

]
, (10.29)

where a = BC, b = BD, cn = CnAn, en = DnAn, dn = CnBn, and fn = DnBn. To find these

coefficients, we apply the boundary conditions u(1, θ) = sin 4θ − cos θ, and u(2, θ) = sin θ,

−π ≤ θ ≤ π. From the first boundary condition, we see that

u(1, θ) = a +

∞∑
n=1

[(cn + en) cosnθ + (dn + fn) sin nθ] = sin 4θ − cos θ,
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which implies that a = 0, d4 + f4 = 1, c1 + e1 = −1, and for all other values of n, cn + en = 0

and dn + fn = 0. From the second boundary condition, we have

u(2, θ) = a+ b ln 2 +

∞∑
n=1

[(
cn2n + en2−n

)
cos nθ +

(
dn2n + fn2−n

)
sin nθ

]
= sin θ,

which implies that a = 0, b = 0, 2d1+2−1f1 = 1, and for all other values of n, 2nc1+2−ne1 = 0

and 2nd1 + 2−nf1 = 0. By combining these results, we obtain a = 0, b = 0, and the three

systems of two equations in two unknowns given by

d4 + f4 = 1,

24d4 + 2−4f4 = 0
and

c1 + e1 = −1,

2c1 + 2−1e1 = 0
and

d1 + f1 = 0,

2d1 + 2−1f1 = 1,

(where the first equation in each system was derived from the first boundary condition and

the second equation in each system was derived from the second boundary condition), and

for all other values of n, cn = 0 , en = 0, dn = 0, fn = 0. Solving each system of equations

simultaneously yields

d4 = − 1

255
, f4 = −256

255
, c1 =

1

3
, e1 = −4

3
, d1 =

2

3
, f1 = −2

3
.

By substituting these values for the coefficients into equation (10.29) above, we find that a

solution to this Dirichlet problem is given by

u(r, θ) =

(
1

3
r − 4

3
r−1

)
cos θ +

(
2

3
r − 2

3
r−1

)
sin θ +

(
− 1

255
r4 − 256

255
r−4

)
sin 4θ .

15. Here, as in Example 2 on page 642 of the text, the technique of separation of variables leads

to the two ODE’s given by

r2R′′(r) + rR′(r) − λR(r) = 0 and T ′′(θ) + λT (θ) = 0.

Since we want to avoid the trivial solution, the boundary condition u(r, 0) = R(r)T (0) = 0

implies that T (0) = 0 and the boundary condition u(r, π) = R(r)T (π) = 0 implies that

T (π) = 0. Therefore, we seek a nontrivial solution to the ODE

T ′′(θ) + λT (θ) = 0, with T (0) = 0 and T (π) = 0. (10.30)
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To do this we will consider three cases for λ.

Case 1: λ = 0. This case leads to the differential equation T ′′(θ) = 0, which has solutions

T (θ) = Aθ+B. Applying the first boundary condition yields 0 = T (0) = B. Thus, T (θ) = Aθ.

The second boundary condition implies that 0 = T (π) = Aπ. Hence, A = 0. Therefore, in

this case we find only the trivial solution.

Case 2: λ < 0. In this case, the auxiliary equation associated with the linear differential equa-

tion given in equation (10.30) above is r2 +λ = 0, which has the real roots r = ±√−λ (where

−λ > 0). Thus, the solution to this differential equation has the form

T (θ) = C1e
√−λθ + C2e

−√−λθ .

Applying the first boundary condition yields

0 = T (0) = C1 + C2 ⇒ C1 = −C2 ⇒ T (θ) = −C2e
√−λθ + C2e

−√−λθ .

From the second boundary condition, we obtain

0 = T (π) = C2

(
−e

√−λπ + e−
√−λπ

)
⇒ C2

(
e2

√−λπ − 1
)

= 0.

Since we are assuming that λ < 0, the only way that this last expression can be zero is for

C2 = 0. Thus, C1 = −C2 = 0 and we again obtain the trivial solution.

Case 3: λ > 0. In this case, the roots to the auxiliary equation associated with this differential

equation are r = ±√
λi. Therefore, the solution to the differential equation given in equation

(10.30) is

T (θ) = C1 sin
√
λθ + C2 cos

√
λθ.

From the boundary conditions, we see that

0 = T (0) = C2 ⇒ T (θ) = C1 sin
√
λθ ,

and

0 = T (π) = C1 sin
√
λπ .
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Since we do not want the trivial solution, this last boundary condition yields sin
√
λπ = 0.

This will be true if
√
λ = n or, in other words, if λ = n2, n = 1, 2, 3, . . .. With these values

for λ, we find nontrivial solution for the differential equation given in equation (10.30) above

to be

Tn(θ) = Bn sinnθ , n = 1, 2, 3, . . . .

Substituting the values for λ that we have just found into the differential equation

r2R′′(r) + rR′(r) − λR(r) = 0,

yields the ODE

r2R′′(r) + rR′(r) − n2R(r) = 0, n = 1, 2, 3, . . . .

This is the same Cauchy-Euler equation that was solved in Example 2 on page 642 of the

text. There it was found that the solutions have the form

Rn(r) = Cnr
n +Dnr

−n , n = 1, 2, 3, . . . .

Since we require that u(r, θ) to be bounded on its domain, we see that u(r, θ) = R(r)T (θ)

must be bounded about r = 0. This implies that R(θ) must be bounded. Therefore, Dn = 0

and so the solutions to this Cauchy-Euler equation are given by

Rn(r) = Cnr
n , n = 1, 2, 3, . . . .

Since we have assumed that u(r, θ) = R(r)T (θ), we see that formal solutions to the original

partial differential equation are

un(r, θ) = BnCnr
n sin nθ = cnr

n sinnθ ,

where cn = BnCn. Therefore, by the superposition principle, we obtain the formal solutions

to this Dirichlet problem

u(r, θ) =
∞∑

n=1

cnr
n sin nθ .

The final boundary condition yields

u(1, θ) = sin 3θ =

∞∑
n=1

cn sinnθ .
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This implies that c3 = 1 and for all other values of n, cn = 0. Substituting these values for the

coefficients into the formal solution found above, yields the solution to this Dirichlet problem

on the half disk

u(r, θ) = r3 sin 3θ .

17. As in Example 2 on page 642 of the text, we solve this problem by separation of variables.

There it was found that we must solve the two ordinary differential equations

r2R′′(r) + rR′(r) − λR(r) = 0, (10.31)

and

T ′′(θ) + λT (θ) = 0 with T (π) = T (nπ) and T ′(π) = T ′(nπ). (10.32)

In Example 2, we found that when λ = n2, n = 0, 1, 2, . . ., the linear differential equation

given in equation (10.32) has nontrivial solutions of the form

Tn(θ) = An cos nθ +Bn sinnθ , n = 0, 1, 2, . . . ,

and equation (10.31) has solutions of the form

R0(r) = C +D ln r and Rn(r) = Cnr
n +Dnr

−n , n = 1, 2, 3, . . . .

(Note that here we are not concerned with what happens to u(r, θ) around r = 0.) Thus,

since we are assuming that u(r, θ) = R(r)T (θ), we see that solutions to the original partial

differential equation will be given by

u0(r, θ) = A0(C +D ln r) = a0 + b0 ln r,

and

un(r, θ) =
(
Cnr

n +Dnr
−n
)
(An cosnθ +Bn sinnθ)

=
(
anr

n + bnr
−n
)
cosnθ +

(
cnr

n + dnr
−n
)
sin nθ ,
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where a0 = A0C, b0 = A0D, an = CnAn, bn = DnAn, cn = CnBn, and dn = DnBn. Thus, by

the superposition principle, we see that a formal solution to the partial differential equation

given in this problem will have the form

u(r, θ) = a0 + b0 ln r +
∞∑

n=1

[(
anr

n + bnr
−n
)
cos nθ +

(
cnr

n + dnr
−n
)
sinnθ

]
. (10.33)

By applying the first boundary condition, we obtain

u(1, θ) = f(θ) = a0 +

∞∑
n=1

[(an + bn) cosnθ + (cn + dn) sinnθ] ,

where we have used the fact that ln 1 = 0. Comparing this equation with equation (8) on

page 594 of the text, we see that a0, (an + bn), and (cn + dn) are the Fourier coefficients of

f(θ) (with T = π). Therefore, by equations (9) and (10) on that same page we see that

a0 =
1

2π

π∫
−π

f(θ) dθ ,

an + bn =
1

π

π∫
−π

f(θ) cosnθ dθ , (10.34)

cn + dn =
1

π

π∫
−π

f(θ) sinnθ dθ , n = 1, 2, 3 . . . .

To apply the last boundary condition, we must find ∂u/∂r. Hence, we find

∂u(r, θ)

∂r
=
b0
r

+

∞∑
n=1

[(
annr

n−1 − bnnr
−n−1

)
cosnθ +

(
cnnr

n−1 − dnnr
−n−1

)
sinnθ

]
.

Applying the last boundary condition yields

∂u(3, θ)

∂r
= g(θ) =

b0
3

+

∞∑
n=1

[(
ann3n−1 − bnn3−n−1

)
cos nθ +

(
cnn3n−1 − dnn3−n−1

)
sinnθ

]
.

Again by comparing this to equation (8) on page 594 of the text, we see that

b0
3
,

(
n3n−1an − n3−n−1bn

)
, and

(
n3n−1cn − n3−n−1dn

)
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are the Fourier coefficients of g(θ) (with T = π). Thus, by equations (9) and (10) on that

same page of the text, we see that

b0 =
3

2π

π∫
−π

g(θ) dθ ,

n3n−1an − n3−n−1bn =
1

π

π∫
−π

g(θ) cosnθ dθ , (10.35)

n3n−1cn − n3−n−1dn =
1

π

π∫
−π

g(θ) sinnθ dθ , n = 1, 2, 3 . . . .

Therefore, the formal solution to this partial differential equation will be given by equation

(10.33) with the coefficients given by equations (10.34) and (10.35).
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CHAPTER 11: Eigenvalue Problems and
Sturm-Liouville Equations

EXERCISES 11.2: Eigenvalues and Eigenfunctions, page 671

1. The auxiliary equation for this problem is r2 + 2r + 26 = 0, which has roots r = −1 ± 5i.

Hence a general solution to the differential equation y′′ + 2y′ + 26y = 0 is given by

y(x) = C1e
−x cos 5x+ C2e

−x sin 5x.

We will now try to determine C1 and C2 so that the boundary conditions are satisfied. Setting

x = 0 and x = π, we find

y(0) = C1 = 1, y(π) = −C1e
−π = −e−π.

Both boundary conditions yield the same result, C1 = 1. Hence, there is a one parameter

family of solutions,

y(x) = e−x cos 5x+ C2e
−x sin 5x.,

where C2 is arbitrary.

13. First note that the auxiliary equation for this problem is r2+λ = 0. To find eigenvalues which

yield nontrivial solutions we will consider the three cases λ < 0, λ = 0, and λ > 0.

Case 1. λ < 0: In this case the roots to the auxiliary equation are ±√−λ (where we note that

−λ is a positive number). Therefore, a general solution to the differential equation y′′+λy = 0

is given by

y(x) = C1e
√−λx + C2e

−√−λx .

By applying the first boundary condition, we obtain

y(0) = C1 + C2 = 0 ⇒ C2 = −C1 .
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Thus

y(x) = C1

(
e
√−λx − e−

√−λx
)
.

In order to apply the second boundary conditions, we need to find y′(x). Thus, we have

y(x) = C1

√−λ
(
e
√−λx + e−

√−λx
)
.

Thus

y(1) = C1

√−λ
(
e
√−λ + e−

√−λ
)

= 0. (11.1)

Since
√−λ > 0 and e

√−λ + e−
√−λ �= 0, the only way that equation (11.1) can be true is for

C1 = 0. So in this case we have only the trivial solution. Thus, there are no eigenvalues for

λ < 0.

Case 2. λ = 0: In this case we are solving the differential equation y′′ = 0. This equation has

a general solution given by

y(x) = C1 + C2x ⇒ y′(x) = C2 .

By applying the boundary conditions, we obtain

y(0) = C1 = 0 and y′(1) = C1 = 0.

Thus C1 = C2 = 0, and zero is not an eigenvalue.

Case 3. λ > 0: In this case the roots to the associated auxiliary equation are r = ±√
λi.

Therefore, the general solution is given by

y(x) = C1 cos
(√

λx
)

+ C2 sin
(√

λx
)
.

By applying the first boundary condition, we obtain

y(0) = C1 = 0 ⇒ y(x) = C2 sin
(√

λx
)
.

In order to apply the second boundary conditions we need to find y′(x). Thus, we have

y′(x) = C2

√
λ cos

(√
λx
)
,
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and so

y′(1) = C2

√
λ cos

(√
λ
)

= 0.

Therefore, in order to obtain a solution other than the trivial solution, we must have

cos
(√

λ
)

= 0 ⇒
√
λ =

(
n +

1

2

)
π, n = 0, 1, 2, . . .

⇒ λn =

(
n+

1

2

)2

π2 , n = 0, 1, 2, . . . .

For the eigenvalue λn, we have the corresponding eigenfunctions,

yn(x) = Cn sin

[(
n+

1

2

)
πx

]
, n = 0, 1, 2, . . . ,

where Cn is an arbitrary nonzero constant.

19. The equation (xy′)′ + λx−1y = 0 can be rewritten as the Cauchy-Euler equation

x2y′′ + xy′ + λy = 0, x > 0. (11.2)

Substituting y = xr gives r2 + λ = 0 as the auxiliary equation for (11.2). Again we will

consider the three cases λ < 0, λ = 0, and λ > 0.

Case 1. λ < 0: Let λ = −µ2, for µ > 0. The roots of the auxiliary equation are r = ±µ and

so a general solution to (11.2) is

y(x) = C1x
µ + C2x

−µ.

We first find y′(x).

y′(x) = C1µx
µ−1 − C2µx

−µ−1 = µ
(
C1x

µ−1 − C2x
−µ−1

)
.

Substituting into the first boundary condition gives

y′(1) = µ (C1 − C2) = 0.

Since µ > 0,

C1 − C2 = 0 ⇒ C1 = C2 ⇒ y(x) = C1

(
xµ + x−µ

)
.
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Substituting this into the second condition yields

y (eπ) = C1

(
eµπ + e−µπ

)
= 0. (11.3)

Since eµπ + e−µπ �= 0 the only way that equation (11.3) can be true is for C1 = 0. So in this

case we have only the trivial solution. Thus, there is no eigenvalue for λ < 0.

Case 2. λ = 0: In this case we are solving the differential equation (xy′)′ = 0. This equation

can be solved as follows:

xy′ = C1 ⇒ y′ =
C1

x
⇒ y(x) = C2 + C1 lnx .

By applying the boundary conditions, we obtain

y′(1) = C1 = 0 and y (eπ) = C2 + C1 ln (eπ) = C2 + C1π = 0.

Solving these equations simultaneously yields C1 = C2 = 0. Thus, we again find only the

trivial solution. Therefore, λ = 0 is not an eigenvalue.

Case 3. λ > 0: Let λ = µ2, for µ > 0. The roots of the auxiliary equation are r = ±µi and so

a general solution (11.2) is

y(x) = C1 cos (µ lnx) + C2 sin (µ lnx) .

We next find y′(x).

y′(x) = −C1

(µ
x

)
sin (µ lnx) + C2

(µ
x

)
cos (µ lnx) .

By applying the first boundary condition, we obtain

y′(1) = C2µ = 0 ⇒ C2 = 0.

Applying the second boundary condition, we obtain

y (eπ) = C1 cos (µ ln(eπ)) = C1 cos (µπ) = 0.

