Chapter 5

PROBABILITY DENSITIES

9.1

2¢e=% forxz >0
flz) = { 0 elsewhere

Since e~%® is always positive, f(x) is always > 0.

Thus, f(z) is a density.
5.2 To find k, we must integrate f(x) from z = 0 to x = 1 and set it equal to 1. Thus,
/01 kzdz =1 implies kaz*/4|;=1
which implies k/4 = 1. Thus, k = 4.

(a) P(.25< X <.75) = [P 4z¥dx = 2|2 = 80/256

(b) P(X >2/3) = [5547% = 2|3 = 65/81
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5.3 The distribution function is given by

— [ f(e)ds =

(a) P(X > .8) =1 — F(.8) = .5004
(b) P(2< X < .4) = F(4) — F(.2) = .024

5.4 (a) Let X be a random variable with density f(z). Then,

P(2<X < .8) = /2'8f(x)dx - /2 zdr = 2/2| = (64— .04)/2 = .30

1.2 1 1.2
P(6<X<12) = [ f(:c)dm=/6 zdz + /1 (2 - z)de

' 2
= 222 + (22-2%2)[" =32 + 18= 50

9.5
(0 z<0
z z2/2 0<z<1
Fl) = [ fls)ds = 1/2+ 25— s2/2]° 1<z <2
! T >2
(0 z<0
) 2?2 0<z<1
= 2r—12%/2-1 1<2<2
{1 T > 2

(a) P(X >18)=1—F(1.8) =1— [2(1.8) — (1.8)2/2—1] =1 — .98 = .02
(b) P(4< X <16)=F(1.6) — F(4) =2(1.6) — (1.6)2/2 — 1 — (4)2/2 = .84

5.6 We need to integrate f(z) from z = —o0o to z = oo and set it equal to 1.

/oo k/(1+2%)dz = k/ /(1 +2%)dz = k - arctan z| T
= k(n/2 + 7/2)=kn=1



Thus, k = 1/7.
5.7 Let X have distribution F'(z). Then,

(a) P(X <3) = F‘(3) =1-4/9=5/9 = .556

(b) P(4< X <5)=F(5) — F(4) = 4/16 — 4/25 = .09

5.8 The density f(z) is given by f(z) = L F(z). Thus, the density is

3
o= (37 12

59 (a) P(0<error < w/4) = [§/* coszdz = sinav|g/4 = sin(m/4) = v/2/2

(b) P(phase error > m/3) = f:/; coszdz = sin(m/2) — sin(n/3) = 1 — /3/2
=.1339

5.10 (a) P(no. of miles tires last < 10,000 miles)
-1 /10 e /(g = -—e’“’/m'm =1—-e12= 3935
20 Jo 0

(b) P(16,000 < no. of miles tires last < 24, 000)

_ _2_16 M a0y _ om16/20 _ -24/20 _ 48]
16

(c¢) P(no. of miles tires last > 30, 000)

1 le9)
_ —2/20 3, — =30/20 _ 9937
20 J3o € r=e
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5.11 Integrating the density function by parts shows that the distribution function is

given by

1
F(z)=1- gzzre"“/3 — /3
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Thus,

P(power supply will be inadequate on any given day)

= P(consumption > 12 million kwh’s)

Il

1 — F(12) =4e™ + e™* = 5e™* = .0916

5.12 By the definition of variance

= [ @-wfa)ds
= /_Oo ’ f(x)dr — 2u/_oo zf(x)dr + ,uQ/_OO f(z)dz
Using the fact that
/_oo 2 f(z)dz = /_oo zf(x)dr =p and /_oo f(x)dz =1

we have

0% = py — 247 + p® = py —

5.13 The density is

f(x)={4x3 0<z<l

0 elsewhere

Thus,
1
§= / 4a'de = 42° /35|, = 4/5
0

, 1
Py = / 4z°dr = 4:!36/6'(1) =2/
0

and the variance is

0% = o — u? =2/3 — (4/5)% = .0267
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3.14 In this case,

po= /02xf(a:)dz = /01:c2dx +‘/12:r(2—x)dz

= 23 + P PP = 1/8+4-1-8/3+1/3 = 1

and
, 2 1 2
Yy = /O:L’Qf(x)d:c = /msd:l: + /x2(2—x)d:r
0 1
1 2 2
= a:4/4‘O - 2:33/3’1 - :104/4’1
= 1/4 + 16/3 — 2/3 — 16/4 + 1/4 = 7/6
Thus,

=y —pt=7/6-12=1/6

5.15 The density is:

Thus,

m =/2 z(8z7%)dz = ——89:‘1i =4

2

and

’ oo
Uy = / 2*(8z7%)dz = 81nz| = o
2

Thus, 02 does not exist.

5.16 The density is

_J cosz O<z<7/2
f(z) = { 0 elsewhere
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Thus,
/2 ) /2 /2 )
po= / zeoszdr = zsinz|y® — / sin zdx
0 0
= /2 + cos:z:[g/2 = 7/2 — 1
and
, /2 9 5 . /2 /2 .
ty = / z°coszdr = = sm:c}o - 2/0 zsin zdx
0
g /2
= mzsinxi 7 2[ — zcosz|l? + / cos:cdz}
0 0
= m°/4 — 2[1-0] = 7%/4 — 2
Thus,

ol=n?/4—-2—7*/4+2n/2-1=7—3

5.17 The density is:

fla) = { (1/20)e72/? 1 >0

10 z<0

Thus,
1 00
p= -2—0/0 ze 2/ Pdx

Integrating by parts gives:

b= _l.e—z:/ZO

o0
°°+/ e—z/Zde
0 0
= 0-— 20t2—"‘°/20loo
0

= 20 (thousand miles)
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5.18 On |z| > 1, we have 2%/(1 + z2) > 1. So

;1 oo g2 2 oo g2 2 [oo
Ha 7r/_oo1+:czm 7 1x2" "7 h ¥

and this integration term is infinite. Thus u, is infinite and the variance does not

exist.
5.19 (a) P(less than 1.50) = F'(1.50) = .9332
(b) P(less than —1.20) = F(—1.20) = .1151
(c) P(greater than 2.16) = 1 — F(2.16) = 1 — .9846 = .0154
(d) P(greater than — 1.75) = F(1.75) = .9599

0.1151

519(a) z 519 (b) =z

/\:54
3 2 1 0 1 2 3 3 2 -1 0 1 2 3

519(c) z 519(d) z
5.20 Let Z be a random variable having a standard normal distribution.