Therefore, in order to obtain a solution other than the trivial solution, we must have

cos (µπ) = 0 ⇒ µπ =

(
n+

1

2

)
π n = 0, 1, 2, . . .
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⇒ µ = n+
1

2
⇒ λn =

(
n+

1

2

)2

, n = 0, 1, 2, . . . .

Corresponding to the eigenvalues, λn’s, we have the eigenfunctions.

yn(x) = Cn cos

[(
n+

1

2

)
ln x

]
, n = 0, 1, 2, . . . ,

where Cn is an arbitrary nonzero constant.

25. As in Problem 13, the auxiliary equation for this problem is r2 + λ = 0. To find eigenvalues

which yield nontrivial solutions we will consider the three cases λ < 0, λ = 0, and λ > 0.

Case 1. λ < 0: The roots of the auxiliary equation are r = ±√−λ and so a general solution

to the differential equation y′′ + λy = 0 is given by

y(x) = C1e
√−λx + C2e

−√−λx .

By applying the first boundary condition we obtain

y(0) = C1 + C2 = 0 ⇒ C2 = −C1 .

Thus

y(x) = C1

(
e
√−λx − e−

√−λx
)
.

Applying the second boundary conditions yields

y
(
1 + λ2

)
= C1

(
e
√−λ(1+λ2) − e−

√−λ(1+λ2)
)

= 0.

Multiplying by e
√−λ(1+λ2) yields

C1

(
e2

√−λ(1+λ2) − 1
)

= 0.

Now either C1 = 0 or

e2
√−λ(1+λ2) = 1 ⇒ √−λ(1 + λ2) = 0 ⇒ √−λ = 0.

Since λ < 0, we must have C1 = 0 and hence there are no eigenvalues for λ < 0.
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Case 2. λ = 0: In this case we are solving the differential equation y′′ = 0. This equation has

a general solution given by

y(x) = C1 + C2x.

By applying the boundary conditions, we obtain

y(0) = C1 = 0 and y
(
1 + λ2

)
= C1 + C2

(
1 + λ2

)
= 0.

Solving these equations simultaneously yields C1 = C2 = 0. Thus, we find that is λ = 0 not

an eigenvalue.

Case 3. λ > 0: The roots of the auxiliary equation are r = ±√
λi and so a general solution is

y(x) = C1 cos
(√

λx
)

+ C2 sin
(√

λx
)
.

Substituting in the first boundary condition yields

y(0) = C1 cos
(√

λ · 0
)

+ C2 sin
(√

λ · 0
)

= C1 = 0.

By applying the second boundary condition to y(x) = C2 sin
(√

λx
)
, we obtain

y
(
1 + λ2

)
= C2 sin

(√
λ(1 + λ2)

)
= 0.

Therefore, in order to obtain a solution other than the trivial solution, we must have

sin
(√

λ(1 + λ2)
)

= 0 ⇒
√
λ(1 + λ2) = nπ, n = 1, 2, 3, . . . .

Hence choose the eigenvalues λn, n = 1, 2, 3, . . . , such that
√
λn(1 + λ2

n) = nπ; and the

corresponding eigenfunctions are

yn(x) = Cn sin
(√

λnx
)
, n = 1, 2, 3, . . . ,

where the Cn’s are arbitrary nonzero constants.

33. (a) We assume that u(x, t) = X(x)T (t). Then

utt = X(x)T ′′(t), ux = X ′(x)T (t), and uxx = X ′′(x)T (t).
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Substituting these functions into utt = uxx + 2ux, we obtain

X(x)T ′′(t) = X ′′(x)T (t) + 2X ′(x)T (t).

Separating variables yields

X ′′(x) + 2X ′(x)
X(x)

= −λ =
T ′′(t)
T (t)

, (11.4)

where λ is some constant. The first equation in (11.4) gives

X ′′(x) + 2X ′(x) + λX(x) = 0.

Let’s now consider the boundary conditions. From u(0, t) = 0 and u(π, t) = 0, t > 0, we

conclude that

X(0)T (t) = 0 and X(π)T (t) = 0, t > 0.

Hence either T (t) = 0 for all t > 0, which implies u(x, t) ≡ 0, or

X(0) = X(π) = 0.

Ignoring the trivial solution u(x, t) ≡ 0, we obtain the boundary value problem

X ′′(x) + 2X ′(x) + λX(x) = 0, X(0) = X(π) = 0.

(b) The auxiliary equation for this problem, r2 + 2r + λ = 0, has roots r = −1 ± √
1 − λ.

To find eigenvalues which yield nontrivial solutions, we will consider the three cases

1 − λ < 0, 1 − λ = 0, and 1 − λ > 0.

Case 1, 1 − λ < 0 (λ > 1): Let µ =
√−(1 − λ) =

√
λ− 1. In this case the roots to the

auxiliary equation are r = −1 ± µi (where µ is a positive number). Therefore, a general

solution to the differential equation is given by

X(x) = C1e
−x cosµx+ C2e

−x sinµx.

By applying the boundary conditions, we obtain

X(0) = C1 = 0 and X(π) = e−π (C1 cosµπ + C2 sinµπ) = 0 .
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Solving these equations simultaneously yields C1 = 0 and C2 sinµπ = 0. Therefore, in

order to obtain a solution other than the trivial solution, we must have

sinµπ = 0 ⇒ µπ = nπ ⇒ µ = n, n = 1, 2, 3, . . . .

Since µ =
√
λ− 1,

√
λ− 1 = n ⇒ λ = n2 + 1, n = 1, 2, 3, . . . .

Thus the eigenvalues are given by

λn = n2 + 1, n = 1, 2, 3, . . . .

Corresponding to the eigenvalue λn, we obtain the solutions

Xn(x) = Cne
−x sinnx, n = 1, 2, 3, . . . ,

where Cn �= 0 is arbitrary.

Case 2, 1 − λ = 0 (λ = 1): In this case the associated auxiliary equation has double root

r = −1. Therefore, the general solution is given by

X(x) = C1e
−x + C2xe

−x.

By applying the boundary conditions we obtain

X(0) = C1 = 0 and X(π) = e−π (C1 + C2π) = 0 .

Solving these equations simultaneously yields C1 = C2 = 0. So in this case we have only

the trivial solution. Thus, λ = 1 is not an eigenvalue.

Case 3, 1 − λ > 0 (λ < 1): Let µ =
√

1 − λ. In this case the roots to the auxiliary

equation are r = −1 ± µ (where µ is a positive number). Therefore, a general solution

to the differential equation is given by

X(x) = C1e
(−1−µ)x + C2e

(−1+µ)x .
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By applying the first boundary condition we find

X(0) = C1 + C2 = 0 ⇒ C2 = −C1 .

So we can express X(x) as

X(x) = C1

[
e(−1−µ)x − e(−1+µ)x

]
.

Thus the second condition gives us

X(π) = C1

[
e(−1−µ)π − e(−1+µ)π

]
.

Since e(−1−µ)π − e(−1+µ)π �= 0, C1 = 0, and again in this case we have only the trivial

solution. Thus, there are no eigenvalues for λ < 1.

Therefore, the eigenvalues are λn = n2 +1, n = 1, 2, 3, . . . , with corresponding eigenfunc-

tions Xn(x) = Cne
−x sin nx, n = 1, 2, 3, . . . , where Cn is an arbitrary nonzero constant.

EXERCISES 11.3: Regular Sturm-Liouville Boundary Value Problems, page 682

3. Here A2 = x(1 − x) and A1 = −2x. Using formula (4) on page 673 of the text, we find

µ(x) =
1

x(1 − x)
e
∫

[A1(x)/A2(x)]dx =
1

x(1 − x)
e
∫
[−2x/x(1−x)]dx =

1

x(1 − x)
e−2

∫
dx/(1−x)

=
1

x(1 − x)
e2 ln(1−x) =

1

x(1 − x)
(1 − x)2 =

1 − x

x
.

Multiplying the original equation by µ(x) = (1 − x)/x, we get

(1 − x)2y′′(x) − 2(1 − x)y′(x) + λ
1 − x

x
y(x) = 0

⇒ [
(1 − x)2y′(x)

]′
+ λ

1 − x

x
y(x) = 0.

9. Here we consider the linear differential operator L[y] := y′′+λy; y(0) = −y(π), y′(0) = −y′(π).

We must show that

(u, L[v]) = (L[u], v),
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where u(x) and v(x) are any functions in the domain of L. Now

(u, L[v]) =

π∫
0

u(x) [v′′(x) + λv(x)] dx =

π∫
0

u(x)v′′(x) dx+ λ

π∫
0

u(x)v(x) dx

and

(L[u], v) =

π∫
0

[u′′(x) + λu(x)] v(x) dx =

π∫
0

u′′(x)v(x) dx+ λ

π∫
0

u(x)v(x)dx.

Hence it suffices to show that
π∫
0

u(x)v′′(x) dx =
π∫
0

u′′(x)v(x) dx. To do this we start with

π∫
0

u′′(x)v(x) dx and integrate by parts twice. Doing this we obtain

π∫
0

u′′(x)v(x) dx = u′(x)v(x)
∣∣π
0
−u(x)v′(x) ∣∣π

0
+

π∫
0

u(x)v′′(x) dx.

Hence, we just need to show u′(x)v(x)
∣∣π
0
−u(x)v′(x) ∣∣π

0
= 0. Expanding gives

u′(x)v(x)
∣∣π
0
−u(x)v′(x) ∣∣π

0
= u′(π)v(π) − u′(0)v(0) − u(π)v′(π) + u(0)v′(0).

Since u is in the domain of L, we have u(0) = −u(π), and u′(0) = −u′(π). Hence,

u′(x)v(x)
∣∣π
0
−u(x)v′(x) ∣∣π

0
= u′(π) [v(π) + v(0)] − u(π) [v′(π) + v′(0)] .

But v also lies in the domain of L and hence v(0) = −v(π) and v′(0) = −v′(π). This makes

the expressions in the brackets zero and we have u′(x)v(x)
∣∣π
0
−u(x)v′(x) ∣∣π

0
= 0.

Therefore, L is selfadjoint.

17. In Problem 13 of Section 11.2, we found the eigenvalues to be

λn =

(
n+

1

2

)2

π2, n = 0, 1, 2, . . .

with the corresponding eigenfunctions

yn(x) = Cn sin

[(
n+

1

2

)
πx

]
, n = 0, 1, 2, . . . ,

where Cn is an arbitrary nonzero constant.
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(a) We need only to choose the Cn so that

1∫
0

C2
n sin2

[(
n+

1

2

)
πx

]
dx = 1.

We compute

1∫
0

C2
n sin2

[(
n +

1

2

)
πx

]
dx =

1

2
C2

n

1∫
0

(1 − cos [(2n+ 1)πx]) dx

=
1

2
C2

n

(
x− 1

(2n+ 1)π
sin [(2n+ 1)πx]

)∣∣∣∣1
0

=
1

2
C2

n .

Hence, we can take Cn =
√

2 which gives{√
2 sin

[(
n+

1

2

)
πx

]}∞

n=0

,

as an orthonormal system of eigenfunctions.

(b) To obtain the eigenfunction expansion for f(x) = x, we use formula (25) on page 679 of

the text. Thus,

cn =

1∫
0

x
√

2 sin

[(
n +

1

2

)
πx

]
dx .

Using integration by parts with u =
√

2x and dv = sin
[(
n + 1

2

)
πx
]
dx, we find

cn =
−√

2x cos[(n + 1/2)πx]

(n + 1/2)π

∣∣∣∣∣
1

0

+

1∫
0

√
2x cos[(n+ 1/2)πx] dx

(n+ 1/2)π

=
−√

2 cos[(n+ 1/2)π]

(n+ 1/2)π
+

√
2 sin[(n+ 1/2)πx]

(n + 1/2)2π2

∣∣∣∣∣
1

0

= 0 +

√
2 sin[(n+ 1/2)π]

(n + 1/2)2π2
=

(−1)n
√

2

(n + 1/2)2π2
.

Therefore

x =
∞∑

n=0

cn
√

2 sin

[(
n+

1

2

)
πx

]
=

∞∑
n=0

2(−1)n

(n + 1/2)2π2
sin

[(
n+

1

2

)
πx

]

=
8

π2

∞∑
n=0

(−1)n

(2n+ 1)2
sin

[(
n+

1

2

)
πx

]
.
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23. In Problem 19 of Section 11.2, we found the eigenvalues

λn =

(
n+

1

2

)2

, n = 0, 1, 2, . . . ,

with the corresponding eigenfunctions

yn(x) = Cn cos

[(
n+

1

2

)
ln x

]
, n = 0, 1, 2, . . . ,

where Cn is an arbitrary nonzero constant.

(a) We need only to choose the Cn so that

eπ∫
1

C2
n cos2

[(
n+

1

2

)
ln x

]
1

x
dx = 1.

To compute, we let u = ln x and so du = dx/x. Substituting, we find

eπ∫
1

C2
n cos2

[(
n+

1

2

)
ln x

]
1

x
dx = C2

n

π∫
0

cos2

[(
n+

1

2

)
u

]
du

=
1

2
C2

n

π∫
0

{1 + cos [(2n+ 1)u]} du

=
1

2
C2

n

(
u+

1

2n+ 1
sin [(2n+ 1)u]

)∣∣∣∣π
0

=
π

2
C2

n .

Hence, we can take Cn =
√

2/π, which gives{√
2

π
cos

[(
n+

1

2

)
ln x

]}∞

n=0

,

as an orthonormal system of eigenfunctions.

(b) To obtain the eigenfunction expansion for f(x) = x, we use formula (25) on page 679 of

the text. Thus, with w(x) = x−1, we have

cn =

eπ∫
1

x

√
2

π
cos

[(
n+

1

2

)
ln x

]
x−1dx.
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Let u = ln x. Then du = dx/x, and we have

cn =

√
2

π

π∫
0

eu cos

[(
n+

1

2

)
u

]
du

=

√
2

π

eu cos[(n + 1/2)u] + eu(n+ 1/2) sin[(n+ 1/2)u]

1 + (n+ 1/2)2

∣∣∣∣π
0

=

√
2

π

eπ(n+ 1/2) sin[(n+ 1/2)π] − 1

1 + (n + 1/2)2
=

√
2

π

(−1)neπ(n + 1/2) − 1

1 + (n+ 1/2)2
.

Therefore,

x =
∞∑

n=0

cn

√
2

π
cos

[(
n+

1

2

)
lnx

]

=
2

π

∞∑
n=0

(−1)neπ(n+ 1/2) − 1

1 + (n+ 1/2)2
cos

[(
n+

1

2

)
ln x

]
.

EXERCISES 11.4: Nonhomogeneous Boundary Value Problems and the Fredholm

Alternative, page 692

3. Here our differential operator is given by

L[y] =
(
1 + x2

)
y′′ + 2xy′ + y.

Substituting into the formula (3) page 684 of the text, we obtain

L+[y] =
[
(1 + x2)y

]′′ − (2xy)′ + y =
[
2xy + (1 + x2)y′

]′ − 2y − 2xy′ + y

= 2y + 2xy′ + 2xy′ + (1 + x2)y′′ − 2y − 2xy′ + y = (1 + x2)y′′ + 2xy′ + y.

7. Here our differential operator is given by

L[y] = y′′ − 2y′ + 10y; y(0) = y(π) = 0.

Hence

L+[v] = v′′ + 2v′ + 10v.
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To find the D (L+), we must have

P (u, v)(x)
∣∣π
0
= 0 (11.5)

for all u in D(L) and v in D (L+). Using formula (9) page 685 of the text for P (u, v) with

A1 = −2 and A2 = 1, we find

P (u, v) = −2uv − uv′ + u′v.