(a) P(0< Z < 2.7) = F(2.7) — F(0) = .9965 — .50 = .4965
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(b) P(1.22 < Z < 2.43) = F(2.43) — F(1.22) = .9925 — .8888 = .1037
(c) P(~1.35< Z < —.35) = F(—.35) — F(—1.35) = .3632 — .0885 = .2747
(d) P(~1.70 < Z < 1.35) = F(1.35) — F(—1.70) = .9115 — .0446 = .8669

0.1037

520(a) z 520 (b) z

0.2747

520(c) z 520 (d) z

521 (a) P(Z <z2)= F(z)=.9911. Thus z = 2.37

(b) P(Z > 2) = .1093. That is, P(Z < z) =1 —.1093 or F(z) = .8907. Thus,
z=1.23

(c) P(Z > z) = .6443. That is, F(z) = 1 — .6443 = .3557. Using Table 3,
z=—=.37

(d) P(Z < z) = .0217 so z is negative. From Table 3, z = —2.02.

(e) P(—2 < Z < 2)=.9298. That is, F(z) — F(—z) = .9298, which implies that
F(z) — (1 = F(2)) = .9298 or F(z) = (1 +.9298)/2 = .9649. By Table 3,
z =1.81.
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ndom variable having distribution N(u,c?) ( nor

5.21 (e)

. §

mal with mean u

5.22 Let X be ara

Then

and variance o

P(IX - pl/o < 1) = P(~1 < (X - p)/o < 1)

F(1)—1+F(1) = 2F(1) - 1

(a) P(IX —pl <o)

.6826

9544

2F(2) — 1

(b) P(|X — ul < 20)

9974

2F(3) — 1

(c) P(IX — ul <30)
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(d) P(IX — u| < 40) = 2F(4) — 1 = 2(.99997) — 1 = .99994
5.23 (a) P(Z > zg05) = .005. Thus, F(z5) = .995 and z = 2.575 by linear interpo-
lation in the Table 3.

(b) P(Z > zg95) = .025. Thus, F(z25) = .975 and z = 1.96
5.24 Let X have distribution N(16.2,1.5625).

(a) P(X >16.8) =1— F((16.8 — 16.2)/1.25) = 1 — F(.48) = 1 — .6844 = .3156
(b) P(X < 14.9) = F((14.9 — 16.2)/1.25) = F(—1.04) = .1492

(c) P(13.6 < X < 18.8) = F((18.8 — 16.2)/1.25) —F((13.6 — 16.2)/1.25)
= F(2.08) — F(—2.08) = .9812 — .0188 = .9624

(d) P(16.5 < X < 16.7) = F((16.7 — 16.2)/1.25) —F((16.5 — 16.2)/1.25)
= F(4) — F(.24) = .6554 — .5948 = .0606

—

124 150 174 200 3 -2 -1 0 1 2 3
524 (a) x z
0.1492
124 150 174 200 3 -2 1 0 1 2 3

524 (b) «x z
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/

%

xxxxxxx

12.4 15.0 17.4 20.0 83 -2 -1t 0 1 2 3

5.24(c) «x z

0.0606

|||||||

124 15.0 17.4 20.0 83 2 -1 0 t 2 3

5.24(d) «x z
5.25

X -30

P[X >39.2] = 20 so P[—

2
> 9—] =.20
o
That is, 1 — F(9.2/0) = .20, and F(9.2/0) = .80. But F(.842) = .80. Thus
9.2/0 = .842, so o = 10.93.
5.26 From Table 3, P((X — u)/10 < .92) = .8212. Thus, given

X—p_ 2825—p

P[X < 282.5] = .8212 or P| 10 0

] = .8212

we maut have (282.5 — p)/10 = .92 or p = 282.5 — 9.2 = 273.3 To find P(X >
258.3), we need to find

1 — F((258.3 —273.3)/10) = 1 — F(—15/10) = F(1.5)
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From Table 3, F(1.5) = .9332. Thus, P(X > 258:3) = .9332
5.27 (a) We need to find P(X > 11.5), where X is normally distributed with u = 12.9

and o = 2.

P(X >115) = 1-F((11.5—12.9)/2) = F((12.9 — 11.5)/2)
= F(7) = .7580

P(11< X <148) = F((14.8—12.9)/2) — F((11 — 12.9)/2)
= F(.95)— F(—.95) = .8280 —.1711 = .6578

0.75

r T T T T T l

3 -2 -1 0 1 2 3

(4]

%

e

7

6.9 10.9 14.9 18.9 3 -2 -1 0 1 2 3

527 (b) «x

5.28 P(Z S —Z20.25

~—

=.25. Thus, —zg95 = —.675
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P(

Z
P(Z

IAIA

20_50) F(Zo.g,o) = .50. ThUS, 20.50 = 0
20.25) F(20.25

( ) = .75. Thus, zg.95 = .675

5.29 Let X be a random variable representing the developing time which is normally

distributed with © = 16.28 and o = .12.

(a) P(16 < X < 16.5) = F((16.5 — 16.28)/.12) — F((16 — 16.28)/.12)
= F(1.833) — F(—2.333) = .9666 — .0098 = .9568

(These values are determined by interpolation)

(b) P(X >16.20) =1 — F((16.20 — 16.28)/.12) = 1 — F(—.667)
= F(.667) = .7476

(c) P(X < 16.35) = F((16.35 — 16.28)/.12) = F(.5833) = .7201

vvvvvvvvvvvvvv

529 (a) x z

||||||||||||||

----------

\
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16.9 16.2 16.4 16.6

5.29 () x

5.30 From Table 3, we know that F'(1.645) = .95. We need to find a value z such that

P(X>z) = P((X-16.28)/.12> (z — 16.28)/.12)
= 1— P((X —16.28)/.12 < (z — 16.28)/.12)
= 1-F((z—16.28)/.12) = F((16.28—1)/.12) = .95

Thus, (16.28 — z)/.12 = 1.645, and = = 16.0826

5.31 P(.295 < X < .305) = F((.305 — .302)/.003) — F((.295 — .302)/.003)
= F(1) — F(—2.333) = .8413 — .0098 = .8315

Thus, 83.15 percent will meet specifications.

5.31 X

5.32 We must find p such that F((4 — u)/.025) = .02 or F((p — 4)/.025) = .98. But,
F(2.05) = .98. Thus, (u —4)/.025 = 2.05 or p = 4.05.
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5.33 We need to find p such that F((3 — u)/.01) = .95. Thus, from Table 3,
(3—1)/.01 =1.645 or u = 2.98355.

534 (a)

P(59< X <6.1) = F((6.1—6)/.06) — F((5.9—6)/.06)
— F(1.667) — F(—1.667) = .9522 — .0478 = .9044

The proportion of rods exceeding the tolerance limits is 1 — .9044 = .0956

7

7

7.

5.8 5.9 6.1 6.2 3 -2 -1 0 1 2 3

534 «x z

(b) If 99% of the rods must be within tolerance, o should satisfy 2F(.1/0) — 1 =
.99, that is F(.1/0) = .995. Hence .1/0 = 2.575 or o = 0.0388

5.35 If n = 30 and p = .60 then u = 30(.60) = 18 and 0% = 30(.6)(.4) = 7.2 or
o = 2.6833.

(a) P(14) = F((14.5 — 18)/2.6833) — F((13.5 — 18)/2.6833)
= F(—1.304) — F(—1.677) = .0961 — .0468 = .0493

(b) P(less than 12) = F((11.5 — 18)/2.6833) = F(—2.42) = .0078

5.36 In this case, n = 1200, p = .02, u = 24, 0% = 23.52, 0 = 4.8497. Thus,

P(at least 30 need repairs) = 1— F((29.5 — 24)/4.8497)
1-F(1.13) = 1— 8707 = .1292
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5.37 In this case, n = 200, p = .25, u = 50, 02 = 37.5, 0 = 6.1237. Thus,

P(fewer than 45 fail) = F((44.5 — 50)/6.1237)
= F(-90) = .1841

5.38 In this case, n =84, p= .3, u = 25.2, 02 = 17.64, 0 = 4.2.

F((30.5 — 25.2)/4.2) — F((19.5 — 25.2)/4.2)
= F(1.26) — F(—1.36)
— .8962—.0869 = .8093

5.39 Again, we will use the normal approximation to the binomial distribution. Here,

n =40, p = .62, u = 24.8, 02 = 9.424, 0 = 3.0699. Thus,

F((20.5 — 24.8)/3.0699) = F(—1.40) = .0808

5.40 (a) We will use the normal approximation to the binomial with n = 1,000, p = .5,
p = 500, 02 = 250, 0 = 15.81. The proportion from .49 to .51 means the

actual number is from 490 to 510. Thus,

F((510.5 — 500)/15.81) — F((489.5 — 500)/15.81)
— F(664) — F(—.664) — = .7467 — .2533 = .4934

(b) Similar to part (a), with parameters n = 10,000, p = .5, u = 5,000, 0% =
2500, o = 50. Thus,

F((5100.5 — 5000) /50) — F((4899.5 — 5000) /50)
= F(2.01)— F(=2.01) = .9778 — .0222 = .9556
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5.41 Let f(z) be the standard normal density. Then F(—~z) = [=Z f(z)dz. Using the
change of variable, s = —z, and the fact that f(z) = f(—z), we have

4

F(=2) = — / " f(—s)ds = / " f(s)ds=1— / fls)ds =1 — F(2)

o0 z —00

5.42 To find the mean of the normal density, we need to find

(271'02>—1/2 /oo T exp [” (352—0;1)2} dx

—00

- o [ e (5]

Using the change of variable u = (x — u) /o yields an odd integrand,

uexp(—u?/2) so the interal is 0. Thus, the mean is p.

5.43 We need to find

\/2;? /_o:o(:c — p)?exp l———(x — M)T dx

_ \/21_05/:0(33—“)2@{}) {—(12%2’:‘)—%} do

since the integrand is an even function. Using the change of variable s = (x —pu) /o,
the variance is equal to

2
204 [ ,

ol s? exp[—s?/2]ds

Integrating by parts with u = s and dv = sexp[—s?/2]/(2m)!/2ds shows that the

variance is equal to

202 [—s -exp(—s2/2)/(2m)Y? | + /Ooo exp[—s2/2]/(27r)1/2ds}

The first term is zero and the second is 1/2 since this is an integration of half of
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the standard normal density. Thus the variance is o2

544 (a) Normal with mean = 11.3000 and standard deviation = 5.70000

X P( X <= x)
8.4930 0.3112

I

(b) Normal with mean = 11.3000 and standard deviation = 5.70000

x P( X <= x)
16.0740 0.7989

5.45 The uniform density is:

0 elsewhere

f(x)z{ 1/(f-a) a<z<f

Thus, the distribution function is

1 r>p
F(x)={(m—a)/(ﬁ—a) a<z<pf
0 <«

5.46 (a) P(.010 < error < .015) = (.015 — .010)/.050 = .1

(b) P(—.012 < error < .012) = (.012+ .012)/.050 = .48

5.47 Suppose Mr. Harris bids (1 + z)c. Then his expected profit is:

0P(low bid < (1 + z)c) + zcP(low bid > (1 + z)c)

2c
= :cc/ 3als = 3zc[2c — (1 +x)c]/4c = 3c(z — 1%)/4
(1+z)c aC

Thus, his profit is maximum when z = 1/2. So his bid is 3/2 times his cost. Thus,

he adds 50 percent to his cost estimate.
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5.48
ﬁﬂ /000 zz~ ' exp|—(Inz — @)?/(26%)|dz

\/ﬁﬁ/ exp[—(Inz — )?/(26%)]dx

Using the change of variable y = Inx gives:

po= \/%ﬁ / e¥ exp[—(y — @)?/(26%)]dy

_ 7._? / exply — (y — @)/(26%)]dy

_ \/é?ﬂ / exp[—(y® — 2ya + o? — 26%)/(26%)]dy

- \/m / exp[—(y* — 2(a + %)y + o?)/(26%)|dy
\/5'7?6 / exp[~((y — (a + %)) — (e + 6%)° + @*)/(26%)]dy
_ I/W / _exp[—((y — (a+6))* - 206" - 5%)/(26%)ldy

= expla+8/2- o [ expl—(u— (o + B7))"/(26%)}dy
= expla + /2]

5.49 Iy/I; is distributed log-normal with a = 2, 32 = .01, 8 = .1. Thus,

P(T<Io/I; <7.5) = F((In(7.5) — 2)/.1) — F((In(7) — 2)/.1)
= F(.149) — F(—.54)
= .5592 — .2946 = .2646

5.50 Using the formulas for u and o2 for the log-normal distribution with @ = —1 and
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B = 2, gives:

p = expla+f%/2] = exp[-1+4/2] = ¢' = e = 2718

0_2 — e2a+[32 [eﬁz N 1] — e—2+4[e4 _ 1] — 62[64 _ 1] — 66 _ 62 — 396
Thus, 0 =19.9

5.51 (a) P(between 3.2 and 8.4) = F((In(8.4) +1)/2) — F((In(3.2) + 1)/2)
= F(1.564) — F(1.0816) = .9406 — .8599 = .0807
(b) P(greater than 5) =1 — F((In(5) +1)/2) = 1 — F(1.305) = 1 — .904 = .0960

5.52 Using the formulas for u and o for the gamma distribution with o = 2 and 8 = 2,
gives u = af = 4 and, 0? = a?> = 8. Thus, 0 = 2.8284.