Evaluating at π and 0, condition (11.5) becomes

−2u(π)v(π) − u(π)v′(π) + u′(π)v(π) + 2u(0)v(0) + u(0)v′(0) − u′(0)v(0) = 0.

Since u in D(L), we know that u(0) = u(π) = 0. Thus the above equation becomes

u′(π)v(π) − u′(0)v(0) = 0.

Since u′(π) and u′(0) can take on any value, we must have v(0) = v(π) = 0 for this equation

to hold for all u in D(L). Hence D (L+) consists of all function v having continuous second

derivatives on [0, π] and satisfying the boundary condition

v(0) = v(π) = 0.

11. Here our differential operator is given by

L[y] = y′′ + 6y′ + 10y; y′(0) = y′(π) = 0.

Hence

L+[v] = v′′ − 6v′ + 10v.

To find the D (L+), we must have

P (u, v)(x)
∣∣π
0
= 0 (11.6)

for all u in D(L) and v in D (L+). Again using formula (9) page 685 of the text for P (u, v)

with A1 = 6 and A2 = 1, we find

P (u, v) = 6uv − uv′ + u′v.
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Evaluating at π and 0, condition (11.6) becomes

6u(π)v(π) − u(π)v′(π) + u′(π)v(π) − 6u(0)v(0) + u(0)v′(0) − u′(0)v(0) = 0.

Applying the boundary conditions u′(0) = u′(π) = 0 to the above equation yields

6u(π)v(π)− u(π)v′(π) − 6u(0)v(0) + u(0)v′(0) = 0

⇒ u(π) [6v(π) − v′(π)] − u(0) [6v(0) − v′(0)] = 0.

Since u(π) and u(0) can take on any value, we must have 6v(π)−v′(π) = 0 and 6v(0)−v′(0) = 0

in order for the equation to hold for all u in D(L). Therefore, the adjoint boundary value

problem is

L+[v] = v′′ − 6v′ + 10v; 6v(π) = v′(π) and 6v(0) = v′(0).

17. In Problem 7 we found the adjoint boundary value problem

L+[v] = v′′ + 2v′ + 10v; v(0) = v(π) = 0. (11.7)

The auxiliary equation for (11.7) is r2 + 2r + 10 = 0, which has roots r = −1 ± 3i. Hence a

general solution to the differential equation in (11.7) is given by

y(x) = C1e
−x cos 3x+ C2e

−x sin 3x.

Using the boundary conditions in (11.7) to determine C1 and C2, we find

y(0) = C1 = 0 and y(π) = −C1e
−π = 0.

Thus C1 = 0 and C2 is arbitrary. Therefore, every solution to the adjoint problem (11.7) has

the form

y(x) = C2e
−x sin 3x.

It follows from the Fredholm alternative that if h is continuous, then the nonhomogeneous

problem has a solution if and only if

π∫
0

h(x)e−x sin 3x dx = 0.
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21. In Problem 11 we found the adjoint boundary value problem

L+[v] = v′′ − 6v′ + 10v; 6v(π) = v′(π) and 6v(0) = v′(0). (11.8)

The auxiliary equation for (11.8) is r2 − 6r + 10 = 0, which has roots r = 3 ± i. Hence a

general solution to the differential equation in (11.8) is given by

y(x) = C1e
3x cosx+ C2e

3x sin x.

To apply the boundary conditions in (11.8), we first determine y′(x).

y′(x) = 3C1e
3x cosx− C1e

3x sin x+ 3C2e
3x sin x+ C2e

3x cosx.

Applying the first condition, we have

−6C1e
3π = −3C1e

3π − C2e
3π ⇒ 3C1 = C2 .

Applying the second condition, we have

6C1 = 3C1 + C2 ⇒ 3C1 = C2 .

Thus C2 = 3C1 where C1 is arbitrary. Therefore, every solution to the adjoint problem (11.8)

has the form

y(x) = C1e
3x(cosx+ 3 sin x).

It follows from the Fredholm alternative that if h is continuous, then the nonhomogeneous

problem has a solution if and only if

π∫
0

h(x)e3x(cosx+ 3 sin x) dx = 0.

EXERCISES 11.5: Solution by Eigenfunction Expansion, page 698

3. In Example 1 on page 696 of the text we noted that the boundary value problem

y′′ + λy = 0; y(0) = 0, y(π) = 0,
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has eigenvalues λn = n2, n = 1, 2, 3, . . . , with corresponding eigenfunctions

φn(x) = sin nx, n = 1, 2, 3, . . . .

Here r(x) ≡ 1, so we need to determine coefficients γn such that

f(x) =
f(x)

r(x)
=

∞∑
n=1

γn sinnx = sin 2x+ sin 8x.

Clearly γ2 = γ8 = 1 and the remaining γn’s are zero. Since µ = 4 = λ2 and γ2 = 1 �= 0 there

is no solution to this problem.

5. In equation (18) on page 666 of the text we noted that the boundary value problem

y′′ + λy = 0; y′(0) = 0, y′(π) = 0,

has eigenvalues λn = n2, n = 0, 1, 2, . . . , with corresponding eigenfunctions

φn(x) = cosnx, n = 0, 1, 2, . . . .

Here r(x) ≡ 1, so we need to determine coefficients γn such that

f(x) =
f(x)

r(x)
=

∞∑
n=0

γn cos nx = cos 4x+ cos 7x.

Clearly γ4 = γ7 = 1 and the remaining γn’s are zero. Since µ = 1 = λ1 and γ1 = 0,

(µ− λ1) c1 − γ1 = 0

is satisfied for any value of c1. Calculating c4 and c7, we get

c4 =
γ4

µ− λ4
=

1

1 − 16
= − 1

15

and

c7 =
γ7

µ− λ7
=

1

1 − 49
= − 1

48
.

Hence a one parameter family of solutions is

φ(x) =

∞∑
n=0

cnφn(x) = c1 cos x− 1

15
cos 4x− 1

48
cos 7x ,

where c1 is arbitrary.
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9. We first find the eigenvalues and corresponding eigenfunctions for this problem. Note that the

auxiliary equation for this problem is r2 + λ = 0. To find eigenvalues which yield nontrivial

solutions we will consider the three cases λ < 0, λ = 0, and λ > 0.

Case 1, λ < 0: Let µ =
√−λ, then the roots to the auxiliary equation are r = ±µ and a

general solution to the differential equation is given by

y(x) = C1 sinh µx+ C2 coshµx.

Since

y′(x) = C1µ coshµx+ C2µ sinhµx,

by applying the boundary conditions we obtain

y′(0) = C1µ = 0 and y(π) = C1 sinh µπ + C2 cosh µπ = 0.

Hence C1 = 0 and y(π) = C2 coshµπ = 0. Therefore C2 = 0 and we find only the trivial

solution.

Case 2, λ = 0: In this case the differential equation becomes y′′ = 0. This equation has a

general solution given by

y(x) = C1 + C2x.

Since y′(x) = C2, by applying the boundary conditions we obtain

y′(0) = C2 = 0 and y(π) = C1 + C2π = 0.

Solving these equations simultaneously yields C1 = C2 = 0. Thus, we again find only the

trivial solution.

Case 3, λ > 0: Let λ = µ2, for µ > 0. The roots of the auxiliary equation are r = ±µi and so

a general solution is

y(x) = C1 cosµx+ C2 sinµx.

Since

y′(x) = −C1µ sinµx+ C2µ cosµx,
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using the first boundary condition we find

y′(0) = −C1µ sin(µ · 0) + C2µ cos(µ · 0) = 0 ⇒ C2µ = 0 ⇒ C2 = 0.

Thus substituting into the second boundary condition yields

y(π) = C1 cosµπ = 0.

Therefore, in order to obtain a solution other than the trivial solution, we must have

cosµπ = 0 ⇒ µ = n+
1

2
, n = 0, 1, 2, . . . .

Hence choose λn = (n + 1/2)2, n = 0, 1, 2, . . ., and

yn(x) = Cn cos

[(
n +

1

2

)
x

]
,

where the Cn’s are arbitrary nonzero constants.

Next we need to choose the Cn so that

π∫
0

C2
n cos2

[(
n+

1

2

)
x

]
dx = 1.

Computing we find

π∫
0

C2
n cos2

[(
n+

1

2

)
x

]
dx =

1

2
C2

n

π∫
0

{1 + cos[(2n + 1)x]} dx

=
1

2
C2

n

{
x+

1

2n+ 1
sin[(2n+ 1)x]

}∣∣∣∣π
0

=
π

2
C2

n .

An orthonormal system of eigenfunctions is given when we take Cn =
√

2/π,{√
2

π
cos

[(
n+

1

2

)
x

]}∞

n=0

.

Now f(x) has the eigenfunction expansion

f(x) =

∞∑
n=0

γn

√
2

π
cos

[(
n +

1

2

)
x

]
,
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where

γn =

√
2

π

π∫
0

f(x) cos

[(
n +

1

2

)
x

]
dx.

Therefore, with γn as described above, the solution to the given boundary value problem has

a formal expansion

φ(x) =

∞∑
n=0

γn

1 − λn

√
2

π
cos

[(
n+

1

2

)
x

]
=

∞∑
n=0

γn

1 − (n+ 1/2)2

√
2

π
cos

[(
n+

1

2

)
x

]
.

EXERCISES 11.6: Green’s Functions, page 706

1. A general solution to the corresponding homogeneous equation, y′′ = 0, is yh(x) = Ax + B.

Thus we seek for paricular solutions z1(x) and z2(x) of this form satisfying

z1(0) = 0,

z′2(π) = 0.
(11.9)

The first equation yields

z1(0) = B = 0.

Since A is arbitrary, we choose A = 1 and so z1(x) = x. Next, from the second equation in

(11.9) we get

z′2(π) = A = 0.

Taking B = 1, we obtain z2(x) = 1.

With p(x) ≡ 1, we now compute

C = p(x)W [z1, z2] (x) = (1)[(x)(0) − (1)(1)] = −1.

Thus, the Green’s function is

G(x, s) =

{
−z1(s)z2(x)/C, 0 ≤ s ≤ x,

−z1(x)z2(s)/C, x ≤ s ≤ π
=

{
s, 0 ≤ s ≤ x,

x, x ≤ s ≤ π.
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3. A general solution to the homogeneous problem, y′′ = 0, is yh(x) = Ax + B, so z1(x) and

z2(x) must be of this form. To get z1(x) we want to choose A and B so that

z1(0) = B = 0.

Since A is arbitrary, we can set it equal to 1 and z1(x) = x. Next, to get z2(x) we need to

choose A and B so that

z2(π) + z′2(π) = Aπ +B + A = 0.

Thus B = −(1 + π)A. Taking A = 1, we get z2(x) = x− 1 − π.

Now compute

C = p(x)W [z1, z2] (x) = (1)[(x)(1) − (1)(x− 1 − π)] = 1 + π.

Thus, the Green’s function is

G(x, s) =

{
−z1(s)z2(x)/C, 0 ≤ s ≤ x,

−z1(x)z2(s)/C, x ≤ s ≤ π
=


−s(x− 1 − π)

1 + π
, 0 ≤ s ≤ x,

−x(s− 1 − π)

1 + π
, x ≤ s ≤ π.

5. The corresponding homogeneous differential equation, y′′ + 4y = 0, has the characteristic

equation r2 + 4 = 0, whose roots are r = ±2i. Hence, a general solution to the homogeneous

problem is given by

yh(x) = C1 cos 2x+ C2 sin 2x.

A solution z1(x) must satisfy the first boundary condition, z1(0) = 0. Substitution yields

z1(0) = C1 cos(2 · 0) + C2 sin(2 · 0) = 0 ⇒ C1 = 0.

Setting C2 = 1, we get z1(x) = sin 2x. For z2(x), we have to find constants C1 and C2 such

that the second boundary condition is satisfied. Since

y′h(x) = −2C1 sin 2x+ 2C2 cos 2x,
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we have

z′2(π) = −2C1 sin(2π) + 2C2 cos(2π) = 2C2 = 0 ⇒ C2 = 0.

With C1 = 1, z2(x) = cos 2x.

Next we find

C = p(x)W [z1, z2] (x) = (1)[(sin 2x)(−2 sin 2x) − (cos 2x)(2 cos 2x)] = −2.

Thus, the Green’s function in this problem is given by

G(x, s) =

{
−z1(s)z2(x)/C, 0 ≤ s ≤ x,

−z1(x)z2(s)/C, x ≤ s ≤ π
=

{
(sin 2s cos 2x)/2 , 0 ≤ s ≤ x,

(sin 2x cos 2s)/2 , x ≤ s ≤ π.

13. In Problem 3 we found the Green’s function for this boundary value problem. When f(x) = x,

the solution is given by equation (16) on page 702 of the text. Substituting for f(x) andG(x, s)

yields

y(x) =

b∫
a

G(x, s)f(s) ds =

π∫
0

G(x, s)s ds =

x∫
0

−s2(x− 1 − π)

1 + π
ds+

π∫
x

−xs(s− 1 − π)

1 + π
ds.

Computing

x∫
0

−s2(x− 1 − π)

1 + π
ds = −(x− 1 − π)

1 + π

(
s3

3

)∣∣∣∣x
s=0

= −(x− 1 − π)

1 + π

(
x3

3

)
= − x4

3(1 + π)
+
x3

3
,

π∫
x

−xs(s− 1 − π)

1 + π
ds = − x

1 + π

[
s3

3
− (1 + π)s2

2

]∣∣∣∣π
s=x

= − x

1 + π

[
π3

3
− (1 + π)π2

2

]

+
x

1 + π

[
x3

3
− (1 + π)x2

2

]
= − π3x

3(1 + π)
+
π2x

2
+

x4

3(1 + π)
− x3

2
,

we finally get

y(x) =

[
− x4

3(1 + π)
+
x3

3

]
+

[
− π3x

3(1 + π)
+
π2x

2
+

x4

3(1 + π)
− x3

2

]
= −x

3

6
+

[
π2

2
− π3

3(1 + π)

]
x = −x

3

6
+
π2(3 + π)x

6(1 + π)
.
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17. A general solution to the corresponding homogeneous problem y′′ − y = 0 is

yh(x) = C1e
x + C2e

−x .

So z1(x) and z2(x) must be of this form. To get z1(x) we want to choose constants C1 and C2

so that

z1(0) = C1e
0 + C2e

−0 = C1 + C2 = 0.

Let C1 = 1. Then C2 = −1 and so z1(x) = ex − e−x. Likewise, to get a z2(x), we find C1 and

C2 so that

z2(1) = C1e
1 + C2e

−1 = 0 ⇒ C2 = −C1e
2 .

If we let C1 = 1, then C2 = −e2. Hence z2(x) = ex − e2e−x = ex − e2−x. We now compute

C = p(x)W [z1, z2] (x) = (1)
[(
ex − e−x

) (
ex + e2−x

)− (ex + e−x
) (
ex − e2−x

)]
= 2e2 − 2.

Thus, the Green’s function is in this problem is

G(x, s) =

{
−z1(s)z2(x)/C, 0 ≤ s ≤ x,

−z1(x)z2(s)/C, x ≤ s ≤ 1

=

{
(es − e−s) (ex − e2−x) / (2 − 2e2) , 0 ≤ s ≤ x,

(ex − e−x) (es − e2−s) / (2 − 2e2) , x ≤ s ≤ 1.

Here f(x) = −x. Using Green’s function to solve the boundary value problem, we find

y(x) =

b∫
a

G(x, s)f(s) ds =

x∫
0

(es − e−s)(ex − e2−x)(−s)
2 − 2e2

ds+

1∫
x

(ex − e−x)(es − e2−s)(−s)
2 − 2e2

ds.