5.53 When o =2 and §=2,T(2) =1. So

f(z) = { re™%?/4 >0

0 <0

Thus,
4 1 4
= = — —-'7"/2
P(X < 4) /o f(z)dz 4/0 ze " %dx

Integrating by parts gives

1 1
_ixe—z/2 Ig+§/0 e % 2dr = 2¢72 — /2 lg

= 1-—3e7%2= 5940

5.54 The density of the gamma distribution with a =3, =2 is

r?e~%2/16 >0



Thus,

1 o]
P(power inadequate) = 16 / ze ™ 2dy
12

Integrating by parts gives
o0
(1/16) [—29:26_””/2 1T + 4/ xe“z/2da:]
12
Integrating the second term by parts gives
(1/16) [—21‘26—95/2 1T + 4 (——2.’176_2/2 I3 + 2/ e‘x/deﬂ
12

= (1/16)(—2z%™"/* — 8ze™*/% — 16e7%/2) |2 = 25¢75 = .062

5.55 (a) The probability that the supports will survive, if 4 = 3.0 and 02 = .09, is

P(supports will survive) = 1—F (11@—?—)3?_39) = 1— F(1.655)

= 1 -.9508 = .0492

(b) If u = 4.0 and 02 = .36, then

—4.
P(supports will survive) = 1—F <}EE§Z——O> = 1- F(-.84)

.60
= F(84) = .7995
9.56
:U'I _ 1 /oo 2200 le=e/B iy — 1 /oo rotle—2/B g,
2 BeT(a) Jo BeT(a) Jo

Using the change of variable y = z/3 gives

: 1 oo 2 [
2 = Fal(a) /0 (By)**e vpdy = F’?a) /0 y**e Vdy

143
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= Ba+1)a

Thus,
o = f*a+1)a - a?B? = of?

5.57 We can ignore the constant in the density since it is always positive. Thus, we

need to maximize f(z) = x® 'e~%/#. Taking the derivative

I

f(z) = (a— 1)z %P — zo71e72/B |3 = 422672/ (0, — 1 — 2/ 9)

Setting the derivative equal to zero gives the solution z = f(a — 1). For a > 1,
the derivative is positive for z < f(a — 1) and negative for z > S(a — 1). Thus,
B(a — 1) is a maximum. Note that x = 0 is a point of inflection when o > 2.
When a = 1, f(z) = e®/# which has a maximum in the interval [0,00] at = = 0.
When 0 < a < 1, the derivative does not vanish on (0,00) and f(z) is unbounded

as = decreases to 0.

5.58 The exponential density is

e B/B £>0,8>0
f(z) = { 0 elsewhere

and the exponential distribution is
T
F(z) = / f(s)ds=1—¢e2/" for z>0.
0
(a) P(X <20)=1—e"20/%0 =1 — ¢=2/5 = 3297

(b) P(X >60)=1— (1 —e%/%0) = ¢5/5 = 3012

5.59 Since the number of breakdowns is a Poisson random variable with parameter
A = .3, the interval between breakdowns is an exponential random variable with

parameter A = .3.
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(a) The probability that the interval is less than 1 week is 1 — e~(31 = 259 or

25.9 percent.

b) The probability that the interval is greater than 5 weeks is e (3% = 223 or
( p y

22.3 percent.

5.60 Assuming that the time between calls is distributed as an exponential random

9.61

5.62

5.63

variable with A = .6, the probability that there are no arrivals in an interval of

t 6t

length t is e ™ = e~

Let N be a random variable having the Poisson distribution with parameter at.
Then P(N = 0) = (at)% /0! = ¢~*. Thus, P(waiting time is > t) = e~®* and

P(waiting time is <t)=1—e™ .

The density is given by the derivative of P ( waiting time is < ¢ ). Thus, the

density is ae™t.
The beta density is

I'(a+0) o1
INCHINCE)

for0<z<1l,a>0,and 3>0. Fora=3and =3

flz) = (1-2)""

f(z) = st (1= 2 = oo

(1 — z)? = 30(x* — 22° + %)

/Olf(:v)da: - 30/()1(x2—2x3+x4)dx = 30(z/3 — 2%/2 +2°/5) |}
— 30(1/3-1/2+1/5) = 1

as required.
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5.64 When o =2 and § =9, the beta density is

D g - = %n‘(l - )" = 90z(1 - z)°

Thus, the required probability is given by

90 /0.] (1 —x)%dx = 90 /O.](:r ~1+1)(1-2)%z
= 90[(1 - 2)'°/10 — (1 — 2)°/9) |;]

= 90[(.9"° = 1)/10 — (.9° = 1)/9] = .2639

5.65 (a) The mean of the beta distribution is given by u = a/(a + 8). Thus, in the
case wherea=1land B=4, u=1/(14+4)=1/5=.2

(b) When a =1 and @ = 4, the beta density is

_TO) o _ gy o 0%(1 - 1)* = 4(1 - z)°

Thus, the required probability is given by

1
4 (1—12)%dz=—(1-x)" |, = (.75)* = 3164

.25

5.66 Since the coefficient I'(a+8)/T'(a)I'(8) is always > 0, we need to find the maximum

of f(z) = z%7'(1 — z)P~!. When a > 1, § > 1, taking the derivative gives

fa) = 271 -2 ((a = 1)(1 - 2) — (8- L)a)

= 2°7?(1 —2)P ((a = 1) = (a + B — 2)1)

Thus, the derivative is 0 when z = (o — 1)/(a+ 0 — 2). It also equals 0 at z = 0
and z = 1if a > 2 and 8 > 2 respectively. Since f(0) = 0, f(1) =0, f(z) > 0,

and f'(z) is continuous, z = (a — 1)/(a = B — 2) is a maximum.
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5.67 Let X be Weibull random variable with o = .1, § = .5 representing the battery
lifetime. Then the density is f(z) = (.1)(.5)z~%¢==" for £ > 0. Thus,

100

P(X < 100) = / (1)(5)z—Se~ 1" dz

0

Using the change of variable y = z-° gives:

10
P(X < 100) = .1/ e~y = —e~W [0 =1 ¢! = 6321
0

5.68 (a) The expected value of the Weibull random variable is given by
p=a PT(1+1/p)
When a = 1/5 and 8 =1/3,
p=(1/5)"I(4) = 125-6 = 750

(b) The probability is given by

1 1 300 —xl/3
2 L1731 z

exp(

3001/3 1
)dmz/ Ze ¥/3dy
5 3Jo 0 )

—300'/3

=1 — exp( )=1-—¢e13%% = 7379

5.69 The probability is

/ (_025)(_500):6—.56—(.025)1-500dI _ / 02569254 gy
4,000 00

= e 0BV = 9057
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5.70
"= /0°° 20z e dz = /0°° LB+l e—ae? g
Let y = az®. Then dy = afz°'dz. Thus,
, o [y 2/8 3 a 00 B 3 2
,u2=/(; <a) e ¥dy =a 2/5/0 y2/ﬁe Vdy = 2/ﬂF(5+1)
Thus, 0 = a=?#[[(1 +2/8) — (T(1 + 1/6))?]