Computing integrals yields

x∫
0

(es − e−s)(ex − e2−x)(−s)
2 − 2e2

ds = −e
x − e2−x

2 − 2e2

x∫
0

(
ses − se−s

)
ds

= −e
x − e2−x

2 − 2e2
(
ses − es + se−s + e−s

)∣∣x
0

= −e
x − e2−x

2 − 2e2
(
xex − ex + xe−x + e−x

)
,
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1∫
x

(ex − e−x)(es − e2−s)(−s)
2 − 2e2

ds = −e
x − e−x

2 − 2e2

1∫
x

(
ses − se2−s

)
ds

= −e
x − e−x

2 − 2e2
(
ses − es + se2−s + e2−s

)∣∣1
x

= −e
x − e−x

2 − 2e2
[
2e− (xex − ex + xe2−x + e2−x

)]
.

Thus

y(x) = −e
x − e2−x

2 − 2e2
(
xex − ex + xe−x + e−x

)− ex − e−x

2 − 2e2
[
2e− (xex − ex + xe2−x + e2−x

)]
=

−(ex − e2−x)(xex − ex + xe−x + e−x) − (ex − e−x)(2e− xex + ex − xe2−x − e2−x)

2 − 2e2

=
−2x+ 2xe2 − 2e1+x + 2e1−x

2 − 2e2
= −x+

e1+x − e1−x

e2 − 1
.

25. Substitution y = xr into the corresponding homogeneous Cauchy-Euler equation

x2y′′ − 2xy′ + 2y = 0,

we obtain the auxiliary equation

r(r − 1) − 2r + 2 = 0 or r2 − 3r + 2 = (r − 1)(r − 2) = 0.

Hence a general solution to the corresponding homogeneous equation is

yh(x) = C1x+ C2x
2.

To get z1(x) we want to choose C1 and C2 so that

z1(1) = C1 + C2 = 0 ⇒ C2 = −C1 .

Let C1 = 1, then C2 = −1 and z1(x) = x− x2. Next we find z2(x) satisfying

z2(2) = 2C1 + 4C2 = 0 ⇒ C1 = −2C2 .

Hence, we let C2 = −1, then C1 = 2 and z2(x) = 2x− x2. Now compute (see the formula for

K(x, s) in Problem 22)

C(s) = A2(s)W [z1, z2] (s) =
(
s2
) [

(s− s2)(2 − 2s) − (1 − 2s)(2s− s2)
]
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=
(
s2
) (

2s− 4s2 + 2s3 − 2s+ 5s2 − 2s3
)

= s4 ,

K(x, s) =

{
−z1(s)z2(x)/C(s), 1 ≤ s ≤ x,

−z1(x)z2(s)/C(s), x ≤ s ≤ 2
=


−(s− s2)(2x− x2)

s4
, 1 ≤ s ≤ x,

−(x− x2)(2s− s2)

s4
, x ≤ s ≤ 2.

Simplifying yields

K(x, s) =

{
−x(2 − x)(s−3 − s−2), 1 ≤ s ≤ x,

−x(1 − x)(2s−3 − s−2), x ≤ s ≤ 2.

Hence, a solution to the boundary value problem with f(x) = −x is

y(x) =

b∫
a

K(x, s)f(s) ds =

x∫
1

K(x, s)f(s) ds+

2∫
x

K(x, s)f(s) ds

=

x∫
1

[−x(2 − x)(s−3 − s−2)](−s) ds+

2∫
x

[−x(1 − x)(2s−3 − s−2)](−s) ds

=
(
2x− x2

) x∫
1

(
s−2 − s−1

)
ds+

(
x− x2

) 2∫
x

(
2s−2 − s−1

)
ds

=
(
2x− x2

) (−s−1 − ln s
)∣∣x

1
+
(
x− x2

) (−2s−1 − ln s
)∣∣2

x

= x2 ln 2 − x ln 2 − x ln x .

29. Let f(x) = δ(x− s). Let H(x, s) be the solution to

∂4H(x, s)

∂x4
= −δ(x− s)

that satisfies the given boundary conditions, the jump condition

lim
x→s+

∂3H(x, s)

∂x3
− lim

x→s−

∂3H(x, s)

∂x3
= −1,

and H , ∂H/∂x, ∂2H/∂x2 are continuous on the square [0, π]× [0, π]. We begin by integrating

to obtain
∂3H(x, s)

∂x3
= −u(x− s) + C1 ,
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where u is the unit step function and C1 is a constant. (Recall in Section 7.8 we observed

that u′(t− a) = δ(t− a), at least formally.) ∂3H/∂x3 is not continuous along the line x = s,

but it does satisfy the jump condition

lim
x→s+

∂3H(x, s)

∂x3
− lim

x→s−

∂3H(x, s)

∂x3
= lim

x→s+
[−u(x− s) + C1] − lim

x→s−
[−u(x− s) + C1]

= (−1 + C1) − C1 = −1.

We want H(x, s) to satisfy the boundary condition y′′′(π) = 0. So we solve

∂3H

∂x3
(π, s) = −u(π − s) + C1 = −1 + C1 = 0

to obtain C1 = 1. Thus
∂3H(x, s)

∂x3
= −u(x− s) + 1 .

We now integrate again with respect to x to obtain

∂2H(x, s)

∂x2
= x− u(x− s)(x− s) + C2 .

(The reader should verify this is the antiderivative for x �= s by differentiating it.) We

selected this particular form of the antiderivative because we need ∂2H/∂x2 to be continuous

on [0, π] × [0, π]. (The jump of u(x− s) when x− s is canceled by the vanishing of this term

by the factor (x− s).) Since

lim
x→s

∂2H(x, s)

∂x2
= s+ C2 ,

we can define
∂2H

∂x2
(s, s) = s+ C2 ,

and we now have a continuous function. Next, we want y′′(π) = 0. Solving we find

0 =
∂2H

∂x2
(π, s) = π − u(π − s)(π − s) + C2 = π − (π − s) + C2 = s + C2 .

Thus, we find that C2 = −s. Now,

∂2H(x, s)

∂x2
= (x− s) − u(x− s)(x− s) .
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We integrate with respect to x again to get

∂H(x, s)

∂x
=
x2

2
− sx− u(x− s)

(x− s)2

2
+ C3 ,

which is continuous on [0, π]× [0, π]. We now want the boundary condition y′(0) = 0 satisfied.

Solving, we obtain

0 =
∂H

∂x
(0, s) = −u(0 − s)

s2

2
+ C3 = C3 .

Hence,
∂H(x, s)

∂x
=
x2

2
− sx− u(x− s)

(x− s)2

2
.

Integrating once more with respect to x, we have

H(x, s) =
x3

6
− sx2

2
− u(x− s)

(x− s)3

6
+ C4 .

Now H(x, s) is continuous on [0, π]× [0, π]. We want H(x, s) to satisfy the boundary condition

y(0) = 0. Solving, we find

0 = H(0, s) = −u(0 − s)
(0 − s)3

6
+ C4 = C4 .

Hence,

H(x, s) =
x3

6
− sx2

2
− u(x− s)

(x− s)3

6
,

which we can rewrite in the form

H(x, s) =


s2(s− 3x)

6
, 0 ≤ s ≤ x,

x2(x− 3s)

6
, x ≤ s ≤ π.

EXERCISES 11.7: Singular Sturm-Liouville Boundary Value Problems, page 715

1. This is a typical singular Sturm-Liouville boundary value problem. Condition (ii) of Lemma 1

on page 710 of the main text holds since

lim
x→0+

p(x) = lim
x→0+

x = 0
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and y(x), y′(x) remain bounded as x→ 0+. Because

lim
x→1−

p(x) = p(1) = 1

and y(1) = 0, the analogue of condition (i) of Lemma 1 holds at the right endpoint. Hence L

is selfadjoint.

The equation is Bessel’s equation of order 2. On page 712 of the text, we observed that the

solutions to this boundary value problem are given by

yn(x) = cnJ2 (α2nx) ,

where
√
µn = α2n is the increasing sequence of real zeros of J2(x), that is, J2(α2n) = 0.

Now to find an eigenfunction expansion for the given nonhomogeneous equation we compute

the eigenfunction expansion for f(x)/x (see page 694):

f(x)

x
∼

∞∑
n=1

anJ2 (α2nx) ,

where

an =

∫ 1

0
f(x)J2(α2nx) dx∫ 1

0
xJ2

2 (α2nx) dx
, n = 1, 2, 3, . . . .

Therefore,

y(x) =

∞∑
n=1

an

µ− α2
2n

J2 (α2nx) .

3. Again, this is a typical singular Sturm-Liouville boundary value problem. L is selfadjoint

since condition (ii) of Lemma 1 on page 710 of the main text holds at the left endpoint and

the analogue of condition (i) holds at the right endpoint.

This is Bessel’s equation of order 0. As we observed on page 712 of the text, J0

(√
µx
)

satisfies

the boundary conditions at the origin. At the right endpoint, we want J ′
0

(√
µ
)

= 0. Now it

follows from equation (32) on page 488 of the text, that the zeros of J ′
0 and J1 are the same.

So if we let
√
µn = α1n, the increasing sequence of zeros of J1, then J ′

0(α1n) = 0. Hence, the

eigenfunctions are given by

yn(x) = J0 (α1nx) , n = 1, 2, 3, . . . .
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To find an eigenfunction expansion for the solution to the nonhomogeneous equation, we first

expand f(x)/x (see page 694):

f(x)

x
∼

∞∑
n=1

bnJ0 (α1nx) ,

where

bn =

∫ 1

0
f(x)J0(α1nx) dx∫ 1

0
xJ2

0 (α1nx) dx
, n = 1, 2, 3, . . . .

Therefore,

y(x) =
∞∑

n=1

bn
µ− α2

1n

J0 (α1nx) .

11. (a) Let φ(x) be an eigenfunction for

d

dx

[
x
dy

dx

]
− ν2

x
y + λxy = 0.

Therefore,

d

dx
[xφ′(x)] − ν2

x
φ(x) + λxφ(x) = 0

⇒ φ′(x) + xφ′′(x) − ν2

x
φ(x) + λxφ(x) = 0.

Multiplying both side by φ(x) and integrating both sides from 0 to 1, we obtain

1∫
0

φ(x)φ′(x) dx+

1∫
0

xφ(x)φ′′(x) dx−
1∫

0

ν2

x
[φ(x)]2 dx+

1∫
0

λx[φ(x)]2 dx = 0. (11.10)

Now integrating by parts with u = φ(x)φ′(x) and dv = dx, we have

1∫
0

φ(x)φ′(x) dx = xφ(x)φ′(x)
∣∣1
0
−

1∫
0

x [φ′(x)φ′(x) + φ(x)φ′′(x)] dx

= xφ(x)φ′(x)
∣∣1
0
−

1∫
0

x [φ′(x)]2 dx−
1∫

0

xφ(x)φ′′(x) dx.
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Since φ(1) = 0, we have

xφ(x)φ′(x)
∣∣1
0
= 0,

1∫
0

φ(x)φ′(x) dx = −
1∫

0

x [φ′(x)]2 dx−
1∫

0

xφ(x)φ′′(x) dx.

Thus equation (11.10) reduces to

−
1∫

0

x [φ′(x)]2 dx−
1∫

0

xφ(x)φ′′(x) dx+

1∫
0

xφ(x)φ′′(x) dx

−ν2

1∫
0

x−1[φ(x)]2 dx+ λ

1∫
0

x[φ(x)]2 dx = 0

⇒ −
1∫

0

x [φ′(x)]2 dx− ν2

1∫
0

x−1[φ(x)]2 dx+ λ

1∫
0

x[φ(x)]2 dx = 0. (11.11)

(b) First note that each integrand in (11.11) is nonnegative on the interval (0, 1), hence

each integral is nonnegative. Moreover, since φ(x) is an eigenfunction, it is a continuous

function which is not the zero function. Hence, the second and third integrals are strictly

positive. Thus, if ν > 0, then λ must be positive in order for the left-hand side of (11.11)

to sum to zero.

(c) If ν = 0, then only the first and third terms remain on the left hand side of equa-

tion (11.11). Since the first integral need only be nonnegative, we only need λ to be

nonnegative in order for equation (11.11) to be satisfied.

To show λ = 0 is not an eigenvalue, we solve Bessel’s equation with ν = 0, that is, we

solve

xy′′ + y′ = 0,

which is the same as the Cauchy-Euler equation

x2y′′ + xy′ = 0.
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Solving this Cauchy-Euler equation, we find a general solution

y(x) = c1 + c2 ln x.

Since limx→0+ y(x) = −∞ if c2 �= 0, we take c2 = 0. Now y(x) = c1 satisfies the boundary

condition (17) in the text. The right endpoint boundary condition (18) is y(1) = 0. So

we want 0 = y(1) = c1. Hence the only solution to Bessel’s equation of order 0 that

satisfies the boundary conditions (17) and (18) is the trivial solution. Hence λ = 0 is not

an eigenvalue.

EXERCISES 11.8: Oscillation and Comparison Theory, page 725

5. To apply the Sturm fundamental theorem to

y′′ + (1 − ex) y = 0, 0 < x <∞, (11.12)

we must find a q(x) and a function φ(x) such that q(x) ≥ 1 − ex, 0 < x < ∞, and φ(x) is a

solution to

y′′ + q(x)y = 0, 0 < x <∞. (11.13)

Because, for x > 0, 1 − ex < 0, we choose q(x) ≡ 0. Hence equation (11.13) becomes

y′′ = 0. The function φ(x) = x+ 4 is a nontrivial solution to this differential equation. Since

φ(x) = x + 4 does not have a zero for x > 0, any nontrivial solution to (11.12) can have

at most one zero in 0 < x < ∞. To use the Sturm fundamental theorem to show that any

nontrivial solution to

y′′ + (1 − ex) y = 0, −∞ < x < 0, (11.14)

has infinitely many zeros, we must find a q(x) and a function φ(x) such that q(x) ≤ 1 − ex,

x < 0, and φ(x) is a solution to

y′′ + q(x)y = 0, −∞ < x < 0.

Because 1 − e−1 ≈ 0.632, we choose q(x) ≡ 1/4 and only consider the interval (−∞,−1).

Hence, we obtain

y′′ +
1

4
y = 0,
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which has nontrivial solution φ(x) = sin(x/2). Now the function φ(x) has infinitely many

zeros in (−∞,−1) and between any two consecutive zeros of φ(x) any nontrivial solution to

(11.14) must have a zero; hence any nontrivial solution to (11.14) will have infinitely many

zeros in (−∞,−1).

9. First express

y′′ + x−2y′ +
(
4 − e−x

)
y = 0,

in Strum-Liouville form by multiplying by the integrating factor e−1/x:

e−1/xy′′ + e−1/xx−2y′ + e−1/x
(
4 − e−x

)
y = 0 ⇒ (

e−1/xy′
)′

+ e−1/x
(
4 − e−x

)
y = 0.

Now when x gets large, we have√
p

q
≈
√

e−1/large

e−1/large (4 − e−large)
≈
√

1

(1)(4 − small)
≈
√

1

4
=

1

2
.

Hence, the distance between consecutive zeros is approximately π/2.

11. We apply Corollary 5 with p(x) = 1 + x, q(x) = e−x, and r(x) ≡ 1 to a nontrivial solution

on the interval [0, 5]. On this interval we have pM = 6, pm = 1, qM = 1, qm = e−5, and

rM = rm = 1. Therefore, for

λ > max

{−qM
rM

,
−qm
rm

, 0

}
= 0,

the distance between two consecutive zeros of a nontrivial solution φ(x) to the given equation

is bounded between

π

√
pm

qM + λrM
= π

√
1

1 + λ
and π

√
pM

qm + λrm
= π

√
6

e−5 + λ
.
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EXERCISES 12.2: Linear Systems in the Plane, page 753

3. The characteristic equation for this system is r2 + 2r + 10 = 0, which has roots r = −1 ± 3i.

Since the real part of each root is negative, the trajectories approach the origin, and the origin

is an asymptotically stable spiral point.