5.71 (a) The joint probability distribution of X; and X, is

( 2 ) ( 1 ) ( 2 )
z1 T 2—11— T
f(z1,20) =

where z; = 0,1,2, 29 = 0,1, and 0 < z; + 29 < 2. The joint probability

distribution f(z;,zs) can be summarized in the following table:

Xo
f(zy,29) | O 1 | Total
0.1 2 3
X1 1.4 2 .6
21.1 0 1
Total | .6 4 1

(b) Let A be the event that X; + X3 = 0 or 1, then

P(A) = f(0,0) + f(0,1) + f(1,0) =1+ .2+ 4=7
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(c) By (a), the marginal distribution of X, is
f1(0) = f(0,0)+ f(0,1)=.1+.2=.3

A1) = f(LO)+f(L,1)=4+2=.6
f12) = f(2,00+ f(2,1)=.14+0=.1

(d) Since
£2(0) = £(0,0) + £(1,0) + £(2,0) = .1+ .4+ .1 = .6,

the conditional probability distribution of X; given Xo = 0 is

_ f(0,0) .1 1
_F1,0) 4 4
fl(llo) - f2(0) —_5_6
_ f(2,0) 11
f1(20) = 50 66

5.72 (a) The independent random variables X; and X, have the same probability
distribution b(z; 2, .3). Hence the joint probability distribution of X; and X,

is

2 2 2 2—
f(l‘l,l'z) = b(.’L‘l, 2, 3) . b(il?g, 2, 3) = R A 3527 2
Iy i)

— 2 2 .3:51 +x2 .74—:1:1—12
I I2

where z; =0,1,2, and z; =0, 1, 2.
(b)

P(X, <X2) = f(0’1)+f(0’2)+f(1’2)
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()~
(1)

= .2058 4 .0441 + .0378 = .2877

5.73 (a) P(Xi <1,X,<1)=F(1,1)

= e dxod —1 1 d __zf l=1/4
J— J—— —_— _1
/0 /0 Z1Z2dxodx; 2/0 n1dzy = - lo /

(b) The probability that the sum is less than 1 is given by:

/01 /01—-11 x1$2d.'L'2d.’L'1 — (1/2) [)1 1‘1(]_ _ ml)del
= (1/2)(z?/4—23/3+22/2) |1 = (1/2)(1/4—2/3+1/2) =1/24

5.74
oo 2
fl(l'l) = / f(l'l,l'g)d.’lfg = A T1Z9dTo = 213 for 0 < T <1.

oo 1
fg(xg) = /_oo f(.’L'l,IUQ)dZ'l = /(; IL'ICEQd.’IIl = 1'2/2 for 0 < Ty < 2

5.75 The joint distribution function is given by:
R e L=, 2, 2
F(z1,z5) = / / $189dsads; = —2-/ T581ds; = rix5/4
o Jo 0

for 0 < ;1 < 1 and 0 < z9 < 2. Thus, the distribution function is
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0 1 <0orzy, <0

rir2/4 0<z;<land 0<xy<2
F(zy,z9) =¢ 72/4 11 >1and0<zy <2

z? 0<zy<1and zy>2

1 1 > 1and zo > 2

The distribution function of X is

Fi(z;) =/0 lfl(sl)dsl =/0 1 2s1ds; =z7  for 0 < z; < 1.

Thus,

0 I S 0

Fi(z))=4 22 0<1 <1

1 I Z 1

Similarly,
x 1 T2
FQ(.’L’Q) = /0 ’ f2(82)d32 = 5/0 82d82 = 1133/4 for 0 < T < 2.

Thus,

0 T2 S 0
Fo(zp) =4 73/4 0<z9<?2
1 Ty > 2

It is easy to see that Fy(z;) - Fo(x2) = F(x1,%2). Thus, the random variables are

independent.

576 P(2<X <.5, 4<Y < .6)

— /;/jg(x+y2)dyd$ - / [ yz+—)|]

3/2 (22 +152/3)dz = ¢ (-22/2]§+.152¢/3 |3)
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= .04345

5.77 The joint distribution function is given by

2xy3

T (Y6 R
F(ﬂf,y)=/0/oyg(u+v2)dvdu=%+ for0<z<1l,0<y<1

Thus, the joint distribution is

r<0ory<0
3/5)x%y + (2/5)ry® 0<z<1, 0<y<1
3/5)y + (2/5)y® r>1,0<y<l1
3/5)z% + (2/5)x O<z<l y>1
z>1,y>1

F(l‘,y) =

NSO

The probability of the region in the preceeding exercise is given by

F(5,.6)— F(2,.6)— F(5,.4) + F(2,4) = .1332—.03168 — .0728 + .01472

= .04344
5.78 The marginal density for X is given by
16 9 6 ¥\, 6z 2
=/ 2 dy = - Yyp2_ 2
fw) = [ S i =2 s+ L) =2 42
The marginal density for Y is given by
16 oy B[z o\ _ 3 6y°
f2(y)—/0 g(x-%-y )dz 5(2 +y $> 0= 5+ 5

(a) Thus,

P(X > 8) = /81(6:5/5 +2/5)dz = (32%/5+ 22/5) |} = .296



P(Y <.5)= [ ® (/5 + 6y2/5)dy = (3/5)(.5) + (2/5)(.5)° = .35

5.79 (a) By definition

filzly) = f)f:(y?;) ={ é$+y2)/(%+y2) for0<y<1,0<z<1

elsewhere.

(b) Thus,

8

+ .52 4z/3+1/3 for0<z <1
14 .52 0

elsewhere.
(c) The mean is given by

/01 z(4z/3 4+ 1/3)dz = (423/9 + 22/6) |5 = 11/18

5.80 (a) The joint density is:

f(@1,22) ={

(2/3)(1’1 +2.’L‘2) O0<z <1, O<zog<l1
0 elsewhere

In the example, it was shown that the conditional density of the first random

variable given that the second takes on the value z, is

22111 + 41’2
h@ifzs) = 1+ 4z,

When z5 = .25, fi(z1|ze = .25) = 21 + 1/2.

(b) The marginal density of X, is

filz1) = /Olf(:rl,:m)du = /Olg(zl + 2x5)dxy

153
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xo=1

2 2
= g(ﬂlez ) om0 = §($1 +1)
Thus,

2(z1 +272)/3 11 + 279

fz(xQle): 2(1’1+1)/3 - $1+1

for0<z;<1,0< 2y < 1.

5.81 (a) To find k, we must integrate the density and set it equal to 1. Thus,

/01 /02 /0°° k(z +y)e *dzdydz /01 /02 k(z + y)dydz

1
=/ k(2 + 2)dz = 3k = 1
0
Thus, k= 1/3.