7. The critical point is the solution to the system

−4x+ 2y + 8 = 0,

x− 2y + 1 = 0.

Solving this system, we obtain the critical point (3, 2). Now we use the change of variables

x = u+ 3, y = v + 2,

to translate the critical point (3, 2) to the origin (0, 0). Substituting into the system of this

problem and simplifying, we obtain a system of differential equations in u and v:

du

dt
=
dx

dt
= −4(u+ 3) + 2(v + 2) + 8 = −4u+ 2v,

dv

dt
=
dy

dt
= (u+ 3) − 2(v + 2) + 1 = u− 2v.

The characteristic equation for this system is r2 + 6r + 6 = 0, which has roots r = −3 ±√
3.

Since both roots are distinct and negative, the origin is an asymptotically stable improper node

of the new system. Therefore, the critical point (3, 2) is an asymptotically stable improper

node of the original system.

9. The critical point is the solution to the system

2x+ y + 9 = 0,

−5x− 2y − 22 = 0.
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Solving this system, we obtain the critical point (−4,−1). Now we use the change of variables

x = u− 4, y = v − 1,

to translate the critical point (−4,−1) to the origin (0, 0). Substituting into the system of

this problem and simplifying, we obtain a system of differential equations in u and v:

du

dt
=
dx

dt
= 2(u− 4) + (v − 1) + 9 = 2u+ v,

dv

dt
=
dy

dt
= −5(u− 4) − 2(v − 1) − 22 = −5u− 2v.

The characteristic equation for this system is r2 + 1 = 0, which has roots r = ±i. Since

both roots are distinct and pure imaginary, the origin is a stable center of the new system.

Therefore, the critical point (−4,−1) is a stable center of the original system.

15. The characteristic equation for this system is r2 + r − 12 = 0, which has roots r = −4 and

r = 3. Since the roots are real and have opposite signs, the origin is an unstable saddle point.

To sketch the phase plane diagram, we must first determine two lines passing through the

origin that correspond to the transformed axes. To find the transformed axes, we make the

substitution y = mx into
dy

dx
=
dy/dt

dx/dt
=

5x− 2y

x+ 2y

to obtain

m =
5x− 2mx

x+ 2mx
.

Solving for m yields

m(x+ 2mx) = 5x− 2mx ⇒ 2m2 + 3m− 5 = 0 ⇒ m = −5

2
or m = 1.

So m = −5/2 or m = 1. Hence, the two axes are y = −5x/2 and y = x. On the line y = x

one finds
dx

dt
= 3x,

so the trajectories move away from the origin. On the line y = −5x/2 one finds

dy

dt
= −4y,
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so the trajectories move towards the origin. A phase plane diagram is given in Figure B.56 in

the answers of the text.

19. The characteristic equation for this system is (r + 2)(r + 2) = 0 which has roots r = −2,−2.

Since the roots are equal, real, and negative, the origin is an asymptotically stable point. To

sketch the phase plane diagram, we determine the slope of the two lines passing through the

origin that correspond to the transformed axes by substituting y = mx into

dy

dx
=
dy/dt

dx/dt
=

−2y

−2x+ y

to obtain

m =
−2mx

−2x+mx
.

Solving for m yields

m(−2x+mx) = −2mx ⇒ m2 = 0 ⇒ m = 0.

Since there is only one line (y = 0) through the origin that is a trajectory, the origin is an

improper node. A phase plane diagram is given in Figure B.58 in the answers of the text.

EXERCISES 12.3: Almost Linear Systems, page 764

5. This system is almost linear since ad − bc = (1)(−1) − (5)(−1) �= 0, and the functions

F (x, y) = G(x, y) = −y2 = 0 involve only high order terms in y. Since the characteristic

equation for this system is r2 + 4 = 0 which has pure imaginary roots r = ±2i, the origin is

either a center or a spiral point and the stability is indeterminant.

7. To see that this system is almost linear, we first express ex+y, cosx, and cos y using their

respective Maclaurin series. Hence, the system

dx

dt
= ex+y − cosx ,

dy

dt
= cos y + x− 1 ,
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becomes

dx

dt
=

[
1 + (x+ y) +

(x+ y)2

2!
+ · · ·

]
−
[
1 − x2

2!
+ · · ·

]
= x+ y + (higher orders) = x+ y + F (x, y),

dy

dt
=

[
1 − y2

2!
+ · · ·

]
+ x− 1 = x+ (higher orders) = x+G(x, y).

This system is almost linear since ad − bc = (1)(0) − (1)(1) �= 0, and F (x, y), G(x, y) each

only involve higher order forms in x and y. The characteristic equation for this system is

r2 − r − 1 = 0 which has roots r = (1 ±√
5)/2. Since these roots are real and have different

signs the origin is an unstable saddle point.

9. The critical points for this system are the solutions to the pair of equations

16 − xy = 0,

x− y3 = 0.

Solving the second equation for x in terms of y and substituting this into the first equation

we obtain

16 − y4 = 0

which has solutions y = ±2. Hence the critical points are (8, 2) and (−8,−2).

We consider the critical point (8, 2). Using the change of variables x = u + 8 and y = v + 2,

we obtain the system

du

dt
= 16 − (u+ 8)(v + 2),

dv

dt
= (u+ 8) − (v + 2)3,

which simplifies to the almost linear system

du

dt
= −2u− 8v − uv,

dv

dt
= u− 12v − 6v2 − v3 .

The characteristic equation for this system is r2+14r+32 = 0, which has the distinct negative

roots r = −7 ±√
17. Hence (8, 2) is an improper node which is asymptotically stable.
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Next we consider the critical point (−8,−2). Using the change of variables x = u − 8 and

y = v − 2, we obtain the system

du

dt
= 16 − (u− 8)(v − 2),

dv

dt
= (u− 8) − (v − 2)3,

which simplifies to the almost linear system

du

dt
= 2u+ 8v − uv,

dv

dt
= u− 12v + 6v2 − v3 .

The characteristic equation for this system is r2 + 10r − 32 = 0, which has the distinct roots

r = −5 ± √
57. Since these roots are real and have different signs, (−8,−2) is an unstable

saddle point.

13. The critical points for this system are the solutions to the pair of equations

1 − xy = 0,

x− y3 = 0.

Solving the second equation for x in terms of y and substituting this into the first equation

we obtain

1 − y4 = 0

which has solutions y = ±1. Hence the critical points are (1, 1) and (−1,−1).

We consider the critical point (1, 1). Using the change of variables x = u + 1 and y = v + 1,

we obtain the almost linear system

du

dt
= 1 − (u+ 1)(v + 1) = −u− v − uv,

dv

dt
= (u+ 1) − (v + 1)3 = u− 3v − 3v2 − v3.

The characteristic equation for this system is r2+4r+4 = 0, which has the equal negative roots

r = −2. Hence (1, 1) is an improper or proper node or spiral point which is asymptotically

stable.
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Next we consider the critical point (−1,−1). Using the change of variables x = u − 1 and

y = v − 1, we obtain the almost linear system

du

dt
= 1 − (u− 1)(v − 1) = u+ v − uv,

dv

dt
= (u− 1) − (v − 1)3 = u− 3v + 3v2 − v3.

The characteristic equation for this system is r2 + 2r − 4 = 0, which has roots r = −1 ±√
5.

Since these roots are real and have different signs, (−1,−1) is an unstable saddle point. A

phase plane diagram is given in Figure B.59 in the answers of the text.

21. Case 1: h = 0. The critical points for this system are the solutions to the pair of equations

x(1 − 4x− y) = 0,

y(1 − 2y − 5x) = 0.

To solve this system, we first let x = 0, then y(1 − 2y) = 0. So y = 0 or y = 1/2.

When y = 0, we must have x(1 − 4x) = 0. So x = 0 or x = 1/4.

And if x �= 0 and y �= 0, we have the system

1 − 4x− y = 0,

1 − 2y − 5x = 0,

which has the solution x = 1/3, y = −1/3. Hence the critical points are (0, 0), (0, 1/2),

(1/4, 0), and (1/3,−1/3).

At the critical point (0, 0), the characteristic equation is r2 − 2r + 1 = 0, which has equal

positive roots r = 1. Hence (0, 0) is an improper or proper node or spiral point which is

unstable. From Figure B.61 in the text, we see that (0, 0) is an improper node.

Next we consider the critical point (0, 1/2). Using the change of variables y = v + 1/2 and

x = u, we obtain the almost linear system

du

dt
= u

(
1 − 4u− v − 1

2

)
=

1

2
u− 4u2 − uv,

dv

dt
=

(
v +

1

2

)
(1 − 2v − 1 − 5u) = −5

2
u− v − 2v2 − 5uv.
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The characteristic equation for this system is r2 +(1/2)r− (1/2) = 0, which has roots r = 1/2

and r = −1. Since these roots are real and have different signs, (0, 1/2) is an unstable saddle

point.

Now consider the critical point (1/4, 0). Using the change of variables x = u+1/4 and y = v,

we obtain the almost linear system

du

dt
=

(
u+

1

4

)
(1 − 4u− 1 − v) = −u− 1

4
v − 4u2 − uv,

dv

dt
= v

(
1 − 2v − 5u− 5

2

)
= −1

4
v − 2v2 − 5uv.

The characteristic equation for this system is r2+(5/4)r+(1/4) = 0, which has roots r = −1/4

and r = −1. Since these roots are distinct and negative, (1/4, 0) is an improper node which

is asymptotically stable.

At the critical point (1/3,−1/3), we use the change of variables x = u+ 1/3 and y = v− 1/3

to obtain the almost linear system

du

dt
=

(
u+

1

3

)(
1 − 4u− 4

3
− v +

1

3

)
= −4

3
u− 1

3
v − 4u2 − uv,

dv

dt
=

(
v − 1

3

)(
1 − 2v +

2

3
− 5u− 5

3

)
=

5

3
u+

2

3
v − 2v2 − 5uv.

The characteristic equation for this system is r2 +(2/3)r− (1/3) = 0 which has roots r = 1/3

and r = −1. Again since these roots are real and have different signs, (1/3,−1/3) is an

unstable saddle point, but not of interest since y < 0. Species x survives while species y dies

off. A phase plane diagram is given in Figure B.61 in the answers of the text.

Case 2: h = 1/32. The critical points for this system are the solutions to the pair of equations

x(1 − 4x− y) − 1

32
= 0,

y(1 − 2y − 5x) = 0.

To solve this system, we first set y = 0 and solve x(1 − 4x) − 1/32 = 0, which has solutions

x = (2 ±√
2)/16.
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If y �= 0, we have 1 − 2y − 5x = 0. So y = (1/2) − (5/2)x. Substituting, we obtain

x

[
1 − 4x−

(
1

2
− 5

2
x

)]
− 1

32
= 0.

Simplifying, we obtain

−3

2
x2 +

1

2
x− 1

32
= 0,

which has the solution x = 1/4 or x = 1/12. When x = 1/4, we have

y =
1

2
− 5

2

(
1

4

)
= −1

8
.

And when x = 1/12, we have

y =
1

2
− 5

2

(
1

12

)
=

7

24
.

Hence the critical points are(
2 −√

2

16
, 0

)
,

(
2 +

√
2

16
, 0

)
,

(
1

4
,−1

8

)
, and

(
1

12
,

7

24

)
.

At the critical point

(
2 −√

2

16
, 0

)
, we use the change of variables x = u+

2 −√
2

16
and y = v

to obtain the almost linear system

du

dt
=

(
u+

2 −√
2

16

)(
1 − 4u− 2 −√

2

4
− v

)
− 1

32
=

√
2

2
u− 2 −√

2

16
v − 4u2 − uv,

dv

dt
= v

(
1 − 2v − 5u− 10 − 5

√
2

16

)
=

6 + 5
√

2

16
v − 2v2 − 5uv.

The characteristic equation for this system is(
r −

√
2

2

)(
r − 6 + 5

√
2

16

)
= 0,

which has distinct positive roots. Hence

(
2 −√

2

16
, 0

)
is an unstable improper node.
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Now consider the critical point

(
2 +

√
2

16
, 0

)
, where we use the change of variables y = v and

x = u+
2 +

√
2

16
to obtain the almost linear system

du

dt
=

(
u+

2 +
√

2

16

)(
1 − 4u− 2 +

√
2

4
− v

)
− 1

32
= −

√
2

2
u− 2 +

√
2

16
v − 4u2 − uv,

dv

dt
= v

(
1 − 2v − 5u− 10 + 5

√
2

16

)
=

6 − 5
√

2

16
v − 2v2 − 5uv.

The characteristic equation for this system is(
r +

√
2

2

)(
r − 6 − 5

√
2

16

)
= 0,

which has distinct negative roots. Hence

(
2 +

√
2

16
, 0

)
is an asymptotically stable improper

node.

When the critical point is (1/12, 7/24), the change of variables x = u+1/12 and y = v+7/24

leads to the almost linear system

du

dt
=

(
u+

1

12

)(
1 − 4u− 1

3
− v − 7

24

)
− 1

32
=

1

24
u− 1

12
v − 4u2 − uv,

dv

dt
=

(
v +

7

24

)(
1 − 2v − 7

12
− 5u− 5

12

)
= −35

24
u− 7

12
v − 2v2 − 5uv.

The characteristic equation for this system is r2 + (13/24)r − (7/48) = 0, which has roots

r = (−13±√
505)/48. Since these roots have opposite signs, (1/12, 7/24) is an unstable saddle

point.

And when the critical point is (1/4,−1/8), the change of variables x = u+1/4 and y = v−1/8

leads to the almost linear system

du

dt
=

(
u+

1

4

)(
1 − 4u− 1 − v +

1

8

)
− 1

32
= −7

8
u− 1

4
v − 4u2 − uv,

dv

dt
=

(
v − 1

8

)(
1 − 2v +

1

4
− 5u− 5

4

)
=

5

8
u+

1

4
v − 2v2 − 5uv.

715



Chapter 12

The characteristic equation for this system is r2 + (5/8)r − (1/16) = 0, which has roots

r = (−5 ±√
41)/16. Since these roots have opposite signs, (1/4,−1/8) is an unstable saddle

point. But since y < 0, this point is not of interest.

Hence, this is competitive exclusion; one species survives while the other dies off. A phase

plane diagram is given in Figure B.62 in the answers of the text.

Case 3: h = 5/32. The critical points for this system are the solutions to the pair of equations

x(1 − 4x− y) − 5

32
= 0,

y(1 − 2y − 5x) = 0.

To solve this system, we first set y = 0 and solve

x(1 − 4x) − 5

32
= 0,

which has complex solutions. If y �= 0, then we must have

1 − 2y − 5x = 0 ⇒ y =
1

2
− 5

2
x.

Substituting we obtain

x

[
1 − 4x−

(
1

2
− 5

2
x

)]
− 5

32
= 0.

Simplifying, we obtain

−3

2
x2 +

1

2
x− 5

32
= 0,

which also has only complex solutions. Hence there are no critical points. The phase plane

diagram shows that species y survives while the x dies off. A phase plane diagram is given in

Figure B.63 in the answers of the text.

EXERCISES 12.4: Energy Methods, page 774

3. Here g(x) = x2/(x − 1) = x + 1 + 1/(x − 1). By integrating g(x), we obtain the potential

function

G(x) =
x2

2
+ x+ ln |x− 1| + C,
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and so

E(x, v) =
v2

2
+
x2

2
+ x+ ln |x− 1| + C.