(b) P(X <Y, Z>1)

1 1 r2 poo _ded 1 1 r2 dd
= 5/0/2/1 (x +y)e zy:z:-%/o/z(m—#y)ym
1
= 512/ (2z +2 — 32?/2)dz = 5/(6e) = .3066
0

582 (a)
filz) = /()Z/Oooé(x—f—y)e"zdzdy = 2(z+1)/3
p) = [ [ 5@+yetdds = u+1/2)3
fa(z) = /01 /()2%(x+y)e"zdydx = e ¢
Thus,

1

K@RWHE) = 3W+1/2) 2@ +1) e

2
= S@y+ty+z/2+1/2)e”
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4 SEtye = f(z,9,2)

Thus, the three random variables are not independent.

(v
sy = [C3etveds = sy
f@,z) = /02%(:1:—|—y)e“zdy _ g(.r—f-l)e‘z
fwe) = [ Fl+eds = sy+1/2)e
Since

fle,) = 3@ +9) # A@) ) = 2oy +y+2/2+1/2),

X and Y are not independent. Since

f(z,2) = 3&+ Ve = A=) fs(2),

X and Z are independent. Since

£(,2) = 5w+ 1/2™ = K s(2),

Y and Z are independent.

(a) Notice that f(z1,z2) can be factored into

—’_2770 €Xp [ﬁ(xl - .u1) ] : oo €Xp [’2‘;5(1102 - Mz) ]

Thus, X; and X, are independent normal random variables. Thus,
P(-8<X;<14,-9<X;<3)=P(—-8< X; <14)P(-9< X< 3)
= (F((14-2)/10) — F((-8 - 2)/10)) (F((3 + 2)/10) — F((-9 + 2)/10))
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= (F(1.2) = F(-1))(F(.5) — F(-.7))
(.8849 — .1587)(.6915 — .2420)
= (.7262)(.4495) = .3264

(b) When p; = uy = 0 and o = 3, the density is

1

f(xl, 372) = é;a— €xXp

-1
202

55 (a1 + x%)}
Let R be the region between the two circles. We need to find

dx1dzs

1 1
.@%ﬁepbﬁﬁ+%)

Changing to polar coordinates gives

/ 0 27ra2

/3;156"1)( r?/(20%)rdr = — exp(—r?/(20%)) |5

5.84 Let R be the region for acceptable holes. Then
1
P(hole will acceptable) = /R 8 exp(—(z? + z3)/8)dz dx;

Changing to polar coordinates gives

2 1 81
/ / — e Brdfdr = / Ze"rz/srdr = —e /8 Iﬁ =1-¢38
0
5.85 The expected value of g(X;, X>) is

00 1 2
/ 9(z1,xs) f (21, x9)dx1dTy = /O/O(acl-i-xg)mlxzdxgdml

—00

1
= /()(2x%+8x1/3)da:1 = 2
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5.86 The expected value of g(X,Y) is given by

6,1 1 1
[ [ gt vta =2 [+ Prte = 35+ 1) = §

5.87 The area of the rectangle is X - Y. Thus the mean of the area distribution is given
by

L+a/2 W+b/2 :L'y L+a/2 T
/ / dydr = / —Wdx = LW
—a/2 —b/2 ab L—a/2 Q

The variance is given by

/ L:ZQ / W:ZZ ‘az‘dyd“" (WL = (W?+0b*/12)(L* +a?/12) — (WL)*
= %((M’V)2 + (bL)* + (ab)?/12)
5.88
f_(__wz_) T (171,332)
i A7 R S APN
Thus,
f1(331)

fi(z1|ze) = fa(z2|21)

f2($2)
580 (a) E(X;+Xs) =E(X1)+ E(Xs) =1+ (1) =0.

(b) Var(X; + X3) = Var(X;) + Var(Xs) = 5+ 5= 10.

590 (2) E(X: — Xa) = E(X)) + (~1)E(X,) = (=2) + (=1)5 = —T.
(b) Var(X; — Xp) = Var(X1) + (-1)?Var(X2) =2+ (-1)%(5) = 7.
591 (a) E(X;+2X;—3) = E(X; +2X,) —3 = E(X))+2E(X,) —3 = 1 +2(—2) —3
- _6.

(b) Var(X; 42X, — 3) = Var(X; +2X,) = Var(X;) + 22Var(Xz) = 5 + 2%(5)
= 25.
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5.92 (a) When checking a single chip, the time saving is Y = X; — X,. Hence the

expected time saving is

E(Y)=E(X: - X;) = E(X;) — E(X3) = 656 — 54 = 11 milliseconds

(b) E(200Y) = 200E(Y) = 200(11) = 2200 milliseconds = 2.2 seconds

(¢) Var(Y) = Var(X; — X,) = Var(X;) + (-1)?*Var(X,) = 16 + (—=1)?9 = 25
Var(200Y) = 2002VCLT(Y) = 200252 = (1000)2.
Hence the standard deviations of Y and 200Y are 5 and 1000 milliseconds

respectively.
593 (a) E(Xi+Xo+ -+ Xg) =E(X1)+ E(X2) + -+ E(Xq)
= 20(10) = 200.

(b) Var(X:+ Xo+ -+ -+ Xo0) = Var(Xy) + Var(Xs) + - - - + Var(Xy)
= 20(3) = 60.

5.94 (a) For any seven observations the normal-scores are those z;, i=1,...,7 that satisfy

F(z)=1/(7+1). Thus,

F(z) = .125 = F(—1.15), F(z)=.25= F(~.67),
F(z3) = .375 = F(—.32), F(z4) = .500 = F(0),
F(z) = 625 = F(32),  F(z) = .750 = F(.67),
F(z7) = .875 = F(1.15)

So, —1.15, —0.67, —0.32, 0, 0.32, 0.67, 1.15 are the normal-scores of any seven

observations.

(b) The normal-scores plot using the seven observations 16, 10, 18, 27, 29, 19 and

17 is given in Figure 5.1.
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o | °
l
> 0 e "
LO _
o L T T T T T
-1.0 0.0 05 1.0

normal-scores

Figure 5.1: Normal-scores plot for Exercise 5.94b

5.95 (a) For any eleven observations the normal scores z;, i=1, ..., 11, satisfy F(z;) =

/12, thus using Table 3 the normal-scores are:

—1.38,-0.97,-0.67,-0.43, -0.21,0,0.21, 0.43,0.67,0.97,1.38

(b) The observations on the times (sec.) between neutrinos are: .107, .196, .021,
283, .179, .854, .58, .19, 7.3, 1.18, 2.0. The normal-scores plot is given in
Figure 5.2.
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Times between neutrinos

Normal-scores

Figure 5.2: Normal-scores plot for Exercise 5.95b

5.96 (a) The normal-scores plot of the aluminum alloy strength data is given in Figure

5.3.