Since E(0, 0) = 0 implies C = 0, let

E(x, v) =
v2

2
+
x2

2
+ x+ ln |x− 1|.

Now, since we are interested in E near the origin, we let |x− 1| = 1 − x (because for x near

0, x− 1 < 0). Therefore,

E(x, v) =
v2

2
+
x2

2
+ x+ ln(1 − x).

9. Here we have g(x) = 2x2 + x− 1 and hence the potential function

G(x) =
2x3

3
+
x2

2
− x.

The local maxima and minima of G(x) occur when G′(x) = g(x) = 2x2 + x − 1 = 0. Thus

the phase plane diagram has critical points at (−1, 0) and (1/2, 0). Since G(x) has a strict

local minimum at x = 1/2, the critical point (1/2, 0) is a center. Furthermore, since x = −1

is strict local maximum, the critical point (−1, 0) is a saddle point. A sketch of the potential

plane and phase plane diagram is given in Figure B.65 in the answers of the text.

11. Here we have g(x) = x/(x− 2) = 1 + 2/(x− 2) so the potential function is

G(x) = x+ 2 ln |x− 2| = x+ 2 ln(2 − x),

for x near zero. Local maxima and minima of G(x) occur when G′(x) = g(x) = x/(x−2) = 0.

Thus the phase plane diagram has critical points at (0, 0). Furthermore we note that x = 2

is not in the domain of g(x) nor of G(x). Now G(x) has a strict local maximum at x = 0,

hence the critical point (0, 0) is a saddle point. A sketch of the potential plane and phase

plane diagram for x < 2 is given in Figure B.66 in the answers of the text.

13. We first observe that vh(x, v) = v2 > 0 for v �= 0. Hence, the energy is continually decreasing

along a trajectory. The level curves for the energy function

E(x, v) =
v2

2
+
x2

2
− x4

4
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are just the integral curves for Example 2(a) and are sketch in Figure 12.22 on page 770 of

the text. The critical points for this damped system are the same as in the example and

moreover, they are of the same type. The resulting phase plane is given in Figure B.67 in the

answers of the text.

EXERCISES 12.5: Lyapunov’s Direct Method, page 782

3. We compute V̇ (x, y) with V (x, y) = x2 + y2.

V̇ (x, y) = Vx(x, y)f(x, y) + Vy(x, y)g(x, y)

= 2x
(
y2 + xy2 − x3

)
+ 2y

(−xy + x2y − y3
)

= 4x2y2 − 2x4 − 2y4 = −2
(
x2 − y2

)2
.

According to Theorem 3, since V̇ is negative semidefinite, V is positive definite function, and

(0, 0) is an isolated critical point of the system, the origin is stable.

5. The origin is an isolated critical point for the system. Using the hint, we compute V̇ (x, y)

with V (x, y) = x2 − y2. Computing, we obtain

V̇ (x, y) = Vx(x, y)f(x, y) + Vy(x, y)g(x, y)

= 2x
(
2x3
)− 2y

(
2x2y − y3

)
= 4x4 − 4x2y2 + 2y2 = 2x4 +

(
x2 − y2

)2
,

which is positive definite. Now V (0, 0) = 0, and in every disk centered at the origin, V is

positive at some point (namely, those points where |x| > |y|). Therefore, by Theorem 4, the

origin is unstable.

7. We compute V̇ (x, y) with V (x, y) = ax4 + by2.

V̇ (x, y) = Vx(x, y)f(x, y) + Vy(x, y)g(x, y)

= 4ax3
(
2y − x3

)
+ 2by

(−x3 − y5
)

= 8ax3y − 4ax6 − 2bx3y − 2by6 .
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To eliminate the x3y term, we let a = 1 and b = 4, then

V̇ (x, y) = −4x6 − 8y6,

and we get that V̇ is negative definite. Since V is positive definite and the origin is an isolated

critical point, according to Theorem 3, the origin is asymptotically stable.

11. Here we set

y =
dx

dt
⇒ dy

dt
=
d2x

dt2
.

Then, we obtain the system

dx

dt
= y ,

dy

dt
= − (1 − y2

)
y − x .

Clearly, the zero solution is a solution to this system. To apply Lyapunov’s direct method,

we try the positive definite function V (x, y) = ax2 + by2 and compute V̇ .

V̇ (x, y) = Vx(x, y)f(x, y) + Vy(x, y)g(x, y)

= 2ax (y) + 2by
[− (1 − y2

)
y − x

]
= 2axy − 2by2 + 2by4 − 2bxy .

To eliminate the xy terms, we choose a = b = 1, then

V̇ (x, y) = −2y2
(
1 − y2

)
.

Hence V̇ is negative semidefinite for |y| < 1, so by Theorem 3, the origin is stable.

EXERCISES 12.6: Limit Cycles and Periodic Solutions, page 791

5. We compute r
dr

dt
:

r
dr

dt
= x

dx

dt
+ y

dy

dt
= x

[
x− y + x

(
r3 − 4r2 + 5r − 3

)]
+ y
[
x+ y + y

(
r3 − 4r2 + 5r − 3

)]
= x2 − xy + x2

(
r3 − 4r2 + 5r − 3

)
+ xy + y2 + y2

(
r3 − 4r2 + 5r − 3

)
= r2 + r2

(
r3 − 4r2 + 5r − 3

)
= r2

(
r3 − 4r2 + 5r − 2

)
.
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Hence
dr

dt
= r
(
r3 − 4r2 + 5r − 2

)
= r(r − 1)2(r − 2).

Now dr/dt = 0 when r = 0, 1, 2. The critical point is represented by r = 0, and when r = 1

or 2, we have limit cycles of radius 1 and 2. When r lies in (0, 1), we have dr/dt < 0, so

a trajectory in this region spirals into the origin. Therefore, the origin is an asymptotically

stable spiral point. Now, when r lies in (1, 2), we again have dr/dt < 0, so a trajectory in this

region spirals into the limit cycle r = 1. This tells us that r = 1 is a semistable limit cycle.

Finally, when r > 2, dr/dt > 0, so a trajectory in this region spirals away from the limit cycle

r = 2. Hence, r = 2 is an unstable limit cycle.

To find the direction of the trajectories, we compute r2dθ

dt
.

r2dθ

dt
= x

dy

dt
− y

dx

dt
= x

[
x+ y + y

(
r3 − 4r2 + 5r − 3

)]− y
[
x− y + x

(
r3 − 4r2 + 5r − 3

)]
= x2 + xy + xy

(
r3 − 4r2 + 5r − 3

)− xy + y2 − xy
(
r3 − 4r2 + 5r − 3

)
= x2 + y2 = r2 .

Hence dθ/dt = 1, which tells us that the trajectories revolve counterclockwise about the origin.

A phase plane diagram is given in Figure B.74 in the answers of the text.

11. We compute r dr/dt:

r
dr

dt
= x

dx

dt
+ y

dy

dt
= x

[
y + x sin

(
1

r

)]
+ y

[
−x+ y sin

(
1

r

)]
= xy + x2 sin

(
1

r

)
− xy + y2 sin

(
1

r

)
= r2 sin

(
1

r

)
.

Hence,
dr

dt
= r sin

(
1

r

)
,

and dr/dt = 0 when r = 1/(nπ), n = 1, 2, . . . . Consequently, the origin (r = 0) is not an

isolated critical point. Observe that

dr

dt
> 0 for

1

(2n+ 1)π
< r <

1

2nπ
,
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dr

dt
< 0 for

1

2nπ
< r <

1

(2n− 1)π
.

Thus, trajectories spiral into the limit cycles r = 1/(2nπ) and away from the limit cycles

r = 1/[(2n+ 1)π]. To determine the direction of the spiral, we compute r2 dθ/dt.

r2dθ

dt
= x

dy

dt
− y

dx

dt
= x

[
−x+ y sin

(
1

r

)]
− y

[
y + x sin

(
1

r

)]
= −x2 + xy sin

(
1

r

)
− y2 − xy sin

(
1

r

)
= −r2 .

Hence dθ/dt = −1, which tells us that the trajectories revolve clockwise about the origin. A

phase plane diagram is given in Figure B.77 in the answers of the text.

15. We compute fx + gy in order to apply Theorem 6. Thus

fx(x, y) + gy(x, y) =
(−8 + 3x2

)
+
(−7 + 3y2

)
= 3
(
x2 + y2 − 5

)
,

which is less than 0 for the given domain. Hence, by Theorem 6, there are no nonconstant

periodic solutions in the disk x2 + y2 < 5.

19. It is easily seen that (0, 0) is a critical point, however, it is not easily shown that it is the only

critical point for this system. Using the Lyapunov function V (x, y) = 2x2 + y2, we compute

V̇ (x, y). Thus

V̇ (x, y) = Vx(x, y)
dx

dt
+ Vy(x, y)

dy

dt
= 4x

(
2x− y − 2x3 − 3xy2

)
+ 2y

(
2x+ 4y − 4y3 − 2x2y

)
= 8x2 − 8x4 − 16x2y2 + 8y2 − 8y4 = 8

(
x2 + y2

)− 8
(
x2 + y2

)2
.

Therefore, V̇ (x, y) < 0 for x2 + y2 > 1 and V̇ (x, y) > 0 for x2 + y2 < 1. Let C1 be the curve

2x2 + y2 = 1/2, which lies inside x2 + y2 = 1, and let C2 be the curve 2x2 + y2 = 3, which lies

outside x2 + y2 = 1. Now V̇ (x, y) > 0 on C1 and V̇ (x, y) < 0 on C2. Hence, we let R be the

region between the curves C1 and C2. Now, any trajectory that enters R is contained in R.

So by Theorem 7, the system has a nonconstant periodic solution in R.
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25. To apply Theorem 8, we check to see that all five conditions hold. Here we have g(x) = x and

f(x) = x2(x2 − 1). Clearly, f(x) is even, hence condition (a) holds. Now

F (x) =

x∫
0

s2
(
s2 − 1

)
ds =

x5

5
− x3

3
.

Hence F (x) < 0 for 0 < x <
√

5/3 and F (x) > 0 for x >
√

5/3. Therefore, condition (b)

holds. Furthermore, condition (c) holds since F (x) → +∞ as x → +∞, monotonically for

x >
√

5/3. As stated above, g(x) = x is an odd function with g(x) > 0 for x > 0, thus

condition (d) holds. Finally, since

G(x) =

x∫
0

s ds =
x2

2
,

we clearly have G(x) → +∞ as x → +∞, hence condition (e) holds. It follows from Theo-

rem 8, that the Lienard equation has a unique nonconstant periodic solution.

EXERCISES 12.7: Stability of Higher-Dimensional Systems, page 798

5. From the characteristic equation

−(r − 1)
(
r2 + 1

)
= 0,

we find that the eigenvalues are 1, ±i. Since at least one eigenvalue, 1, has a positive real

part, the zero solution is unstable.

9. The characteristic equation is (
r2 + 1

) (
r2 + 1

)
= 0,

which has eigenvalues ±i, ±i. Next we determine the eigenspace for the eigenvalue i. Com-

puting we find ∣∣∣∣∣∣∣∣∣∣
i −1 −1 0

1 i 0 −1

0 0 i −1

0 0 1 i

∣∣∣∣∣∣∣∣∣∣
⇒

∣∣∣∣∣∣∣∣∣∣
1 i 0 0

0 0 1 0

0 0 0 1

0 0 0 0

∣∣∣∣∣∣∣∣∣∣
.
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Hence the eigenspace is degenerate and by Problem 8(c) on page 798 of the text, the zero

solution is unstable. Note: it can be shown that the eigenspace for the eigenvalue −i is also

degenerate.

13. To find the fundamental matrix for this system we first recall the Taylor series ex, sin x, and

cosx. These are

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · ,

sin x = x− x3

3!
+
x5

5!
− · · · ,

cosx = 1 − x2

2!
+
x4

4!
− · · · .

Hence

dx1

dt
=

(
1 − x1 +

x2
1

2!
− · · ·

)
+

(
1 − x2

2

2!
+ · · ·

)
− 2 = −x1 +

(
x2

1

2!
− · · ·

)
+

(
−x

2
2

2!
+ · · ·

)
,

dx2

dt
= −x2 +

(
x3 − x3

3

3!
+ · · ·

)
= −x2 − x3 +

(
−x

3
3

3!
+ · · ·

)
,

dx3

dt
= 1 −

[
1 + (x2 + x3) +

(x2 + x3)
2

2!
+ · · ·

]
= −x2 − x3 −

[
(x2 + x3)

2

2!
+ · · ·

]
.

Thus,

A =


−1 0 0

0 −1 1

0 −1 −1

 .
Calculating the eigenvalues, we have

|A− rI| =

∣∣∣∣∣∣∣∣
−1 − r 0 0

0 −1 − r 1

0 −1 −1 − r

∣∣∣∣∣∣∣∣ = 0.

Hence, the characteristic equation is −(r+1)(r2 +2r+2) = 0. Therefore, the eigenvalues are

−1, −1± i. Since the real part of each is negative, the zero solution is asymptotically stable.
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15. Solving for the critical points, we must have

−x1 + 1 = 0,

−2x1 − x2 + 2x3 − 4 = 0,

−3x1 − 2x2 − x3 + 1 = 0.

Solving this system, we find that the only solution is (1,−2, 2). We now use the change of

variables

x1 = u+ 1, x2 = v − 2, x3 = w + 2

to translate the critical point to the origin. Substituting, we obtain the system

du

dt
= −u,

dv

dt
= −2u− v + 2w,

dw

dt
= −3u− 2v − w.

Here A is given by

A =


−1 0 0

−2 −1 2

−3 −2 −1

 .
Finding the characteristic equation, we have −(r+1)(r2 +2r+5) = 0. Hence the eigenvalues

are −1, −1± 2i. Since each eigenvalue has a negative real part, the critical point (1,−2, 2) is

asymptotically stable.
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EXERCISES 13.1: Introduction: Successive Approximations, page 812

1. In this problem, x0 = 1, y0 = y(x0) = 4, and f(x, y) = x2 − y. Thus, applying formula (3) on

page 807 of the text yields

y(x) = y0 +

x∫
x0

f(t, y(t)) dt = 4 +

x∫
1

[
t2 − y(t)

]
dt = 4 +

x∫
1

t2 dt−
x∫

1

y(t) dt .

Since
x∫

1

t2 dt =
t3

3

∣∣∣∣x
1

=
x3

3
− 1

3
,

the equation becomes

y(x) = 4 +
x3

3
− 1

3
−

x∫
1

y(t) dt =
11

3
+
x3

3
−

x∫
1

y(t) dt .

3. In the initial conditions, x0 = 1 and y0 = −3. Also, f(x, y) = (y − x)2 = y2 − 2xy + x2.

Therefore,

y(x) = y0 +

x∫
x0

f(t, y(t)) dt = −3 +

x∫
1

(
y2(t) − 2ty(t) + t2

)
dt.

Using the linear property of integrals, we find that

x∫
1

(
y2(t) − 2ty(t) + t2

)
dt =

x∫
1

y2(t) dt− 2

x∫
1

ty(t) dt+

x∫
1

t2 dt

=

x∫
1

[
y2(t) − 2ty(t)

]
dt+

x3

3
− 1

3
,
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we have

y(x) =
x3

3
− 10

3
+

x∫
1

y2(t) dt− 2

x∫
1

ty(t) dt. (13.1)

Note that we can rewrite the last integral using integration by parts in terms of integrals of

the function y(x) alone. Namely,

x∫
1

ty(t) dt = t

t∫
1

y(s) ds

∣∣∣∣∣∣
t=x

t=1

−
x∫

1

t∫
1

y(s) ds dt = x

x∫
1

y(s) ds−
x∫

1

t∫
1

y(s) ds dt

Thus, another form of the answer (13.1) is

y(x) =
x3

3
− 10

3
+

x∫
1

y2(t) dt+ x

x∫
1

y(t) dt−
x∫

1

t∫
1

y(s) ds dt .

5. In this problem, we have

g(x) =
1

2

(
x+

3

x

)
.

Thus the recurrence formula (7) on page 807 of the text becomes

xn+1 = g (xn) =
1

2

(
xn +

3

xn

)
, n = 0, 1, . . . .

With x0 = 3 as an initial approximation, we compute

x1 =
1

2

(
x0 +

3

x0

)
=

1

2

(
3 +

3

3

)
= 2.0 , x2 =

1

2

(
x1 +

3

x1

)
=

1

2

(
2 +

3

2

)
= 1.75 ,

and so on. The results of these computations is given in Table 13-A.

Table 13–A: Approximations for a solution of x =
1

2

(
x+

3

x

)
.

x0 = 3.0 x3 = 1.732142857
x1 = 2.0 x4 = 1.732050810
x2 = 1.75 x5 = 1.732050808

We stopped iterating after x5 because x4 − x5 < 10−8. Hence x ≈ 1.73205081.
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7. Since g(x) = 1/ (x2 + 4), we have the recurrence formula

xn+1 = g (xn) =
1

x2
n + 4

, n = 0, 1, . . .

with an initial approximation x0 = 0.5. Hence

x1 =
1

x2
0 + 4

=
1

(0.5)2 + 4
=

4

17
≈ 0.2352941176,

x2 =
1

x2
1 + 4

≈ 1

(0.2352941176)2 + 4
≈ 0.2465870307 , etc.

See Table 13-B. We stopped iterating after x7 because the error x6 − x7 < 10−9. Hence

x ≈ 0.24626617.

Table 13–B: Approximations for a solution of x =
1

x2 + 4
.

x0 = 0.5 x4 = 0.2462664586
x1 = 0.2352941176 x5 = 0.2462661636
x2 = 0.2465870307 x6 = 0.2462661724
x3 = 0.2462565820 x7 = 0.2462661721

9. To start the method of successive substitutions, we observe that

g(x) =

(
5 − x

3

)1/4

.

Therefore, according to equation (7) on page 807 of the text, we can find the next approxi-

mation from the previous one by using the recurrence relation

xn+1 = g (xn) =

(
5 − xn

3

)1/4

.

We start the procedure at the point x0 = 1. Thus, we obtain

x1 =

(
5 − x0

3

)1/4

=

(
5 − 1

3

)1/4

=

(
4

3

)1/4

≈ 1.074569932 ,
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x2 =

(
5 − x1

3

)1/4

≈
(

5 − 1.074569932

3

)1/4

≈ 1.069526372 ,

x3 =

(
5 − x2

3

)1/4

≈
(

5 − 1.069526372

3

)1/4

≈ 1.069869749 .

By continuing this process, we fill in Table 13-C below. Noticing that x7 − x6 < 10−8, we

stopped the procedure after seven steps. So, x ≈ 1.06984787.

Table 13–C: Approximations for a solution of x =

(
5 − x

3

)1/4

.

x0 = 1.0 x4 = 1.069846382
x1 = 1.074569932 x5 = 1.069847972
x2 = 1.069526372 x6 = 1.069847864
x3 = 1.069869749 x7 = 1.069847871

11. First, we derive an integral equation corresponding to the given initial value problem. We

have f(x, y) = −y, x0 = 0, y0 = y(0) = 2, and so the formula (3) on page 807 of the text

yields

y(x) = 2 +

x∫
0

[−y(t)] dt = 2 −
x∫

0

y(t) dt .

Thus, Picard’s recurrence formula (15) becomes

yn+1(x) = 2 −
x∫

0

yn(t) dt, n = 0, 1, . . . .

Starting with y0(x) ≡ y0 = 2, we compute

y1(x) = 2 −
x∫

0

y0(t) dt = 2 −
x∫

0

2 dt = 2 − 2t
∣∣t=x

t=0
= 2 − 2x ,

y2(x) = 2 −
x∫

0

y1(t) dt = 2 −
x∫

0

(2 − 2t) dt = 2 + (t− 1)2
∣∣t=x

t=0
= 2 − 2x+ x2 .
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13. In this problem, f(x, y) = 3x2, x0 = 1, y0 = y(1) = 2, and so Picard’s iterations to the

solution of the given initial value problem are given by

yn+1(x) = 2 +

x∫
1

(
3t2
)
dt = 2 + t3

∣∣t=x

t=1
= x3 + 1 .

Since the right-hand side does not depend on n, the sequence of iterations yk(x), k = 1, 2, . . .,

is a constant sequence. That is,

yk(x) = x3 + 1 for any k ≥ 1.

In particular, y1(x) = y2(x) = x3 + 1.

(In this connection, note the following. If it happens that one of the iterations, say, yk(x),

obtained via (15) matches the exact solution to the integral equation (3), then all the subse-

quent iterations will give the same function yk(x). In other words, the sequence of iterations

will become a constant sequence starting from its kth term. In the given problem, the first

application of (15) gives the exact solution, x3 + 1, to the original initial value problem and,

hence, to the corresponding integral equation (3).)

15. We first write this differential equation as an integral equation. Integrating both sides from

x0 = 0 to x and using the fact that y(0) = 0, we obtain

y(x) − y(0) =

x∫
0

[
y(t) − et

]
dt ⇒ y(x) =

x∫
0

[
y(t) − et

]
dt .

Hence, by equation (15) on page 811 of the text, the Picard iterations are given by

yn+1(x) =

x∫
0

[
yn(t) − et

]
dt .

Thus, starting with y0(x) ≡ y0 = 0, we calculate

y1(x) =

x∫
0

[
y0(t) − et

]
dt = −

x∫
0

etdt = 1 − ex ,
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y2(x) =

x∫
0

[
y1(t) − et

]
dt =

x∫
0

(
1 − 2et

)
dt = 1 − ex = 2 + x− 2ex .

17. First of all, remark that the function f(x, y(x)) in the integral equation (3), that is,

y(x) = y0 +

x∫
x0

f(t, y(t)) dt ,

is a continuous function as the composition of f(x, y) and y(x), which are both continuous by

our assumption. Next, if y(x) satisfies (3), then

y (x0) = y0 +

x0∫
x0

f(t, y(t)) dt = y0 ,

because the integral term is zero as a definite integral of a continuous function with equal

limits of integration. Therefore, y(x) satisfies the initial condition in (1).

We recall that, by the fundamental theorem of calculus, if g(x) is a continuous function on an

interval [a, b], then, for any fixed c in [a, b], the function G(x) :=
∫ x

a
g(t) dt is an antiderivative

for g(x) on (a, b), i.e.,

G′(x) =

(∫ x

a

g(t) dt

)′
= g(x).

Thus,

y′(x) =

y0 +

x∫
x0

f(t, y(t)) dt

′

= f(t, y(t))
∣∣
t=x

= f(x, y(x)),

and so y(x) satisfies the differential equation in (1).

19. The graphs of the functions y = (x2 + 1)/2 and y = x are sketched on the same coordinate

axes in Figure 13-A.

By examining this figure, we see that these two graphs intersect only at (1, 1). We can find

this point by solving the equation

x =
x2 + 1

2
,
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1 2 3 4
 

y =
x2 + 1

2
y = x

P1 Q1

P0 Q0

P1
Q1P0 Q0

•

Figure 13–A: The method of successive substitution for the equation x =
x2 + 1

2
.

for x. Thus, we have

2x = x2 + 1 ⇒ x2 − 2x+ 1 = 0 ⇒ (x− 1)2 = 0 ⇒ x = 1.

Since y = x, the only intersection point is (1, 1).

To approximate the solution to the equation x = (x2 + 1)/2 using the method of successive

substitutions, we use the recurrence relation

xn+1 =
x2

n + 1

2
.

Starting this method at x0 = 0, we obtain the approximations given in Table 13-D. These

approximations do appear to be approaching the solution x = 1.

However, if we start the process at the point x = 2, we obtain the approximations given in

Table 13-E.

We observe that these approximations are getting larger and so do not seem to approach a

fixed point. This also appears to be the case if we examine the pictorial representation for the
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Table 13–D: Approximations for a solution of x =
x2 + 1

2
starting at x0 = 0.

x1 = 0.5 x15 = 0.89859837
x2 = 0.625 x20 = 0.91988745
x3 = 0.6953125 x30 = 0.94337158
x4 = 0.7417297 x40 = 0.95611749
x5 = 0.7750815 x50 = 0.96414507
x10 = 0.8610982 x99 = 0.98102848

Table 13–E: Approximations for a solution of x =
x2 + 1

2
starting at x0 = 2.

x1 = 2.5 x4 = 25.4946594
x2 = 3.625 x5 = 325.488829
x3 = 7.0703125 x6 = 52971.9891

method of successive substitutions given in Figure 13-A. By plugging x0 = 0 into the function

(x2 + 1)/2, we find P0 to be the point (0, 0.5). Then by moving parallel to the x-axis from

the point P0 to the line y = x, we observe that Q0 is the point (0.5, 0.5). Next, by moving

parallel to the y-axis from the point Q0 to the curve y = (x2 + 1)/2, we find that P1 is the

point (0.5, 0.625). Continuing this process moves us slowly in a step fashion to the point (1, 1).

However, if we start this process at x0 = 2, we observe that this method moves us through

larger and larger steps away from the point of intersection (1, 1).

Note that for this equation, the movement of the method of successive substitutions is to

the right. This is because the term (x2
n + 1)/2, in the recurrence relation, is increasing for

x > 0. Thus, the sequence of approximations {xn} is an increasing sequence. Starting at a

nonnegative point less than 1 moves us to the fixed point at x = 1, but starting at a point

larger that 1 moves us to ever increasing values for our approximations and, therefore, away

from the fixed point.
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EXERCISES 13.2: Picard’s Existence and Uniqueness Theorem, page 820

1. In order to determine whether this sequence of functions converges uniformly, we find ‖yn − y‖.
Since

yn(x) − y(x) =
(
1 − x

n

)
− 1 = −x

n
,

we have

‖yn − y‖ = max
x∈[−1,1]

|yn(x) − y(x)| = max
x∈[−1,1]

|x|
n

=
1

n
.

Thus

lim
n→∞

‖yn − y‖ = lim
n→∞

1

n
= 0

and {yn(x)} converges to y(x) uniformly on [−1, 1].

3. In order to determine whether this sequence of functions converges uniformly, we must find

lim
n→∞

‖yn − y‖ .

Therefore, we first compute

‖yn − y‖ = ‖yn‖ = max
x∈[0,1]

∣∣∣∣ nx

1 + n2x2

∣∣∣∣ = max
x∈[0,1]

nx

1 + n2x2
,

where we have removed the absolute value signs because the term (nx)/(1 + n2x2) is nonneg-

ative when x ∈ [0, 1]. We will use calculus methods to obtain this maximum value. Thus, we

differentiate the function yn(x) = (nx)/(1 + n2x2) to obtain

y′n(x) =
n(1 − n2x2)

(1 + n2x2)2
.

Setting y′n(x) equal to zero and solving yields

n
(
1 − n2x2

)
= 0 ⇒ n2x2 = 1 ⇒ x = ±1

n
.

Since we are interested in the values of x on the interval [0, 1], we will only examine the critical

point x = 1/n. By the first derivative test, we observe that the function yn(x) has a local

maximum value at the point x = 1/n. At this point, we have

yn

(
1

n

)
=

n (n−1)

1 + n2 (n−1)2 =
1

2
.
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Computing

yn(0) =
n(0)

1 + n2(0)2
= 0,

yn(1) =
n(1)

1 + n2(1)2
=

n

1 + n2
<

1

n
≤ 1

2
for n ≥ 2,

we conclude that

max
x∈[0,1]

yn(x) =
1

2
.

Therefore,

lim
n→∞

‖yn − y‖ = lim
n→∞

1

2
=

1

2
�= 0.

Thus, the given sequence of functions does not converge uniformly to the function y(x) ≡ 0

on the interval [0, 1].

This sequence of functions does, however, converge pointwise to the function y(x) ≡ 0 on the

interval [0, 1]. To see this, notice that for any fixed x ∈ (0, 1] we have

lim
n→∞

[yn(x) − y(x)] = lim
n→∞

nx

1 + n2x2
= lim

n→∞
1

2nx
= 0,

where we have found this limit by using L’Hospital’s rule. At the point x = 0, we observe

that

lim
n→∞

[yn(0) − y(0)] = lim
n→∞

0

1
= 0.

Thus, we have pointwise convergence but not uniform convergence. See Figure 13-B(a) for

the graphs of functions y1(x), y10(x), y30(x), and y90(x).

5. We know (as was stated on page 433 of the text) that for all x such that |x| < 1 the geometric

series,
∑∞

k=0 x
k, converges to the function f(x) = 1/(1−x). Thus, for all x ∈ [0, 1/2], we have

1

1 − x
== 1 + x+ x2 + · · · + xk + · · · =

∞∑
k=0

xk.

Therefore, we see that

‖yn − y‖ = max
x∈[0,1/2]

|yn(x) − y(x)| = max
x∈[0,1/2]

∣∣∣∣∣
n∑

k=0

xk −
∞∑

k=0

xk

∣∣∣∣∣ = max
x∈[0,1/2]

∞∑
k=n+1

xk =
∞∑

k=n+1

(
1

2

)k
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Figure 13–B: Graphs of functions in Problems 3 and 7.

and so

lim
n→∞

‖yn − y‖ = lim
n→∞

[ ∞∑
k=n+1

(
1

2

)k
]
.

Since
∑∞

k=n+1(1/2)k is the tail end of a convergent series, its limit must be zero. Hence, we

have

lim
n→∞

‖yn − y‖ = lim
n→∞

[ ∞∑
k=n+1

(
1

2

)k
]

= 0.

Therefore, the given sequence of functions converges uniformly to the function y(x) = 1/(1−x)
on the interval [0, 1/2].

7. Let x ∈ [0, 1] be fixed.

If x = 0, then yn(0) = n2(0) = 0 for any n and so limn→∞ yn(0) = limn→∞ 0 = 0.

For x > 0, let Nx := [2/x] + 1 with [·] denoting the interger part of a number. Then, for

n ≥ Nx, one has

n ≥
[

2

x

]
+ 1 >

2

x
⇒ x >

2

n

and so, in evaluating yn(x), the third line in its definition must be used. This yields yn(x) = 0

for all n ≥ Nx, which implies that limn→∞ yn(x) = limn→∞ 0 = 0.
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Hence, for any fixed x ∈ [0, 1], limn→∞ yn(x) = 0 = y(x).

On the other hand, for any n, the function yn(x) is a continuous piecewise linear function,

which is increasing on [0, 1/n], decreasing on (1/n, 2/n), and zero on [1/n, 1]. Thus it attains

its maximum value at x = 1/n, which is

yn

(
1

n

)
= n2

(
1

n

)
= n.

Therefore,

lim
n→∞

‖yn − y‖ = lim
n→∞

‖yn‖ = lim
n→∞

n = ∞,

and the sequence does not converge uniformly on [0, 1]. See Figure 13-B(b) for the graphs of

y5(x), y10(x), y15(x), and y20(x).