68 70 72 74

Strength of aluminum alloy

Normal-scores

Figure 5.3: Normal-scores plot for Exercise 5.96a

(b) The normal-scores plot of the decay data is given in Figure 5.4.
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20

Decay time
1.0

\

Normal-scores

Figure 5.4: Normal-scores plots for Exercise 5.96b

5.97 (a) The normal-scores plots of the logarithmic, square root and fourth root trans-

formations for the decay time data are given in Figures 5.5, 5.6 and 5.7,

respectively.
-~ °
..

’Q‘)\ [ L]
g o /
- &
g /
2 o ~
2 -

™ oe®

' °

Normal-scores

Figure 5.5: Normal-scores plot of the log(decay time) data. Exercise 5.97a
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Normal-scores

Figure 5.6: Normal-scores plot of square root of the decay time data. Exercise 5.97a

4-th root of decay time
1.0

A

Normal-scores

Figure 5.7: Normal-scores plot of fourth root of the decay time data. Exercise 5.97a



Figure 5.8: Normal-scores plot of the log(interarrival time) data. Exercise 5.97b
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(b) The normal-scores plots of the logarithmic, square root and fourth root trans-

formations for the interarrival time data are given in Figures 5.8, 5.9 and 5.10,

respectively.

log(Interarrival time)

Square root of interarrival time

9 10 11

8

150 250

50

Normal-scores

Normal-scores

Figure 5.9: Normal-scores plot of square root of the interarrival time data. Exercise

5.97b

€
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4-th root of interarrival time

Chapter 5 PROBABILITY DENSITIES

16

12

Normal-scores

Figure 5.10: Normal-scores plot of fourth root of the interarrival time data. Exercise

5.97b

5.98 The simulated values of the Weibull random variable with o = .05 and 8 = 2.0

5.99

are:

r = (—201n(1 — .26))
z = (—20In(1 — .12))2

Nf=

2.45400,
1.59896.

z = (—20In(1 —.77))2 = 5.42158,

The time it takes a person to learn how to operate a certain machine is normal

random variable with mean p = 5.8 and standard deviation ¢ = 1.2 and it takes

two persons to operate the machine. Using Minitab , we generate two columns of

normal variates having mean 5.8 and standard deviation 1.2. Each row represents

a pair of workers.

ROW

W N =

C1

6.16327
5.37122
5.21900
4.73400

Cc2

5.71118
5.15066
6.44433
6.35715
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The simulated times it takes four pairs to learn how to operate the machine are

6.16327, 5.37122, 6.44433 and 6.35715.

5.100 We generate the five exponential variates, with mean § = 2 in Cl. Each row

represents the durability of paint on one house.

ROW C1

3.10639
0.96682
3.24836
2.83178
2.27078

gD W=

(a) The time of the first failure is .96682

(b) The time of the fifth failure is 3.24836

5.101 (a) The density is

3¢ >0
f(z) = { 0 elsewhere

Thus, the corresponding distribution function is

S Beds=—e"¥ [ =1—€e"% forz>0
F(z) = { 0 elsewhere

(b) We solve u = F(z) for z. Since u = F(r) =1—€e"% soe ™ =1—-uor

—.3z = In(1 — u). The solution is then z = —In(1 — u)/.3

5.102 (a) The density is

[ apxf-te=®® forz >0
fle) = { 0 elsewhere

Thus, the corresponding distribution function is
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F(z) = Iy afs’leme’ds = —e~os" lo=1-— e forz >0
0 elsewhere

(b) We solve u = F(z) for z. Sinceu = F(z) =1—-¢" so e =1—qyor

—az? = In(1 — u). The solution is then z = (—(1/a)In(1 — u))*/?.

5.103 Let Z1, Z, be independent standard normal random variables. Under a change of

polar coordinates, Z; = Rcos(0), Z, = Rsin(0), the joint density of R and © is

-r?/2 1

re 5 0<0<2m,r>0
f(r,0) =

0 elsewhere

(a) The marginal distribution of © is

f2(0) = /Ooo f(r,0)dr = % /Ooo re~"2dr

1
o

1

_e T2y >0 —
( € )lO 27],'

Hence © has uniform distribution on (0, 27). The marginal distribution of

R is

1

2w
fi(r) = QL/ re™"/2dg = —2—7r-'re"'2/29 7 = re/? forr >0
 Jo

Thus, R has Weibull distribution with o = 1/2 and § = 2. Since
fi(r) f2(0) = £(r,0)
R and © are independent.

(b) Let U; = ©/27 and Uy = 1 — e~ /2, then U; and U, are independent since
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R and O are independent. The distribution function of Uy is

Fi(u;) = P(Uy < w) = P(© < 2muy) =

u; for0O<u; <1

Thus, U; has uniform distribution on (0, 1). The distribution function of U,
is
F2(u2) = P(Ug < Ug) = P(]. - €—R2/2 < UQ)
= P(R*< —2In(1 —uy)) = P(R < (=2In(1 — uy))?)

—r2/2 l(—? In(1—ug))/?
0

= —e = ’u2

Thus, U, has a uniform distribution on (0, 1).

(c) Since 1 — Uy = e~ /2 and U; = ©/2n, we have
Z1=RcosO = \/—2lne#/2¢cos© = 1/—21In(1 — Us) cos(2nU;)

Zy = Rsin® = y/—2Ine#/25in© = 1/—21In(1 — U,) sin(27U;)

Note that 1 — U, also has a uniform distribution on (0, 1). Hence InU, can
be used in place of In(1 — U;) in above equations, when we use independent
. uniform random variables U; and U, to generate independent standard normal

variables Z; and Z,. This completes the proof.

5.104 The eight exponential variates we generated, with § = .2, are:

0.053320 0.025485 0.071669 0.377028 0.208014 0.026851
0.433405 0.747732

5.105 (a) Histogram of the time of the 100 first failures is
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10 20 30 40

_—l—l_\.—ﬁr—
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0

X

Figure 5.11: Histogram of the 100 first failure times. Exercise 5.105a.

(b) Histogram of the time of the 100 fifth failures is given in Figure 5.12.

10 20 30

—
]

X

Figure 5.12: Histogram of the 100 fifth failure times. Exercise 5.105b.
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5.106 Eight generated values for the normal random variable with 4 = 123 and o = 23.5
are:

139.529, 159.167, 129.411, 143.942, 176.539, 88.797, 89.581, 196.666

5.107 (a) The histogram of the 400 learning times for the pairs of operators is

80 120
]

40

o | k

(b) The histogram of the 100 values representing the time to train four pairs of

operators is given in Figure 5.13.