9. We need to find an h > 0 such that h < min (h1, α1/M, 1/L). We are given that

R1 = {(x, y) : |x− 1| ≤ 1, |y| ≤ 1} = {(x, y) : 0 ≤ x ≤ 2,−1 ≤ y ≤ 1} ,

and so h1 = 1 and α1 = 1. Thus, we must find values for M and L.

In order to find M , notice that, as was stated on page 816 of the text, we require that M

satisfy the condition

|f(x, y)| = |y2 − x| ≤M,

for all (x, y) in R1. To find this upper bound for |f(x, y)|, we must find the maximum and

the minimum values of f(x, y) on R1. (Since f(x, y) is a continuous function on the closed

and bounded region R1, it will have a maximum and a minimum there.) We will use calculus

methods to find this maximum and this minimum. Since the first partial derivatives of f(x, y),

given by

fx(x, y) = −1, and fy(x, y) = 2y,

are never both zero, the maximum and minimum must occur on the boundary of R1. Notice

that R1 is bounded on the left by the line x = 0, on the right by the line x = 2, on the top

by the line y = 1, and on the bottom by the line y = −1. Therefore, we will examine the

behavior of f(x, y) (and, thus, of |f(x, y)|) on each of these lines.
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Case 1: On the left side of R1 where x = 0, the function f(x, y) becomes the function in the

single variable y, given by

f(0, y) = F1(y) = y2 − 0 = y2, y ∈ [−1, 1].

This function has a maximum at y = ±1 and a minimum at y = 0. Thus, on the left

side of R1 we see that f reaches a maximum value of f(0,±1) = 1 and a minimum value

of f(0, 0) = 0.

Case 2: On the right side of R1 where x = 2, the function f(x, y) becomes the function in the

single variable y, given by

f(2, y) = F2(y) = y2 − 2, y ∈ [−1, 1].

This function also has a maximum at y = ±1 and a minimum at y = 0. Thus, on the

right side of R1, the function f(x, y) reaches a maximum value of f(2,±1) = −1 and a

minimum value of f(2, 0) = −2.

Case 3: On the top and bottom of R1 where y = ±1, the function f(x, y) becomes the function

given by

f(x,±1) = F3(x) = (±1)2 − x = 1 − x, x ∈ [0, 2].

This function also has a maximum at x = 0 and a minimum at x = 2. Thus, on both

the top and bottom of the region R1, the function f(x, y) reaches a maximum value of

f(0,±1) = 1 and a minimum value of f(2,±1) = −1.

From the above cases we see that the maximum value of f(x, y) is 1 and the minimum value

is −2 on the boundary of R1. Thus, we have |f(x, y)| ≤ 2 for all (x, y) in R1. Hence, we

choose M = 2.

To find L, we observe that L is an upper bound for∣∣∣∣∂f∂y
∣∣∣∣ = |2y| = 2|y|,

on R1. Since y ∈ [−1, 1] in this region, we have |y| ≤ 1. Hence, we see that∣∣∣∣∂f∂y
∣∣∣∣ = 2|y| ≤ 2,
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for all (x, y) in R1. Therefore, we choose L = 2.

Now we can choose h ≥ 0 such that

h < min

(
h1 ,

α1

M
,
1

L

)
= min

(
1,

1

2

1

2

)
=

1

2
.

Thus, Theorem 3 guarantees that the given initial value problem will have a unique solution

on the interval [1 − h, 1 + h], where 0 < h < 1/2.

11. We are given that the recurrence relation for these approximations is yn+1 = T [yn]. Using

the definition of T [y], we have

yn+1 = x3 − x+ 1

x∫
0

(u− x)yn(u) du.

Thus, starting these approximations with y0(x) = x3 − x+ 1, we obtain

y1(x) = x3 − x+ 1 +

x∫
0

(u− x)y0(u) du = x3 − x+ 1 +

x∫
0

(u− x)
[
u3 − u+ 1

]
du

= x3 − x+ 1 +

x∫
0

(u4 − u2 + u− xu3 + xu− x) du

= x3 − x+ 1 +

[
x5

5
− x3

3
+
x2

2
− x5

4
+
x3

2
− x2

]
.

By simplifying, we obtain

y1(x) = − 1

20
x5 +

7

6
x3 − 1

2
x2 − x+ 1.

Substituting this result into the recurrence relation yields

y2(x) = x3 − x+ 1

x∫
0

(u− x)y1(u) du

= x3 − x+ 1

x∫
0

(u− x)

[
− 1

20
u5 +

7

6
u3 − 1

2
u2 − u+ 1

]
du

738



Exercises 13.2

= x3 − x+ 1 +

[
− 1

140
x7 +

7

30
x5 − 1

8
x4 − 1

3
x3 +

1

2
x2

+
1

120
x7 − 7

24
x5 +

1

6
x4 +

1

2
x3 − x2

]
.

When simplified, this yields

y2(x) =
1

840
x7 − 7

120
x5 +

1

24
x4 +

7

6
x3 − 1

2
x2 − x+ 1.

13. Using properties of limits and the linear property of integrals, we can rewrite the statement

that

lim
n→∞

b∫
a

yn(x) dx =

b∫
a

y(x) dx

in an equivalent form

lim
n→∞

 b∫
a

yn(x) −
b∫

a

y(x) dx

 = 0 ⇔ lim
n→∞

b∫
a

[yn(x) − y(x)] dx = 0. (13.2)

The sequence {yn} converges uniformly to y on [a, b], which means, by the definitionof uniform

convergence, that

‖yn − y‖C[a,b] := max
x∈[a,b]

|yn(x) − y(x)| → 0 as n→ ∞.

Since ∣∣∣∣∣∣
b∫

a

[yn(x) − y(x)] dx

∣∣∣∣∣∣ ≤
b∫

a

|yn(x) − y(x)| dx ≤ (b− a) ‖yn − y‖C[a,b] → 0

as n→ ∞, we conclude that

lim
n→∞

∣∣∣∣∣∣
b∫

a

[yn(x) − y(x)] dx

∣∣∣∣∣∣ = 0,

and (13.2) follows. (Recall that limn→∞ an = 0 if and only if limn→∞ |an| = 0.)
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15. (a) In the given system,

x′(t) = −y2(t), x(0) = 0;

y′(t) = z(t), y(0) = 1;

z′(t) = x(t)y(t), z(0) = 0,

(13.3)

replacing t by s, integrating the differential equations from s = 0 to s = t, and using the

fundamental theorem of calculus we obtain

t∫
0

x′(s) ds = −
t∫

0

y2(s) ds;

t∫
0

y′(s) ds =
t∫

0

z(s) ds;

t∫
0

z′(s) ds =
t∫

0

x(s)y(s) ds

⇒

x(t) − x(0) = −
t∫

0

y2(s) ds;

y(t) − y(0) =
t∫

0

z(s) ds;

z(t) − z(0) =
t∫

0

x(s)y(s) ds.

By the initial conditions in (13.3), x(0) = 0, y(0) = z(0) = 1. Substituting these values

into the above system yields

x(t) = −
t∫

0

y2(s) ds;

y(t) − 1 =
t∫

0

z(s) ds;

z(t) − 1 =
t∫

0

x(s)y(s) ds,

(13.4)

which is equivalent to the given system of integral equations. Thus, (13.3) implies (13.4).

Conversely, differentiating equations in (13.4) and using the fundamental theorem of cal-

culus (its part regarding integrals with variable upper bound), we conclude that solutions

x(t), y(t), and z(t) to (13.4) also satisfy differential equations in (13.3). Clearly,

x(0) = −
0∫
0

y2(s) ds = 0;

y(0) − 1 =
0∫
0

z(s) ds = 0;

z(t) − 1 =
0∫
0

x(s)y(s) ds = 0,

and the initial conditions in (13.3) are satisfied. Therefore, (13.4) implies (13.3).
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(b) With starting iterations x0(t) ≡ x(0) = 0, y0(t) ≡ y(0) = 1, and z0(t) ≡ z(0) = 1, we

compute x1(t), y1(t), and z1(t).

x1(t) = −
t∫

0

y2
0(s) ds = −

t∫
0

(1)2 ds = −t;

y1(t) = 1 +
t∫

0

z0(s) ds = 1 +
t∫

0

(1) ds = 1 + t;

z1(t) = 1 +
t∫

0

x0(s)y0(s) ds = 1 +
t∫

0

(0) ds = 1.

Applying given recurrence formulas again yields

x2(t) = −
t∫

0

y2
1(s) ds = −

t∫
0

(1 + s)2 ds = −(1 + s)3/3
∣∣t
0
= −t− t2 − t3

3
;

y2(t) = 1 +
t∫

0

z1(s) ds = 1 +
t∫

0

1 ds = 1 + t;

z2(t) = 1 +
t∫

0

x1(s)y1(s) ds = 1 −
t∫

0

s(1 + s) ds = 1 − (s2/2 + s3/3)
∣∣t
0
= 1 − t2

2
− t3

3
.

EXERCISES 13.3: Existence of Solutions of Linear Equations, page 826

1. In this problem,

A(t) =

[
cos t

√
t

t3 −1

]
, f(t) =

[
tan t

et

]
.

In A(t), functions cos t, t3, and −1 are continuous on (−∞,∞) while
√
t is continuous on

[0,∞). Therefore, A(t) is continuous on [0,∞). In f(t), the exponential function is continuous

everywhere, but tan t has infinite discontinuities at t = (k + 1/2)π, k = 0,±1,±2, . . . . The

largest interval containing the initial point, t = 2, where tan t and, therefore, f(t), is continuous

is (π/2, 3π/2). Since A(t) is also continuous on (π/2, 3π/2), by Theorem 6, given initial value

problem has a unique solution on this interval.

3. By comparing this problem to the problem given in (14) on page 825 of the text, we see that

in this case

p1(t) = − ln t, p2(t) ≡ 0, p3(t) = tan t, and g(t) = e2t.
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We also observe that t0 = 1. Thus, we must find an interval containing t0 = 1 on which all of

the functions p1(t), p2(t), p3(t), and g(t) are simultaneously continuous. Therefore, we note

that p2(t) and g(t) are continuous everywhere; p1(t) is continuous on the interval (0,∞); and

the interval which contains t0 = 1 on which p3(t) is continuous is (−π/2, π/2). Hence, these

four functions are simultaneously continuous on the interval (0, π/2) and this interval contains

the point t0 = 1. Therefore, Theorem 7 given on page 825 of the text guarantees that we will

have a unique solution to this initial value problem on the whole interval (0, π/2).

5. In this problem, we use Theorem 5. Since

f(t,x) =

[
sin x2

3x1

]
,

we have
∂f

∂x1
(t,x) =

[
0

3

]
,

∂f

∂x2
(t,x) =

[
cosx2

0

]
.

Vectors f , ∂f/∂x1, and ∂f/∂x2 are continuous on

R = {−∞ < t <∞,−∞ < x1 <∞,−∞ < x2 <∞}

(which is the whole space R
3) since their components are. Moreover,∣∣∣∣ ∂f∂x1
(t,x)

∣∣∣∣ = 3,

∣∣∣∣ ∂f∂x2
(t,x)

∣∣∣∣ = | cosx2| ≤ 1

for any (t,x), and the condition (3) in Theorem 5 is satisfied with L = 3. Hence, given initial

value problem has a unique solution on the whole real axis −∞ < t <∞.

7. The equation

y′′′(t) − (sin t)y′(t) + e−ty(t) = 0

is a linear homogeneous equation and, hence, has a trivial solution, y(t) ≡ 0. Clearly, this

solution satisfies the initial conditions, y(0) = y′(0) = y′′(0) = 0. All that remains to note is

that the coefficients, − sin t and e−t, are continuous on (−∞,∞) and so, by Theorem 7, the

solution y ≡ 0 is unique.

742



Exercises 13.4

EXERCISES 13.4: Continuous Dependence of Solutions, page 832

3. To apply Theorem 9, we first determine the constant L for f(x, y) = ecos y + x2. To do this,

we observe that
∂f

∂y
(x, y) = −ecos y sin y.

Now on any rectangle R0, we have∣∣∣∣∂f∂y (x, y)

∣∣∣∣ = |−ecos y sin y| = |ecos y| |sin y| ≤ e.

(More detailed analysis shows that this function attains its maximum at y∗ = (
√

5 − 1)/2,

and this maximum equals to 1.4585 . . . .) Thus, since h = 1, we have by Theorem 9,

|φ(x, y0) − φ(x, ỹ0)| ≤ |y0 − ỹ0| ee .

Since we are given that |y0 − ỹ0| ≤ 10−2, we obtain the result

|φ(x, y0) − φ(x, ỹ0)| ≤ 10−2ee ≈ 0.151543 .

9. We can use inequality (18) in Theorem 10 to obtain the bound, but first must determine the

constant L and the constant ε. Here f(x, y) = sin x + (1 + y2)−1 and F (x, y) = x + 1 − y2.

Now, ∣∣∣∣∂f∂y (x, y)

∣∣∣∣ = ∣∣∣∣ 2y

(1 + y2)2

∣∣∣∣
and ∣∣∣∣∂F∂y (x, y)

∣∣∣∣ = |2y| ≤ 2.

To find an upper bound for |∂f/∂y| on R0, we maximize 2y/(1 + y2)2. Hence, we obtain(
2y

(1 + y2)2

)′
=

2(1 + y2)2 − 2y · 2(1 + y2)2y

(1 + y2)4
=

2(1 + y2) − 8y2

(1 + y2)3
=

2 − 6y2

(1 + y2)3
.

Setting this equal to zero and solving for y, we obtain

2 − 6y2

(1 + y2)3
= 0 ⇒ 2 − 6y2 = 0 ⇒ y = ± 1√

3
.
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Since 2y/(1 + y2)2 is odd, we need only use y = 1/
√

3. Thus∣∣∣∣∂f∂y (x, y)

∣∣∣∣ ≤ 2/
√

3

(1 + 1/3)2
=

3
√

3

8
,

and so L = 3
√

3/8. To obtain ε we seek an upper bound for

|f(x, y)− F (x, y)| =

∣∣∣∣sin x+
1

1 + y2
− x− 1 + y2

∣∣∣∣ ≤ |sin x− x| +
∣∣∣∣ 1

1 + y2
− 1 + y2

∣∣∣∣ .
Using Taylor’s theorem with remainder we have

sin x = x− x3 cos ξ

3!
,

where 0 ≤ ξ ≤ x. Thus for −1 ≤ x ≤ 1 we obtain

|sin x− x| =

∣∣∣∣x− x3 cos ξ

3!
− x

∣∣∣∣ = |x|3 cos ξ

3!
≤ 1

6
.

Applying Taylor’s theorem with remainder to 1/(1 + y2) − 1 + y2, we obtain

g(y) = (1 + y2)−1 − 1 + y2 ,

g′(y) = −2y(1 + y2)−2 + 2y ,

g′′(y) = −2(1 + y2)−2 + 2(1 + y2)−3(2y)2 + 2 ,

g′′′(y) = 4(1 + y2)−3(2y)− 6(1 + y2)−4(2y)3 + 2(1 + y2)−3(8y) .

Since g(0) = g′(0) = g′′(0) = 0, we have

(1 + y2)−1 − 1 + y2 =
g′′′(ξ)

3!
,

where 0 ≤ ξ ≤ y. Thus, we obtain∣∣(1 + y2)−1 − 1 + y2
∣∣ = ∣∣∣∣g′′′(ξ)3!

∣∣∣∣ ≤ 8 + 48 + 16

6
= 12.

Hence

|f(x, y)− F (x, y)| ≤ 1

6
+ 12 =

73

6
.

It now follows from inequality (18) in Theorem 10 that

|φ(x) − ψ(x)| ≤ 73

6
e3

√
3/8 ≈ 23.294541 ,

for x in [−1, 1].
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