10 20 30

Il
J

Figure 5.13: Histogram for Exercise 107b.
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5.108 Let X be a random variable with density function

f(a:)z{ k(1—z?) for0<z<1

0 elsewhere

To find k£ we need to integrate f(z) from 0 to 1 and set it equal to 1. Since,
1
/ k(1 — 2%)dz = k(z — 2°/3) |L = k(1 — 1/3) = k(2/3) = 1,
0

we have k = 3/2.
(a)

P(1<X<.2)= -‘;3/'2(1 —z’)dz = ;(r —2%/3) [1

1

3 3.293 .293
=2(2-. —14.001/3) =222 =22 = g
5(:2—.008/3 —.1+.001/3) = 5= : 465

(b) P(X > .5) = (3/2)(x — £3/3) |, = (3/2)(1 — 1/3 — .5 + (.5%)/3) = 5/16
5.109 The distribution function is given by:

F(z) = /x f(s)ds = /(:E g(l — §%)ds = -2—(3: —z°/3)

—0o0

Thus,

(a) P(X < .3) = F(.3) = (3/2)(.3 — .33/3) = .4365

(b) P(4 < X < .6) = F(.6) — F(.4) = (3/2)(.6 — .63/3) — (3/2)(4 — .43/3)
= .792 — .568 = .224.

5.110 (a) P(error will be between —0.03 and 0.04)

.04 .02
- / 9%5dz = [ 25dz =1
—.03 —.02



(b) P(error will be between —0.005 and 0.005) = 25(.01) = .25
0.111

1 3 1 3 /22 o 3
= = — 1—2 = - _— — 1:—
# /oxf(x)d‘r 2/0x( z)dz 2(2 4)'0 8
Next,
Co3 L, 3
=2 1— =2
Ha 2/0“ z)dr =3

so the variance is equal to

5.112 Let Z be a random variable with the standard normal distribution.

(a) P(0< Z < 2.5)=F(2.5) — .5 = .9938 — .5 = .4938
(b) P(1.22 < Z < 2.35) = F(2.35) — F(1.22) = .9906 — .8888 = .1018

(¢) P(~1.33< Z < —.33) = F(—.33) — F(—1.33)
= .3707 — .0918 = .2789

(d) P(-1.60 < Z < 1.80) = F(1.80) + F(—1.60) = .9641 — .0548 = .9093

0.1018

5112(a) z 5112(b) z
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/ 0.9093

5112 (c) z 5112 (d) z

5.113 Let X be a normal random variable with y = 4.76 and o = .04

(a) P(X < 4.66) = F((4.66 — 4.76)/.04) = F(—2.5) = .0062

3 -2 -1 0 1 2 3

5.1183(a) x z

(b) P(X >4.8)=1— F((4.8—4.76)/.04) =1— F(1) =1 — 8413 = .1587



(c) P(4.7 < X < 4.82) = F(4.82 — 4.76)/.04) — F((4.7 — 4.76)/.04)
= F(1.5) — F(—1.5) = .9332 — .0668 = .8664

0.1587

4.6 47 4.8 4.9 3 2 -1 0 1 2 3

5.113(c) x z

5.114 (a) F(z10) = .90 = F(1.28), thus 210 = 1.28

(b) F(Z.OOI) =.999 = F(309), thus Z.001 = 3.09

5115 Q, = —0z.95 + p = —27(.675) 4+ 102 = 83.775
Qo =025+ pu=p=102
Qs = 0295 + p = 27(.675) + 102 = 120.225

5.116 The density function is

173
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Vong

L_r7lexp[—(lnz — a)?/26?] 2>0,8>0
0 elsewhere

200 1 _1 =>(nz—a)?
P(X >200) = 1—P(X <200)=1-— — g lew? dx
0 V20
n(2000 1 In(200) — «
- 1- el qy =1 - p(R= T
= y ( 3 )
In(200) — 8.85

= 1-F(

Tor ) =1 - F(=3.448)

= F(3.448) = .9997

In(300) — 8.85
1.03

P(X < 300) = F( ) = F(=3.05) = .0011

5.117 The density function is

fz) =

257 >0
0 elsewhere

(a) P(time to observe a particle is more than 200 microseconds)

— __6—.25:1: |°2° — e——.05 = .051

(b) P(time to observe a particle is less than 10 microseconds)

=1-e702 =1 - .9975 = .0025
5.118 The normal-scores plot of the suspended solids data is given in Figure 5.14.

5.119 The normal-scores plot of the velocity of light data is given in Figure 5.15.



Figure 5.14: Normal-scores plot of the suspended solids data. Exercise 5.118.

Velocity of light

Figure 5.15: Normal-scores plot of the velocity of the light data. Exercise 5.119.
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5.120 Let X be the gross sales volume, having the gamma distribution with @ = 100/n

and § = % If the sales costs are 5,000 dollars per salesman then the expected profit
is E(P) = EX — 5n = aff — 5n = 504/n — 5n which is maximized at n = 25.

5.121 Let X be the strength of a support beam, having the Weibull distribution with
a=.02 and g = 3.0.

P(X >45) = / ~(.02)32%e % 4y
45
Using the change of variable u = z*, we have

o0
P(X > 45) = /( . 02602 dy = ¢~ 02(49)° = 1616
4.5

5.122 Let (X,Y) have the joint density function

04e~2=% forz >0,y >0
fz,y) =

0 elsewhere

o0
=/ 0de™ 2 Wdy = 2e72® for >0
0

foly) = / 04e~ 2= Wdr = 2e=% for y >0
0

/Oo /oo z + y)(.04)e™2~Xdxdy
0

- / / (.04)e~ 2~ Ndydr + / / (.04)e~ 2~ g dy
= / z(.2) _2‘”(/ 2e” 2ydy>dm
0
+ / y(.2)e~% (/ .26"2"dm>dy
0 0
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+ — =10.

o —.2z o -.2 1 1
= / z(.2)e”“dx +/ y(.2)e"¥dy = — + —
0 0 2 2

(c) Here E(X)=1/2=E(Y),s0 E(X+Y)=E(X)+ E(Y) = 10.

5.123 (a) The independent random variables X; and X, have the same probability
distribution b(z;2,.7). Hence the joint probability distribution of X; and X,

is

f(.’El, 332) = b(iL’l, 2, 7) . b(ﬂ?g; 2, 7)

= 2 7 32 2 772 32w
I )

— 2 2 .711+w2'34—$1—22
41 )

where 1 = 0,1,2, and 2, = 0,1, 2.

(b)

P(X; < Xy) = f(0,1)+ f(0,2) + f(1,2)

() I
(HIHR

= .0378 4+ .0441 + .2058 = .2877

= 3(=5) +5(1) +2 = —8.

(b) VCW'(3X1 + 5X2 + 2) = Var(3X1 + 5X2) = 32V(IT'(X1) + 52V(1,T(X2)



178
= 32(3) + 5%(4) = 127.

5125 (a) E(X1+ Xo+ -+ Xz0) = E(X1) + E(X2) + - - + E(X30)
= 30(—5) = —150.
(b) Var(X; +Xs + -+ X30) = Var(Xy) + Var(Xs) + - - - + Var(Xs)
= 30(2) = 60.





